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1 Introduction

We live in a society under unprecedented threat from climate change (Feldmann

and Levermann, 2015). Anthropogenic emissions of carbon dioxide, methane

and nitrous oxides have increased atmospheric levels of CO2 to levels not seen

for at least 4 million years - well before the evolution of homo sapiens. The

resulting greenhouse effect is warming the planet, potentially faster than at

any time in the last 420 million years (Foster, Royer and Lunt, 2017). Sudden

increases in global mean temperatures of this degree are associated with mass

extinctions, and measurements of plant, insect and animal life suggest that

indeed the sixth mass extinction is well underway (Barnosky et al., 2011).

The problem has been understood for decades, and surveys now almost uni-

versally indicate that even in countries with unfavourable political leadership,

there is an overwhelming majority of people who want their governments to take

action (Hamilton et al., 2015; Leiserowitz et al., 2018). And yet action has not

been forthcoming (den Elzen et al., 2019; Masson-Delmotte et al., 2018). The

flagship for political solutions is the Paris Agreement (UNFCCC, 2015). This

is a voluntary agreement for countries to commit to greenhouse gas emissions

reduction targets, (so called “Nationally Determined Contributions” or NDCs)

at a rate which is known to be insufficient (Tong et al., 2019), and with no

penalties for countries which fail to reduce. It is clear that further pressure

needs to be brought on governments (Ge et al., 2019). When confronted with

the failure to act, politicians typically respond that their decisions reflect the

attitudes of their electorate (see for example Marshall, 2015).
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Our attitudes are therefore very important. They affect other people through

the observance of social norms. They affect governments, even in countries with

low levels of democracy (Roberts and Geels, 2019), and they affect companies.

Companies which are able to, are very keen to supply greener versions of

products, once they become aware of the demand.

The ability to predict how societal pro-environmental attitudes will change

over time is therefore very important, and yet the most common assumptions

made about these attitudes is that they are a linear function of education,

resources and time, in spite of overwhelming evidence to the contrary (Evert

and van der Doelen Frans, 2017; Kahan et al., 2012; Marshall, 2015).

This paper attempts to pull together three of the most promising approaches

to modelling pro-environmental attitudes and to show how a general model can

be created.

1.1 Modelling Framework

The base model we are going to use comes from a Synergetics approach, applied

to Quantitative Sociology. Synergetics is the study of systems undergoing

change from the point of view of the system as a whole. It is flexible enough

to model complex dynamic systems and thus lends itself nicely to the field of

modelling societal attitudes.

We take the discrete choice social norms model of Zeppini (2015) and modify it

to make it amenable to the analysis performed by Weidlich and Haag (1983).
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We have referred to “attitudes,” and specifically pro-environmental attitudes as

the object of study, but in truth the model could equally well be applied to be-

haviours, or ideologies. Psychology spends a lot of time investigating individual

attitudes and behaviours, and yet what is needed is an understanding of how

individuals’ attitudes interact over time. This is one of the fundamental ideas

behind Social Practice Theory, which, instead of starting with the individual,

starts with a social practice (such as turning off light bulbs on leaving rooms)

and looks at the factors which cause the practice to expand, or diminish.

It is hoped that a better theory of how social practices - or pro-environmental

attitudes - spread will give policy-makers a useful tool in the fight against

climate change.

Synergetics systems typically have one or more “macrovariables” (temperat-

ure, or location for example) interacting in a system involving a number of

microvariables (the movement of molecules for instance). The systems typic-

ally involve nonlinear processes and can therefore give rise to interesting and

chaotic dynamics. Synergetics examines the evolution of these dynamics, and

is concerned with understanding how to characterise the kind of mathematical

behaviour a system could be expected to exhibit.

It is not hard to see how similar dynamics can arise in systems describe the

attitudes or behaviours of large groups of individuals. Attitudes are spread

between individuals through seemingly insignificant encounters. Sometimes

attitudes take root and grow. Othertimes they wither on the vine. A model pur-

porting to study these effects ought at the very least be capable of reproducing

them.
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Typically the model used in this paper will lead either to behaviour which

converges to a (consistent) mean, cyclic behaviour, or behaviour which is

supercritically dependent on initial conditions. It is often interesting and

informative to explore when one kind of behaviour morphs into another, and

this paper will talk about bifurcation points to describe this process.

With the base model firmly in mind, we will then turn to the two other models

discussed in this paper, Zeppini, 2015 and Peyton Young, 2009. In all three

cases, we have adapted models, equations and variables, so as to permit a more

convenient comparison.

