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Abstract

We consider dynamic auction mechanisms for the allocation of multiple items. Items are
identical, but have different expiration times, and each item must be allocated before it ex-
pires. Buyers are of dynamic nature, and arrive and depart over time. Our goal is to design
mechanisms that maximize the social welfare. We begin by showing that dominant-strategy
incentive-compatibility cannot be used in this case, since any such auction cannot obtain any
constant fraction of the optimal social welfare. We then design two auctions that perform well
under a wide class of “semi-myopic” strategies. For every combination of such strategies, the
auction is associated with a different algorithm (or allocation rule), and so we have a family
of “semi-myopic” algorithms. We show that any algorithm in this family obtains at least 1/3
of the optimal social welfare. We also provide some game-theoretic justification for acting in a
semi-myopic way. We suggest a new notion of “Set-Nash” equilibrium, where we cannot pin-
point a single best-response strategy, but rather only a set to which best-response strategies
belong. We show that our auctions have a Set-Nash equilibrium which is all semi-myopic.
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1 Introduction

Internet auctions exhibit many traditional aspects that are well-studied in auction theory, but are
also different in some important aspects. One important difference is their extremely dynamic
nature: buyers frequently enter and leave the electronic markets, and items are displayed with
attached “expiration times” – a time limit by which the item must be sold. This differs from most
classic models of auction theory, where buyers and items are usually static, present throughout the
auction.

In recent years, many papers on “online mechanism design” (or “dynamic mechanism design”)
try to address this new aspect in auctions, for example, Lavi and Nisan (2004), Parkes and Singh
(2003), Bergemann and Välimäki (2010), Athey and Segal (2013), and Babaioff, Immorlica and
Kleinberg (2007), among many others (Section 1.1 below gives more details). Two standard so-
lution concepts are widely used. Many papers insist on dominant-strategy incentive-compatibility
(“truthfulness”), even at the cost of significantly limiting the models being studied. Other papers
follow the standard methodology of Bayesian mechanism design, at the cost of making significant
assumptions on the distributional knowledge and rationality assumptions that players have about
the other players. The dynamic and cultural nature of the Internet raises doubts regarding the
validity of such assumptions.

Here, we try a new trail. We design auctions for which many strategic choices lead to an
approximately optimal allocation. Thus, instead of designing one equilibrium path, aiming to
make this single outcome efficient, we design a family of outcomes, that correspond to a large set
of possible strategic choices. We will predict that players will choose a strategy that belongs to
this subset of reasonable strategies. From an algorithmic point of view, we design a family of
algorithms, each one corresponds to a specific combination of players’ strategies, and all of them
incur only a bounded welfare loss. Thus, although players are not expected to follow a specific
strategy, but only one out of a set of strategies, the outcome is still guaranteed to have bounded
efficiency loss. We believe that this general idea of “set equilibria” offers a new way to bypass the
inherent difficulties of robust mechanism design, in a way that suits the classic worst-case notions
of algorithmic theory.

The problem we study is the online allocation of M items that are all identical except that
they “expire” at different times: the first item expires at time 1, the second at time 2, and so on.
Players arrive over time, and items must be allocated at or before their expiration time. Each
player j desires any single item between his arrival time, r(j), and his deadline, d(j), and has a
value v(j) for receiving the item. All information r(j), d(j), v(j) is private to player j, and players
act rationally to maximize their utility: the value v(j), if they are allocated an item, minus any
payment that they must pay. Our goal is to design a mechanism that maximizes the social welfare,
i.e. to allocate the items so that the sum of values of players that receive an item is maximized.

This model seems applicable to many scenarios in which items are sequentially allocated as time
progresses, where both items and players have a finite “lifetime”. Our main motivating example
comes from online computational environments, where computational resources need to be allocated
to users over time. In particular, our model is equivalent to online scheduling of unit length jobs
with deadlines: jobs arrive over time, require one unit of computational resources, and have a
deadline for completion. A job that is being completed by its deadline yields a value v(j) for its
owner. This is a common, classic computational scenario (Horowitz and Sahni, 1978).

Algorithmic theory offers many solutions for this model, but does not handle any strategic
considerations the players/jobs/users might have. A first attempt should probably be to design a
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truthful mechanism for this problem, in which the dominant strategy of the players is to reveal their
true types (arrival time, value, deadline). However, such a mechanism will have to compromise one
of our goals, as we show the following impossibility: any truthful deterministic mechanism for our
setting cannot always obtain a constant fraction of the optimal welfare.

One could approach this difficulty by adding more assumptions on the players and the environ-
ment, but we will try a different approach that builds on the strong connection of our model to
assignment problems. In the static case, when all players are present from time 1, our model is a
classic assignment model. Many auction formats have been proposed for this model, and it will be
especially useful to consider in detail a variant of one of the iterative ascending auctions suggested
by Demange, Gale and Sotomayor (1986). Adjusted to our model, this auction constantly maintains
a current price pt and a current winner wint for every item t. Each player, in turn, may place his
name as the temporary winner of some item t′ (bid on t′), deleting the previous temporary winner,
and increasing the price by some fixed small δ (a player can be a temporary winner for only one
item). When none of the players wishes to bid, the auction terminates: each item t is sold to player
wint for a price of pt. Demange et al. (1986) show that if all players are myopic, i.e. always bid
on the item with the lowest price, the auction obtains maximal welfare.1 Furthermore, Gul and
Stacchetti (2000) have later shown that behaving myopically is an ex-post equilibrium in this case.

When the dynamic nature of buyers is taken into account, the above results no longer hold, and
the situation changes significantly. Clearly, in order to guarantee a constant fraction of the social
welfare, items must be sold over time, and the auction process cannot terminate at time 1 with
a decision about all future times. As a result, myopic behavior will no longer be an equilibrium.
In particular, the best response behavior of a specific player must depend on the player’s beliefs
about the future. Intuitively, if a player fears that new competitive bidders will arrive in the future,
she may bid aggressively for earlier items, offering a higher price for them but reducing her risk of
future competition, while if the beliefs suggest that most relevant bidders have already arrived, the
bidder will tend to be more myopic.