The Peyton Young paper does a very good job of collating and clarifying the

work done on innovation diffusion but it has two limitations which we try to

address here. Firstly, it is focused on innovation diffusion. Yes, we can treat

pro-environmental attitudes as a social meme which can spread through a

population, but a commonly used modelling technique in the papers Peyton

Young assesses is to model social influence via threshold (or cut-off) controls.

Not all innovation diffusion can be usefully explained that way and we attempt

to find away around the issue later in this paper.

The other issue has to do with complexity and stochastic processes. It is

easy to make assumptions on (for example) the shape or scope of a particular

function when this may not be justified. For example, we know that many

models possess chaotic properties than cannot be easily studied by looking at

mean behaviours. Models which include a stochastic process clearly have the

advantage here. (The Zeppini paper is clearly a good example of this.)
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That paper is set in a discrete time framework, and for good reasons, as that is

where a lot of the discrete choice arguments can be applied. There is however,

much to be gained by transposing it into continuous time, and that is the

approach we take here.

The rest of the paper is structured as follows. We first examine (in the next

section) a general model of individuals’ attitudes in continuous time, looking

at what can be said about the general dynamics before motivation in the form

of utility functions is introduced.
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2 Base Model

Suppose we have a society of N individuals, with ng being the number holding

a “green” attitude towards the environment and nb correspondingly the number

holding a non-green (or “brown”) attitude.

Define

n ≡ ng = N − nb

Let pg,b(n, t) and pb,g(n, t) be individual transition probabilities per unit time

(pg,b for moving to green from brown, pb,g for moving to brown from green) so

that for example
∫ t

0
pg,b(n, τ)dτ is the probability that an individual “transitions”

from the brown to the green state within the period [0, t]. These transition

probabilities are not assumed to be static, and will in general also depend

on n. (When we add utility to the model in section 3, we will have a direct

mechanism for influencing transition probabilities based on changes in n.)

Consider first an ensemble of such societies, and define p(n, t) as the probability

that a given society has state n at time t. Whereas the individual’s state is

one of {g, b}, the state of each society is given by our variable n ∈ [0, N ], the

number of individuals holding the “green” attitude.

So
∑N

n=0 p(n, t) = 1 for all t.

Now define wj,i as the transition probability per unit time for a society for

moving to state j from state i.
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We can write down the general master equation:

dp(j, t)

dt
=

∑
i

[wj,i p(i, t) − wi,j p(j, t)] (1)

In our model however, all societal state changes occur via “nearest neighbour”

transitions, so wj,i = 0 for all i 6= j ± 1 and we can define

w↑(n) ≡ w(n+1),n = nb.pg,b = (N − n).pg,b(n) (2)

w↓(n) ≡ w(n−1),n = ng.pb,g = n.pb,g(n) (3)

The probability that a society goes to state n+ 1 from state n in the period

[0, t] is
∫ t

0
w↑(n)dτ . Note that the society can also go to state n− 1, or stay at

state n in this period. Define also the probability per unit time of no transition:

w=(n) ≡ 1− [w↑(n) + w↓(n)] (4)

We can now reformulate the master equation (1) as:

dp(n, t)

dt
= [w↓(n+ 1)p(n+ 1, t)− w↓(n)p(n, t)]

+ [w↑(n− 1)p(n− 1, t)− w↑(n)p(n, t)] (5)

p(n, t) can therefore be written as the sum of net probability fluxes over time:

Define

j↑(n, t) ≡ w↑(n).p(n, t) (6)

j↓(n, t) ≡ w↓(n).p(n, t) (7)
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and

k(n, t) = net flux ≡ j↑(n, t)− j↓(n, t) (8)

then equation 5 can be more concisely expressed as

dp

dt
= k(n− 1, t)− k(n, t) (9)

If the four components of equation 5 are in balance, then there is no net change

to the system. In fact equation 9 is a continuity equation: if there is no change

in the state of society (the probability that society has any given number of

individuals with a “green” attitude), then dp
dt

is zero and k(n−1, t) = k(n, t) for

all n; conversely, if k(m, t) 6= k(n, t) for some (n,m), then the state of society

must be in dynamic change.