We give a full analysis of this natural variant of the auction of Demange et al. (1986), adjusted
to fit the dynamic setting. We show that even under a wide range of players’ strategies, that
correspond to different and contradicting beliefs, the resulting social welfare will still be at least
one third of the optimal social welfare. This holds regardless of the number of items, the number of
players, the range of player values, and even if an adversary sets players’ types so as to intentionally
“fail” the auction.

This type of “worst-case” analysis is common in computer science and algorithmic theory,
where it is standard practice to avoid the assumption that the probability distribution over the
input to the algorithm is known to the designer. In connection with mechanism design and auction
theory, worst-case analysis leads more easily to constructions of detail-free mechanisms. Since the
analysis itself is conducted without relying on any distributional details, the resulting mechanisms
are naturally detail-free. A worst-case analysis enables us to adapt the classic DGS mechanism
for the dynamic case, showing its robustness to a shift from static environments to dynamic ones.
Bayesian analysis, on the other hand, not only relies on the assumption that the designer knows the
underlying distribution and can tailor the mechanism to the specifics of that distribution, it usually
also requires the stronger assumption that all players (and not only the designer) commonly agree
about the details of the underlying distribution. This assumption seems too strong for our setting.

1This is the “approximate auction”, the second of the two mechanisms in Demange et al. (1986). The welfare
obtained by this auction approaches the optimal welfare as δ goes to zero.
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The auction of Demange et al. (1986) is adjusted to the online setting by assuming that at time
1, when the iterative process ends, only item 1 is sold. Then, at time 2, new players may join and
the iterative process resumes, where prices start at their previous level. This continues at any time
t. As previously mentioned, myopic strategies are no longer an equilibrium, as for example a player
that estimates that new competitive bidders will arrive in the future may bid more aggressively
for earlier items. To incorporate such considerations, we call a player semi-myopic if she always
bids on some item with price lower than her value, but not necessarily on the item with the lowest
price, as the myopic behavior requires. Thus, semi-myopic behavior is a much weaker assumption
than myopic behavior: it does not specify a specific item to bid on, but rather allows to choose any
item that could potentially result in a positive utility. The main requirement is only that a player
will not be silent as long as there exist potentially beneficial items. This captures a wide range of
strategies, that reflect different and contradicting beliefs. Our analysis shows that the Demange
et al. auction, in the online (dynamic) setting, always obtains at least one third of the optimal
social welfare, as long as all players are semi-myopic. Thus, even if the prior beliefs of the players
are significantly different, and the “true” underlying distribution is not common knowledge, this
auction mechanism will enable social coordination to some reasonable extent.

We additionally show that a second classic auction format yields similar results. This is the
sequential Japanese auction: item t is sold at time t using a one-item ascending auction. We show
a strategic equivalence, in our setting, between this auction and the auction of Demange et al. This
equivalence enables us to properly define a myopic behavior for the sequential Japanese auction,
which leads to the optimal allocation and is an ex-post equilibrium, in the offline case. Similarly
to above, this equivalence also leads to a family of semi-myopic strategies, that capture players’
uncertainties about the future, in the online setting. Our analysis again shows that every choice of
semi-myopic strategy will always obtain at least one third of the optimal social welfare.

Why should the players be semi-myopic? Demange et al. in their original paper were satisfied to
simply assume myopic behavior, and it seems to us that semi-myopic behavior is a natural extension
of myopic behavior to dynamic settings. Still, it is desirable to approach this question also from
a game-theoretic point of view. We seek a notion that will capture the idea that, without any
knowledge about the future, we have to forecast a set Ri of strategies, instead of a single strategy
ri as an equilibrium point. We say that the strategy sets Ri are in a “Set-Nash equilibrium” if
for any player i, and any strategy combination of the other players s−i ∈ R−i, player i has a
best response to s−i in Ri. We show that both our online ascending auctions have a Set-Nash
equilibrium with strategies that are all semi-myopic. In the paper body we compare the set-Nash
notion to other existing notions, for example to the “curb set” of Basu and Weibull (1991), and
discuss the differences. We also provide some discussion on ways to strengthen the basic definition.
We describe a hierarchy of four “set equilibria” notions, with growing strength. While, for our
motivating problem, we were able to use only the basic definition, we believe that the complete
hierarchy may turn out useful for other models, where robust implementation is impossible, but one
still wishes to construct detail-free mechanisms and avoid unrealistic distributional assumptions.

The welfare loss caused by the transition from the offline to the online setting can be attributed
to two effects: the online effect, which is the loss of welfare caused by the dynamic setting, since
the social planner does not know the future (even if players’ types were fully known), and the
strategic effect, which is the loss of welfare caused by the players as they employ more complex
strategic behavior in the presence of extreme uncertainty. Hajek (2001) shows that no algorithm
for the worst-case online setting can obtain more than 62% of the optimal welfare, thus providing
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an estimate for the loss of welfare caused by the online effect.2 Our results demonstrate that the
additional loss due to the strategic effect is at most 30%.

Replacing the Bayesian analysis with a distribution-free analysis can be done in two ways. The
first possibility is to still assume that players’ types are drawn from a fixed distribution, but to use
this fact only in the analysis itself. The description of the mechanism will not rely on the knowledge
of the distribution (or will only partly rely on it), and the performance guarantees will hold for
any distribution (or at least for any distribution out of a large class of distributions). This is the
approach taken e.g. by Satterthwaite and Williams (2002) in the study of two sided auctions, or by
McAfee (2002) in the study of market rationing. A stricter approach, which is usually the choice in
ex-post implementations, is to avoid any distributional assumptions altogether. For example, the
arguments of Demange et al. (1986) hold even if players’ types are chosen by an adversary, or, in
other words, a worst-case analysis. This latter worst-case approach is the one we take in this study.
The former approach would have also been an interesting line of investigation in the context of our
model, and we believe that the results under such assumptions would have been even tighter. In
a follow-up paper, Compte, Lavi and Segev (2012) attempt such an approach, for a special case of
the model that we study here.

The remainder of this paper is organized as follows. After a brief survey of related literature in
Section 1.1, we formally define our model in Section 2. Section 3 describes the dynamic version of
the two classic auctions, and analyzes the resulting efficiency of semi-myopic strategies. Section 4
shows that truthful deterministic auctions that guarantee a constant fraction of the optimal welfare
are impossible. Section 5 describes the notion of Set-Nash that we suggest, and Section 6 shows
that our two auctions indeed have a Set-Nash equilibrium which is all semi-myopic. Section 7
concludes. Additional supplementary technical details are given in the appendices.

1.1 Related Literature

Models of online auctions were studied in the context of algorithmic mechanism design, starting
with Lavi and Nisan (2004). Examples for various different models can be found in the book chapter
by Parkes (2007). Following the conference version of this paper (Lavi and Nisan, 2005), Hajiaghayi,
Kleinberg, Mahdian and Parkes (2005) design a truthful auction for our setting that guarantees
one half of the optimal welfare in our setting, assuming that players cannot declare deadlines larger
than their true deadlines, and that prices are charged only after all auctions end (and depend on the
entire sequence of auctions). Cole, Dobzinski and Fleischer (2008) show to keep the same efficiency
guarantee of one half, while charging payments at purchase time, if both arrival times and deadlines
are known to the auctioneer and cannot be manipulated by the players.

More general models of dynamic mechanism design have been studied by Parkes and Singh
(2003), Athey and Segal (2013), Bergemann and Välimäki (2010), and Cavallo, Parkes and Singh
(2007). They study a general multi-period allocation model, in which a designer needs to perform
allocation decisions in each period and players have private values for the different allocations,
that may be stochastic and time-dependent. Said (2012) shows an explicit connection between the
general results of Bergemann and Välimäki (2010) and the model of sequential ascending auctions,
similar to the one studied here. These results show that full efficiency can be achieved under the
assumption that the mechanism has correct information about future arrivals. In Bergemann and

2He was only able to provide an allocation rule that achieves 50% of the welfare, though, and this gap is still an
open question.
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Välimäki (2010) this is achieved by assuming that players report, before they arrive, the probability
of their future arrival, while Said (2012) abstracts this from the mechanism by assuming a common-
prior.

Gershkov and Moldovanu (2009) study a setting where players appear according to some fixed
and known stochastic process (e.g. a Poisson arrival rate), and are impatient, i.e. must either be
served upon their arrival, or not be served at all. This structure enables Gershkov and Moldovanu
(2009) to characterize optimal dynamic mechanisms, with respect to both the social welfare and
the seller’s revenue.

The algorithmic problem of online job scheduling with unit length jobs was studied by Kessel-
man, Lotker, Mansour, Patt-Shamir, Schieber and Sviridenko (2004). The give a simple greedy
algorithm that guarantees one half of the optimal social welfare. Bartal, Chin, Chrobak, Fung,
Jawor, Lavi, Sgall and Tichỳ (2004), give a randomized algorithm that guarantees a better bound
of about 65%. Hajek (2001) shows that no deterministic algorithm can obtain a bound better than
the “golden ratio”.

Compte et al. (2012) study a special case of the model studied here, where buyers do not have
deadlines, and are able to stay until all items are sold. They study the efficiency of a sequence of
English auctions with a certain “early termination” rule, and show that this mechanism obtains in
the worst-case at least 63% of the optimal welfare.

2 Model and Basic Definitions

Items: A seller sells M identical items with different expiration times. The first item expires at
time 1, the second at time 2, and so on. Each item must be sold (and received by the buyer) at or
before its expiration time.

Players: The potential buyers (players/bidders) of the items arrive over time. Player i arrives to
the market at time r(i), and stays in the market for some fixed period of time, until his departure
time, or deadline, d(i). We assume that the arrival and departure times are integers (actions in
a non-integral time point can be deferred to the next integral point with no effect). Each player
desires only one item (unit demand), that expires no earlier than his arrival time. He must receive
it at or before his departure time. In fact, the auctions we design also satisfy the more severe
restriction that player i cannot receive an item t that expires after his deadline (t > d(i)). Player i
obtains a value of v(i) from receiving such an item, otherwise his value is 0. We assume w.l.o.g. that
different players have different values, as this is a matter of tie-breaking.3

We assume the private value model with quasi-linear utilities: player i privately obtains his
variables r(i), d(i), and v(i), and acts rationally in order to maximize his own utility: his obtained
value minus his price. A player may arrive at or after his true arrival time, and declare or act as if
he has any value, and any deadline.

We defer questions about the exact knowledge of the players, besides their own private param-
eters, until Section 5 below, where we analyze the strategic behavior.

Our goal: We aim to design allocation mechanisms that maximize the social welfare: the sum of
(true) values of players that receive an item.

Basic notations: Player i is active at time t if r(i) ≤ t ≤ d(i), and i did not win any item before
time t. Let At be the set of all active players at time t. An allocation is a mapping of items to

3I.e., fix some arbitrary order over players, and set v(i) � v(j) iff v(i) > v(j) or v(i) = v(j) and i � j.
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players such that, if player i receives item t, then r(i) ≤ t ≤ d(i). Let Xt be an allocation of items
t, ...,M . Xt[d] denotes the player that receives item d according to Xt, and Xt[d1, d2] = ∪d2d=d1Xt[d],
the set of players that receive items d1 through d2. By a slight abuse of notation we also use Xt

as the set of players Xt[t,M ]. The value of Xt is v(Xt) =
∑M

d=t v(Xt[d]). In the static (offline)
problem, in which all players arrive at time 1, the potential sets of winners constitute a “matroid”.
All properties of matroids that we require for our proofs, including the basic definition, are surveyed
in Appendix A. Readers who are unfamiliar with this combinatorial structure are strongly advised
to read that section first.