We also have the following boundary conditions:

j↑(N, t) = j↓(0, t) = 0

k(N, t) = k(−1, t) = 0

(10)

2.1 General Dynamics

Following Weidlich and Haag, it is possible to obtain general expressions for the

mean and variance of the proportion x ≡ n
N

of individuals with green attitudes,

expressed in terms of the transition probabilities w↑ and w↓. To do this we

need to treat x and n as a continuous variables - an approximation which is

increasingly accurate as N becomes large and as long as p(n, t), w↑(n) and

w↓(n) are all well-behaved.
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Writing

∆x =
∆n

N
=

1

N

we define

P (x, t) ≡ Np(n, t) = Np(Nx, t)

W↑(x) ≡
1

N
w↑(n) = (1− x)pg,b(Nx)

W↓(x) ≡
1

N
w↓(n) = xpb,g(Nx)

W=(x) ≡
1

N
− [W↑(x) +W↓(x)]

(11)

Then ∫ 1

0

P (x, t)dx ≈
1∑

x=0

P (x, t)∆x =
N∑

n=0

p(n, t) = 1 (12)

Take equation 2 and expand it using the Taylor series:

∂p(n, t)

∂t
= ∆n

∂

∂n
[w↓(n)p(n, t)] +

(∆n)2

2

∂2

∂n2
[w↓(n)p(n, t)]

−∆n
∂

∂n
[w↑(n)p(n, t)] +

(∆n)2

2

∂2

∂n2
[w↑(n)p(n, t)] (13)

Setting ∆n = 1,

∂p(n, t)

∂t
= − ∂

∂n
{[w↑(n)− w↓(n)]p(n, t)}

+
1

2

∂2

∂n2
{[w↑(n) + w↓(n)]p(n, t)} (14)

From equation 11,

[w↑(n)− w↓(n)]p(n, t) = [W↑(n)−W↓(n)]P (x, t) (15)
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So

∂P (x, t)

∂t
= − ∂

∂n
{[W↑(n)−W↓(n)]P (x, t)}

+
1

2

∂2

∂n2
{[W↑(n) +W↓(n)]P (x, t)} (16)

It is useful to define a “drift coefficient”

K(x) = W↑(x)−W↓(x) (17)

and a “fluctuation coefficient”

Q(x) = W↑(x) +W↓(x) (18)

which allows us to write

∂P (x, t)

∂t
= − ∂

∂x
[K(x)P (x, t)] +

1

2N

∂2

∂x2
[Q(x)P (x, t)]

= − ∂

∂x
H(x, t)

(19)

where

H(x, t) = K(x)P (x, t)− 1

2N

∂

∂x
[Q(x)P (x, t)] (20)

is a probability flux with the following boundary conditions:

H(0, t) = H(1, t) = 0 (21)

At time t = 0 the probability distribution function P (x, t) has a discontinuous

gradient:

P (x, 0) = δ(x− x0)
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(where δ here is the Dirac delta function, with infinite height but unitary

integral). We can however use a definition of gradient from “above” the

discontinuity:
∂P (x, 0)

∂t
= lim

∆t→0+

P (x,∆t)− P (x, 0)

∆t
(22)

Writing 〈f(x)〉t for the mean value (over x) of a function f(x) at time t, we

define it as

〈f(x)〉t =
∫ 1

0

P (x, t)f(x)dx (23)

And equation 16 gives us:

∫ 1

0

∂P (x, 0)

∂t
xdx = lim

∆t→0+

〈x〉t − 〈x〉0
∆t

=

∫ 1

0

x{− ∂

∂x
[K(x)P (x, 0)] +

1

2N

∂2

∂x2
[Q(x)P (x, 0)]}dx

= K(x0) (24)

But

〈x〉0 =
∫

δ(x− x0)xdx = x0 =

∫
P (x,∆t)x0dx = 〈x0〉∆t (25)

So we can also write

K(x0) = lim
∆t→0+

〈(x− x0)〉∆t
∆t

(26)

For the variance,

∫ 1

0

∂P (x, 0)

∂t
x2dx = lim

∆t→0+

〈x2〉∆t − 〈x2〉0
∆t

=

∫ 1

0

x2{− ∂

∂x
[K(x)P (x, 0)] +

1

2N

∂2

∂x2
[Q(x)P (x, 0)]}dx

= 2x0K(x0) +
1

N
Q(x0) (27)
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But x2
0 = 〈x2〉0 = 〈x2

0〉∆t so

1

N
Q(x0) = lim

∆t→0+

[〈x2〉∆t − 2x0〈x〉∆t + x2
0]

∆t
= lim

∆t→0+

〈(x− x0)
2〉∆t

∆t
(28)

So the drift and fluctuation coefficients provide respectively the mean and

variance of the deviation of x from its initial value, at least for small values of

t.