3 Two Online Ascending Auctions

We first describe online adaptations of two well-known ascending auctions. These have the property
that players do not have to choose specific actions for the auction to perform well: a close to optimal
allocation is obtained for a large, reasonable family of strategies that we term “semi-myopic”. Under
any such player behavior, each of our auctions belongs to a general family of semi-myopic allocation
rules, that we characterize. We then show that any semi-myopic allocation rule obtains at least
one third of the optimal welfare, and therefore conclude that our auctions lead to a near optimal
allocation for any choice of semi-myopic strategies of the players.

In this section, we focus on the quality of allocations that the auctions achieve. Therefore we
give only intuitive justifications for the player behavior that we assume. For the same reason, we
also omit a few technicalities about prices and tie-breaking rules from the definitions. All these are
detailed and handled with care when we analyze the strategic properties of our auctions, in the
next sections.

3.1 The Online Iterative Auction

We consider an online adaptation of the iterative auction of Demange et al. (1986):

Definition 1 (The Online Iterative Auction (intuitive version)) The Online Iterative Auc-
tion constantly maintains a current price pt and a current winner wint for every item t. These are
initialized to zero at t = 0, and updated according to players’ actions at each time t, as follows:

• Each player, in his turn, may place his name as the temporary winner of some item t′ ≥ t,
causing the previous winner to be deleted, and the price to increase by some fixed small δ. A
player cannot perform this action, and must relinquish his turn, if he is already a temporary
winner.

• When none of the players that are not temporary winners wishes to place his name somewhere,
the time t phase ends: item t is sold to the player wint for a price of pt − δ.

• At time t + 1 the prices and temporary winners from time t are kept. If additional players
arrive then the auction continues according to the above rules.

Before analyzing the online auction, it is useful to take a glimpse at the offline case, in which
all players arrive at time 1. This is a special case of the unit-demand model studied by Demange
et al. (1986), Gul and Stacchetti (2000):
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Definition 2 (Demange et al. (1986)) Player i has a myopic strategy in the iterative auction
if, in his turn, he always places his name on the an item t ≤ d(i) with the minimal price among all
items. If the minimal price is at least v(i), he does not bid at all.

Lemma 1 (Demange et al. (1986), Gul and Stacchetti (2000)) If all players are myopic and
arrive at time 1 then the online iterative auction obtains the optimal allocation. Furthermore, if all
other players are myopic then player i will maximize his utility by playing myopically.

In the online setting, however, a player might not be completely myopic, depending on his
beliefs about the future. For example, he may bid aggressively for the current item, not placing his
name on future items at all. This is reasonable if he anticipates tight competition from players that
will arrive later on. Viewing this behavior as one extreme, and the completely myopic behavior as
the other, it seems that any combination of the two cannot be “ruled out”. On the other hand,
a player might choose not to participate at all for some time units – if, for example, there are M
high valued players that desire any item 1 through M , but they all do not participate up to time
M , then the resulting welfare will be low. As it turns out, this is the only type of behavior we need
to exclude:

Definition 3 Player i is semi-myopic if, in his turn, i bids on some item t with p(t) ≤ v(i) and
r(i) ≤ t ≤ d(i) (not necessarily the one with the lowest price). If there is no such item, i stops
participating.

Theorem 1 If all players are semi-myopic then the online iterative auction achieves at least one
third of the optimal welfare, up to an additive loss that tends to zero as δ → 0. More specifically:

v(OPT ) ≤ 3 · v(ON) + 2 ·M · δ,

where OPT,ON are the optimal, online allocations, respectively.

The proof is given in Section 3.3 below, where we show that, under any semi-myopic strategy, the
online iterative auction follows a “semi-myopic allocation rule” (as defined in Section 3.3 below),
hence obtains the desired welfare level.

3.2 The Sequential Japanese Auction

A different possibility is to sell item t at time t using a simple one item ascending auction. In a
Japanese auction for a single item, a price is continuously rising, and the only action that a bidder
may take is to drop out of the auction. Once the bidder drops out, he may not re-enter. When
the second-to-last bidder drops out, the price ascent stops, and the last bidder to remain wins the
object at that price. A natural adaptation of this auction to the online case is as follows:

Definition 4 (The Sequential Japanese Auction (intuitive version)) The Sequential Japanese
Auction sells each item t at time t, separately, using a modified Japanese auction: the participants
are allowed to observe how many drop-outs occur as the price ascends and to incorporate this into
their drop-out decision.4

4Prices are also modified. The time-t-winner pays the highest price among all time-t′-auctions in which he tied
the time-t′-winner. Defining “a tie” is delicate, and requires the players to drop simultaneously. See Section 6.3.
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The complete definition is deferred to Section 6.3. As before, it is useful to first consider this
auction in the offline case, in which a rather surprising notion of myopic behavior leads to the
optimal allocation:

Definition 5 Player i is myopic in the Sequential Japanese Auction if, in the auction of any
time t, (for r(i) ≤ t ≤ d(i)), he drops exactly when either the price reaches v(i), or when there are
exactly d(i)− t other players that did not drop yet.

The logic for dropping when d(i)− t players remain is that at this point the player is assured that
there are enough items before his deadline to be allocated to all bidders who are willing to pay the
current price.

Lemma 2 If all players are myopic and arrive at time 1 then the Sequential Japanese Auction
obtains the optimal allocation. 5

In the online setting, again, players might not play myopically, and may insist on closer items
(i.e. stay longer in the auction) if they anticipate much competition in the future. All we wish is
that players will not drop out “too soon”:

Definition 6 Player i’s strategy is semi-myopic (for the Sequential Japanese Auction) if, at every
time t, he drops no later than when the price reaches his value, v(i), and no earlier than when only
d(i)− t other players remain in the auction.

Theorem 2 If all players play semi-myopic strategies then the Sequential Japanese Auction obtains
at least one third of the optimal welfare.

In a similar manner to the iterative auction above, this theorem is proved by showing that, under
any semi-myopic behavior, the Sequential Japanese Auction results in a semi-myopic allocation
rule. The proof is given is Section 3.3 below.

3.3 Semi-Myopic Allocation Rules

For each combination of player strategies, the above auctions are associated with a different allo-
cation rule. In order to analyze their performance for a family of strategies, we therefore need to
characterize a family of allocation rules, that we call semi-myopic allocation rules. The main point
is that any semi-myopic allocation rule obtains at least one third of the optimal welfare.

Specifically, fix some time t. A set S of players is independent with respect to items t, ...,M
if there exists an allocation of (part of) the items t, ...,M such that every player in S receives an
item. In Appendix A we show that these independent sets are the independent sets of a matroid
(Appendix A contains all necessary background on this combinatorial structure). The current best
schedule at time t, St, is the allocation with maximal value among all allocations of items t, ...,M
to the active players, At.

6 Define

ft = { j ∈ St | St \ j is independent w.r.t items t+ 1, ...,M }, (1)

5The assumption that players have different values is important here. It is not hard to verify that this lemma is
actually a special case of Theorem 7 from the online strategic setting (specifically, it follows from Lemma 7). We
note that myopic strategies in the offline case form an ex-post equilibrium only when using the modified prices given
in Section 6.3.

6There exists one such allocation, by the matroid structure, and since different players have different values. See
Appendix A for details.
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The set ft contains all players that can receive item t, when one plans to allocate items t, ...,M to
the players of St (i.e. these are all the potentially first players). Now define the critical value at
time t, v∗t , as:

v∗t =

{
0 St is independent w.r.t. items t+ 1, ...,M
minj∈ft{v(j)} otherwise

All active players with value larger than v∗t must belong to St, because of its optimality. To see
this, note we can assume without loss of generality that the player in St that gets item t has value
exactly v∗t . Thus, if there was a higher valued player outside of St, we could give him item t and
strictly increase the value of St, which is a contradiction to the optimality of St.

Because of this, it seems reasonable not to allocate item t to a player with value less than v∗t ,
as this player cannot belong to any optimal allocation. Surprisingly, this condition is enough to
obtain approximately optimal allocations:

Definition 7 (A semi-myopic allocation rule) An allocation rule is semi-myopic if every item
t is sold at time t to some player j with v(j) ≥ v∗t . If v∗t = 0, the allocation rule may choose to
keep the item unallocated.

Lemma 3 The Online Iterative Auction with semi-myopic players and the Sequential Japanese
Auction with semi-myopic players are both semi-myopic allocation rules.7

Proof: We first show the claim for the Online Iterative Auction. If v∗t = 0 then, trivially, v(wint) ≥
v∗t −δ. Thus assume that v∗t > 0. Let Yt be the allocation of items to the temporary winning players
at the end of time t iterations. According to Claim 11 in Section A.1, ft is independent w.r.t. items
t+ 1, ...,M if and only if v∗t = 0. Therefore ft is not independent, so there exists some player j ∈ ft
such that j /∈ Yt[t + 1,M ]. Since j ∈ ft then v(j) ≥ v∗t . if j = Yt[t] (= wint) then we are done.
Otherwise, j is not a temporary winner at the end of time t iterations. Since j is semi-myopic,
this implies that v∗t ≤ v(j) < p(t). Let i = wint. Since i is also semi-myopic then v(i) ≥ p(t) − δ.
Therefore v(wint) ≥ v∗t − δ, as needed. This concludes the claim for the Online Iterative Auction.

For the Sequential Japanese Auction, we show that the winner has value at least v∗t . Let j ∈ ft
be the first player in ft that dropped. If he dropped because the price reached vj then the winner
has value at least vj , which is at least v∗t . Otherwise there were at most d(j) − t + 1 players that
did not drop yet, including j. By Claim 6 in Appendix A, d(j) − t + 1 ≤ |ft|. Since no player in
ft dropped yet, it follows that every player that did not drop yet belongs to ft, hence the winner
belongs to ft and has value at least v∗t by definition.

The family of semi-myopic allocation rules can be viewed as the entire range between the
following two extremes: the first is the greedy allocation rule, that always chooses the player with
maximal value8, and the second is the “myopic” allocation rule that always chooses the player that
determined v∗t . These two extremes always produce an allocation with welfare at least half of the
optimal welfare (both were studied in the context of online scheduling, see e.g. Kesselman et al.
(2004)). The entire family has only a slightly smaller performance guarantee:

7For the online iterative auction, we actually show that v(wint) ≥ v∗t − δ.
8Interestingly, this is a special case of the greedy algorithm of Lehmann, Lehmann and Nisan (2006) for combina-

torial auctions with sub-modular valuations. They study the offline case, but it is easy to verify that their algorithm
actually works online.
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Theorem 3 Any semi-myopic allocation rule obtains at least one third of the optimal welfare, and
this bound is tight.

The proof of this theorem is given in Appendix C. Note that Theorem 3, coupled with Lemma 3,
is a proof for Theorems 1 and 2. The following example shows that the one-third guarantee is tight:

Example 1 Consider the following scenario for three items. At time 1 arrive two players, j1 has
value 0 and deadline 1 and j2 has value 1 and deadline 2. Thus, v∗1 = 0 and the online allocation
rule may allocate item 1 to j1. At time 2 arrive two additional players, j3 has deadline 2 and j4
has deadline 3, and both have a value of 1. Therefore v∗2 = 1 and the online allocation rule may
choose j4. At time 3 no new players arrive, so item 3 remains unallocated. The resulting welfare
is therefore 1, while the optimal welfare is 3.