Weidlich and Haag show how to obtain complete equations of motion for 〈x〉

and 〈x2〉. Taking into account the boundary conditions (21) this gives us

d〈x〉t
dt

= 〈K(x)〉t −
1

2N
[Q(x)P (x, t)]x=1

x=0 (29)

and
d〈x2〉t
dt

= 2〈xK(x)〉t +
1

N
〈Q(x)〉t −

1

N
[xQ(x)P (x, t)]x=1

x=0 (30)

Writing σ(t) for the variance

σ(t) = 〈(x− 〈x〉t)2〉t = 〈x2〉t − 〈x〉2t ≥ 0 (31)

We can simplify equations 29 and 30 if we are able to make the assumption

that the probability distribution function P (x, t) has very small values at the

extremes x = 0 and x = 1. Then

d〈x〉t
dt

= 〈K(x)〉t (32)

dσ(t)

dt
= 2[〈xK(x)〉t − 〈x〉t〈K(x)〉t] +

1

N
〈Q(x)〉t (33)
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This rather surprising result suggests (providing the assumption that P (x, t) is

negligible at x = 0 and x = 1 holds) that empirical methods could be used to

produce a solution. Determining the sample mean and variance of a process

assumed to be following this model would allow us to estimate K(x) and Q(x)

and hence W↑, W↓, w↑ and w↓.

2.2 Exact Solutions

It is possible to produce explicit solutions of these equations of motion under

certain circumstances:

1. The case when there is no change over time, (see Weidlich and Haag,

1983, pp.28-30)

2. When the drift (K(x)) is linear in x and the fluctuation (Q(x)) is constant

(see Weidlich and Haag, 1983, p.33)

3. When a non-zero drift dominates the motion (see Van Kampen, 1976)

There are two further cases where an exact solution is not possible:

1. Fluctuation-initiated motion starting from an unstable stationary point

in the path of 〈x〉

2. Fluctuation-dominated motion starting from a stable stationary point in

the path of 〈x〉
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3 Specific Cases

Let us now compare this model with the discrete choice (discrete time) model

of Zeppini.

Individual i’s utility is given by

Wi = Ui − pqi −Di +Gi + Ii + εi (34)

Wi is the individual’s von Neumann–Morgenstern utility which is a function of

Ui, the utility arising from the good itself, the cost of the good consumed (price

p, quantity qi) and four other terms: Di is the perceived damage resulting from

the consumption (itself a function of Q =
∑

i qi); Gi is Andreoni’s “warm-glow”

(1990), which rewards individuals with a positive feeling when they take an

otherwise-unmotivated altruistic decision; Ii is the effect of social norms1 on

the individual, assumed therefore to be a function of x; lastly, εi is a stochastic

element, unobservable to the modeller but known to the individual. This

random component of the utility allows the individuals to make different

optimisation decisions when faced with the same input variables, or, in the

context of this paper, it allows us to model individuals making the decision to

change their attitude at different points in time.

It is worth noting that none of the components of Wi are directly dependent on x

with the exception of Ii. Thus, without the social norms, this is a straightforward

demand/supply optimisation problem, solvable in the traditional way.

1 The model is concerned only with descriptive social norms, that is to say, the effect on the
individual caused merely by observation of the actions (decisions) of other individuals.
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The choice of attitude in stage 1 is represented by the variable

ωi = 1 for green, else 0 (35)

Zeppini defines

∆W (x) ≡ Wb(x)−Wg(x) (36)

and notes that this is the key determinant of the individual’s choice. In the

case where all choice is made on pure “rational” grounds, (εi = 0), the path

of x(t) is a step function, as all individuals decide simultaneously to change

state. So when the stochastic component is introduced we are interested in

comparing ∆W with ε(1)− ε(0) and it is the probability distribution of this

which generates the logistic solution

f(x) =
1

1 + e−β∆W (x)
(37)

We address two challenges. First, a method must be chosen to introduce

continuous time, and we take this first.

Let ∆t be the time interval for each iteration through the repeated game, and

then examine the limit as ∆t → 0. We are interested in the probability that

individual i chooses {g}.

Pr{ωi(x) = 1} = Pr{εi(1)− εi(0)} =
1

1 + e−β∆W (x)
(38)

The second issue comes because our model has an extra degree of freedom.

Specifically, the length of time the individual spends in one state before moving
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to another. Or to put it another way, the probability per unit time that the

individual maintains the same attitude.