4 The Impossibility of Truthful Implementation

We now move to game-theoretic considerations, and start with an impossibility. Let Ti be the
domain of all valid player types (r(i), v(i), d(i)), and let T−i = ×j 6=iTj . By the revelation principle,
it is enough to consider direct revelation mechanisms. Consider the allocation constructed by the
mechanism upon receiving the type bi ∈ Ti from player i and b−i ∈ T−i from the other players, and
let v(i, b) be the value that player i obtains from this allocation, i.e. v(i) if i receives one of his
desired items, and 0 otherwise.

Definition 8 (Truthfulness) A mechanism is truthful if there exist price functions pi : T1 ×
· · · × Tn → < such that, for any i, any b−i ∈ T−i, any true type bi ∈ Ti, and any b̃i 6= bi

9:

v(i, bi, b−i)− pi(bi, b−i) ≥ v(i, b̃i, b−i)− pi(b̃i, b−i).

Theorem 4 Any truthful deterministic mechanism for our online allocation problem cannot always
obtain more than 1/M fraction of the optimal welfare (where M is the number of items).

Remark 1: Although the proof below utilizes an extreme scenario with players with very large
values, the worst-case ratio presented by the proof occurs in common, simple scenarios. In other
words, the proof demonstrates that, since the mechanism defends itself against such extremes, it
must make wrong decisions even in simple cases.

Remark 2: There exists a simple truthful deterministic mechanism that always obtains at least
1/M fraction of the optimal welfare: for any player i, set pi to be the highest bid received in time
slots 1, ..., t, excluding i’s own bid. Sell item t to player i if and only if v(i) > pi, for a price of
pi. It is an easy exercise to verify that truthful-reporting is the only dominant strategy for this
mechanism, and, since the player with the highest value always wins, at least a 1/M fraction of the
optimal welfare is obtained.

Proof of Theorem 4: Assume w.l.o.g. that a player that does not win any item pays 0. This
implies that i’s price must not be higher than his value.

9We actually restrict the possible b̃i’s such that r̃(i) ≥ r(i).
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Claim 1 Fix some truthful deterministic mechanism that always obtains at least 1
c fraction of the

optimal welfare, for some fixed c ≥ 1. Then, for any player i with r(i) = 1 there exists a price
function pi : T−i → < such that, for any combination of players that arrive at time 1, b−i:

• If v(i) > pi(b−i) then i wins item 1 and pays pi(b−i) (regardless of his deadline).

• If v(i) < pi(b−i) then i does not win any item.

Proof of Claim 1: Fix any combination of players that arrive at time 1, b−i. Suppose first that
i has deadline equal to 1. For this case, the player’s type space becomes single dimensional, hence
by well-known incentive compatibility arguments (for example Myerson (1981)) there exist a price
function as claimed.10

We now show that this function pi satisfies the conditions of the claim, regardless of i’s deadline.
Fix any deadline d(i) of i. If v(i) > pi(b−i) then imust win some item until his deadline, otherwise he
can declare d̃i = 1 and have strictly better utility. But then, if i does not win item 1, the adversary
will produce players with higher and higher values, forcing the mechanism not to allocate any item
to i in order to maintain a fraction of the optimal welfare.11 Therefore i must receive item 1. He
will pay pi(b−i) as otherwise, if he pays a higher price, he will declare d̃i = 1 and will reduce his
price, and if he pays less, then if i will have a deadline of 1 he will declare d(i) instead, thus still
winning item 1 but paying less. Therefore the function pi satisfies the first condition.

Suppose now that v(i) < pi(b−i), and suppose there exists a scenario in which i wins one of his
desired items. His price must be at most v(i) < pi(b−i). But then, if i had some value larger than
pi(b−i) he would have been better off declaring v(i) instead, by this still winning but paying less.
Therefore i cannot win any item at all, and the claim follows.

We can now quickly finish the proof of the theorem. Fix any price functions pi : T−i → <.
For any ε > 0 we will show that there exist player types b1, ..., bM such that, for all i, r(i) = 1,
d(i) = M , 1 ≤ v(i) ≤ 1 + ε, and v(i) 6= pi(b−i). By the above claim, it follows that the mechanism
can obtain welfare of at most 1+ε, while the optimal welfare is at least M , and the theorem follows.
To verify that such types exist, fix L > M real values in [1, 1 + ε]. Choose M values v(i) uniformly
at random from these L values. Then, for any given i, Pr(v(i) = pi(b(−i))) ≤ 1/L, as the values
were drawn i.i.d. Thus, Pr(∃i, v(i) = pi(b(−i))) ≤ M/L < 1, hence there exist a choice of values
with v(i) 6= pi(b(−i)) for all i.

5 A Game-Theoretic Framework

Our main motivation at this point is to justify the assumption that players will behave semi-
myopically. We desire a rational justification, i.e. one that shows that expected strategies are, in

10For the single dimensional case a function is implementable if and only if the winning probability weakly increases
with the player’s value (keeping the other values fixed). When the mechanism is deterministic, this essentially boils
down to the fact that there exists a threshold value p∗i = p∗i (b−i), such that i wins and pays p∗i if v(i) > p∗i , and loses
and pays 0 if v(i) < p∗i .

11More specifically, at any time point t = 2, ...,M , let x be the sum of values of all players that arrived at previous
times 1, ..., t − 1. Then, at time t there will arrive a single player j, with value (c + 1)x and deadline t. If the
mechanism will not assign item t to player j, no additional players will arrive in time slots t+ 1, ...,M , and the total
social welfare of the mechanism can be at most x while the optimal social welfare is at least (c + 1)x. Thus, the
mechanism will fail to obtain a 1/c fraction of the optimal social welfare, and this is a contradiction. In other words,
the mechanism must assign item t to player j for every item t = 2, ...,M , and player i will not receive any item.
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some sense, utility maximizers for the players. The settings that we are interested in are ones in
which “recommended” strategies are indeed to be intuitively expected, and deviating from them
would seem to require some effort. In such cases, even rather weak notions of rational justification
carry some weight. Such settings include, in particular, situations where computer protocols are
announced and appropriate software that acts “as expected” is available. From the onset, we
should note that our notions are intended for cases where the existing standard notions of games
with incomplete information do not apply: ex-post Nash equilibria do not exist, and no reasonable
common prior can be assumed (i.e. we seek “worst-case” notions as in computer science rather
than Bayesian notions common in economics).

5.1 Set-Nash Equilibria

We first describe the set equilibrium notions for games with complete information, and then explain
how to extend them to a setting of incomplete information, which suits our needs here. There are
n players, where each player i has a strategy space Si. The outcome of the game is given by the n
utility functions ui : S → < where ui(si, s−i) denotes i’s payoff when he plays strategy si and the
others play the strategy tuple s−i. The basic assumption is that, given that the other players play
s−i, player i will choose a strategy si ∈ argmax{ui(si, s−i)}.

In our setting, a set of recommended strategies, Ri, is defined for each player i. The motivating
scenario is where it is known that if all players play recommended strategies then the outcome
is “good” in some sense. E.g., in our case, the obtained social welfare approximates the optimal
one (therefore we do not put any emphasis on the minimality of the sets; see the discussion on
related literature below for details). We would like to capture the notion that the sets Ri are in
equilibrium. In other words, we formalize when can it be said that given that other players j 6= i
all play strategies in Rj , then player i also rationally plays some strategy in Ri.

We give four definitions below, all maintain the spirit of this “set equilibrium” notion, in order
of increasing strength. Some of these notions have been defined before in the literature in the
context of complete information games – we discuss this below in Section 5.1.1. All of the following
definitions behave the same on the two extreme cases: When each Ri is a singleton set (∀i, |Ri| = 1)
then they are equivalent to Nash equilibrium. When Ri is the entire strategy space (Ri = Si) then
they are trivially satisfied.

Definition 9

1. We say that Ri are in “Set-Nash equilibrium” (in the pure sense) if for every i, every s−i ∈
R−i, and every si ∈ Si there exists ri ∈ Ri such that ui(ri, s−i) ≥ ui(si, s−i). I.e., for every
tuple of recommended strategies there exists a best response strategy in the recommended set.

2. We say that Ri are in “Set-Nash equilibrium” (in the mixed sense) if for every i, for every
tuple of distributions πj on Rj for all j 6= i, and every si ∈ Si there exists ri ∈ Ri such
that E{πj}j 6=i

[ui(ri, s−i)] ≥ E{πj}j 6=i
[ui(si, s−i)]. I.e for every series of distributions on the

recommended strategies of the other players there exists a best response in the recommended
set. This definition captures an expected-utility scenario, over all possible priors.

3. We say that {Ri(·)} are in “Set-Nash equilibrium” (in the mixed-correlated sense) if for every
i, for every π on s−i ∈ R−i, and every si ∈ Si, there exists ri ∈ Ri such that Eπ[ui(ri, s−i)] ≥
Eπ[ui(si, s−i)]. This definition extends the previous one in the sense of allowing the other
players to correlate strategies.
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4. We say that Ri are in “Set-Domination equilibrium” if for every i, and every si ∈ Si there
exists ri ∈ Ri such that for every s−i ∈ R−i, we have that ui(ri, s−i) ≥ ui(si, s−i). I.e. for
every unrecommended strategy, there is a recommended strategy that is not worse-off, as long
as others act as recommended.

These definitions extend to games with incomplete information in a straightforward way. Each
player i has a privately known type ti ∈ Ti. No probability distribution is assumed on T =
T1 × ... × Tn. The utility functions now depend on the player’s type, as well (ui : Ti × S → <,
where ui(ti, si, s−i) denotes i’s payoff when his type is ti, he plays strategy si and the others play
the strategy tuple s−i). The set of recommended strategies may now depend on the player’s type,
i.e., Ri : Ti → 2Si . We denote Ri(∗) = ∪ti∈TiRi(ti). All four definitions are modified so that the
condition specified should now hold for all possible types ti. In addition, the recommended sets of
the other players are always taken to be R−i(∗), while the best response ri must exist in player i’s
recommended set according to his true type, Ri(ti). Thus, the requirement holds for all possible
type realizations of the other players. For example, the first definition is altered so that the set
functions Ri(·) are in “Set-Nash equilibrium” (in the pure sense) if for every i, every ti, every
s−i ∈ R−i(∗), and every si ∈ Si there exists ri ∈ Ri(ti) such that ui(ti, ri, s−i) ≥ ui(ti, si, s−i).

In all definitions, we require the existence of a pure recommended strategy ri ∈ Ri(ti). One
can in principle relax the definition to allow ri to be a mixed strategy (a probability distribution
on Ri(ti)). It is easy to verify that this does not change the first three definitions (the best mixed
strategy is always a pure one), while for the Set-Domination definition, this will weaken it to become
equivalent to Set-Nash for correlated strategies (using von-Neuman’s max-min principle).

The first three definitions suffer from the same caveats of regular Nash-equilibria, in particular
noting that inequalities are not strict. Thus for example one can have any of these equilibria
in strictly dominated strategies. More refined notions may require that strategies in Ri(ti) are
undominated, or even that all undominated best-responses are in Ri(ti).

Another refinement is to show that the best response is in Ri(ti) even when other players’
strategies reside in a wider class than R−i(∗) (this may be interesting also when i assumes only
partial rationality of the other players). One may formally define the wider set of acceptable
strategies Ai ⊆ Si, where Ri(∗) ⊆ Ai, and replace the quantification of s−i ∈ R−i(∗) in the
definition with s−i ∈ A−i.

In this work we use the basic definition (and drop the qualifier “in the pure sense” hereafter).
In addition, all our Set-Nash strategies are undominated, and they are in fact best responses to a
set of acceptable strategies wider than R−i(∗).