This is captured by w= and W= from equations 11 and 4, and makes explicit the

fact that this model is a Markov process with non-zero stationary probabilities.

(Recall that the states of our model is the set {1, ..., N}.)

In order to address this issue, we need to modify the structure of the repeated

game. For instance, we could introduce a stage zero, where the length of time

the individual spends in a state before making their stage one decision. It is

clear that this modification, along with the continuous time modification, would

then enable the discrete choice model to reproduce the range of behaviours

implicit in our base model. However, it would allow permit a far greater degree

of variability resulting in a loss of analytical tractability. We would not, for

instance, be able to predict a logistic curve with any certainty. The approach

taken by Peyton Young goes some way to address this issue. See below.
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4 Comparison with other models

In this section, we compare the synergetics model of section 2 with models of

innovation diffusion, likening change in attitude to the introduction of a novel

innovation.

Peyton Young (2009) classifies three kinds of innovation diffusion: Contagion,

Social Influence and Social Learning. Under contagion, individuals merely have

to come into contact with others with the attitude for it to “catch.” Social

Influence is described as adoption spread by a “conformity motive:” innovations

spread when sufficient people in the group have adopted.

The last of Peyton Young’s three types of innovation diffusion is Social Learning,

which requires that the individuals first observe evidence that the innovation is

worth copying.

A drawback of the approach that Peyton Young takes is that with innovation

diffusion, the question is about when the individuals adopt the innovation, with

the implicit assumption that once adopted, they cannot later unadopt.

In both models, individuals have certain probability per unit time of moving

from state one to state two. With a model of attitude dynamics, they may

later revert. In innovation diffusion, once at state two, the chance of reversion

is zero.
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This is disappointing, as it leaves a large problem space unexamined. Our

base model, described in section 2, is however flexible enough to cope with this

discrepancy. We simply require pb,g(n) = 0.

As a consequence,

w↓(n) = W↓(x) = j↓(n, t) = 0 (39)

k(n, t) = j↑(n, t) = 0 (40)

K(x) = Q(x) = W↑(x) (41)

and the equations of motion for the mean and variance are

d〈x〉t
dt

= 〈W↑(x)〉t (42)

dσ(t)

dt
= 2[〈xW↑(x)〉t − 〈x〉t〈W↑(x)〉t] +

1

N
〈W↑(x)〉t (43)

Let us take a closer look at the Contagion case. The definition is “a process

in which people adopt a new product or practice when they come in contact

with others who have adopted it.” 2 The key difference between this and Social

Influence, at least as defined by Peyton Young, is that his model for Social

Influence requires an adoption threshold for each individual. While a worthy

object of enquiry, it does not match our use of descriptive social norms in

section 3.

2 Peyton Young, 2009, p.1900
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A closer match however, is the contagion case. It is a very close match if we

ignore the human layers of meaning implicit in the word “influence” and focus

instead purely on the mathematical definitions, as will be shown below.

Let x(t) as before be the proportion of individuals with a “green” attitude.

Let λ(t) be the rate at which an individual from the “brown” subset has their

attitude changed via an interaction with an individual from the “green” subset.

Let γ(t) correspondingly be the rate that a brown individual’s attitude is

changed (to green) by a “brown” individual. (This is by no means an unlikely

scenario; consider for instance conversations about climate change between

individuals who hitherto did not consider it serious enough to take action. It

is certainly possible that any such interchange could result in the rethinking

of premises or assumptions which may no longer hold weight, resulting in a

“brown-on-brown” green conversion.)

The equation of motion for this system is

dx(t)

dt
= [λx(t) + γ][1− x(t)] (44)

which has the following solution:

x(t) =
1− βγe−(λ+γ)t

1 + βγe−(λ+γ)t
(45)

Encouragingly, when λ = 0, we get

x(t) =
1

1 + cγe−γt
(46)

which can be compared with equation 37.
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5 Conclusion

Synergetics is a rich field with plenty to add to Economics. We have seen how a

framework which is more commonly used to describe physico-chemical systems

can nonetheless be useful in other disciplines.

Specifically, it is possible to create models which are both detailed enough to

capture the complex dynamics required by an analysis of pro-environmental

attitudes, while at the same time also being sufficiently analytically tractable

to lend themselves to exact solutions.

Crossovers have been found between the models of Peyton Young and Zeppini,

and it is possible that a future model could unite these with the Weidlich

and Haag framework, if an alternative method can be found to describe the

multi-state Markov process.
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