5.1.1 Related notions in the Game-Theory literature

The game theory literature defines and discusses similar notions to the above set equilibria notions.
Most of the works handle games with complete information, and investigate the existence and
uniqueness of minimal such equilibria. We are not aware of any such study in the setting of
incomplete information, where the analysis is performed in the context of mechanism design and
implementation theory, where the equilibria are evaluated with respect to the quality of the outcome
they yield.

Shapley (1964) defines a notion of “a saddle” for two-person zero-sum games, which is almost
the same as the Set-Domination notion (but the inequalities there are strict). Shapley shows that
there always exists a unique minimal saddle in a zero-sum game (the strictness of the inequalities
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is crucial for this), but does not address the quality of the obtained outcome. Duggan and Breton
(1996, 2001) define a “mixed saddle”, which allows mixed strategies in the definition. As we note
above, this is actually equivalent to the definition of Set-Nash in the correlated sense. Their results
are again for the complete information case (mainly for zero-sum games, and for voting procedures).
Duggan and Breton (1998) develop a general approach to construct “choice sets”. They require
both an “outer stability”, which resembles our logic of constructing a set equilibrium, and also
require an “inner stability”, in order to have a minimal choice set. We replace this inner stability
with a requirement on the quality of the outcome. This of-course can be done in our context of
implementation theory, but not in their context of normal form games with complete information.
Basu and Weibull (1991) study sets of strategies that contain all their best replies (a “curb” set),
a rather strong notion, and Voorneveld (2004) defines a “prep-set”, which is equivalent to our
definition of Set-Nash in the mixed sense. Both works study the existence of minimal such sets in
games with complete information.

Although rationalizability (Bernheim (1984); Pearce (1984)) is not perceived as an equilibrium
concept, the motivation behind the definition is quite similar to ours. Indeed, this notion was
successfully used to analyze first price auctions in a detail-free setting (Dekel and Wolinsky (2003);
Battigalli and Siniscalchi (2003)), another example of an analysis in the context of mechanism
design and implementation. It is also interesting to parallel the shift from “rationalizability” to
“point rationalizability”, which Bernheim (1984) makes, to the shift from Set-Nash in the mixed
sense to Set-Nash in the pure sense, that we make.

We would like to note the difference between these notions of set-equilibrium, and the analysis
of “sets of Nash equilibria”. The latter analysis deals with sets of Nash equilibria, e.g. in order to
determine the stability properties of an equilibrium point in the set (as in Kohlberg and Mertens
(1986)), while the notions of set-equilibria are aimed to capture situations in which single-strategy
tuples do not form an equilibrium at all.

5.2 Implementation in Set-Nash equilibrium

As our context is the framework of implementation theory, we wish to formally specify how the
notion of Set-Nash equilibria fits in, in parallel to classical results. We do this for the basic definition
of Set-Nash, but the entire discussion follows through for all four definitions in an immediate way.
The setting contains a set of outcomes/alternatives, A, from which we have to choose one outcome.
The choice depends on the players’ types t ∈ T , according to some social choice correspondence
F : T → 2A. In our example, A is the set of all valid allocations of items to players, and F (t)
outputs all allocations that have a social welfare of at least one third of the optimal social welfare
with respect to the type t. This social correspondence represents the fact that our goal is to obtain
a close-to-optimal welfare, and any allocation that obtains this will satisfy us. All the classic
definitions from implementation theory can be adapted to our Set-Nash definition:

Definition 10 Given F : T → 2A, an implementation in Set-Nash equilibrium is a mechanism
with strategy sets S1, ..., Sn, and an outcome function g(s1, ..., sn) ∈ A, such that there exists a
Set-Nash equilibrium {Ri(·)}i that satisfies that g(s) ∈ F (t) for all s ∈ R(t).

Notice that we cannot hope to require that all equilibria will produce results according to F , as
there always exists the trivial set-equilibrium that contains all strategies.
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Definition 11 A social choice correspondence F : T → 2A is a c-approximation to the social
welfare if for any t ∈ T and any outcome a ∈ F (t), the social welfare obtained in a is at least a 1/c
fraction of the optimal social welfare with respect to t.

Thus, our goal is to show that our two online auctions Set-Nash implement a 3-approximation of
the social welfare.

The celebrated revelation principle states that whenever we can implement a social function in
some equilibrium, we can also implement it using a direct revelation implementation, in which the
strategy space of the players is simply to reveal their type. For our “set equilibrium” notion, we
can have an “extended direct revelation” implementation which is “extended truthful”:

Definition 12 An implementation is an “extended direct revelation implementation” if there exist
surjective functions hi : Si → Ti for each player i. It is “extended truthful (in Set-Nash equilibrium)”
if there exists a Set-Nash equilibrium in which hi(Ri(ti)) = {ti} for all i and all ti ∈ Ti.

In other words, an extended direct revelation implementation has strategies that are of the
form (ti, li), where ti ∈ Ti, and li represents some additional information. It is extended truthful
(in Set-Nash equilibrium) if there exists a Set-Nash equilibrium in which Ri(ti) = (ti, ∗), i.e., the
player declares his true type in every one of his recommended strategies. In the context of our
model, players may wish to state a deadline which is earlier than their true deadline, as they do
not wish to be tentatively placed in a slot that is “too far in the future”. An extended direct
revelation implementation will enable the players to declare their true deadline and a desired
deadline which may be closer than their true deadline. Such a mechanism is extended truthful in
Set-Nash equilibrium if every recommended strategy reports the true deadline of the player, along
with additional deadlines.

Proposition 1 (An extended revelation principle) Every function F : T → 2A that can be
implemented in Set-Nash equilibrium can be implemented by an extended truthful implementation.

Proof: Given an implementation M of F in Set-Nash equilibrium, we build an extended truthful
implementation M ′, that encapsulates M , as follows. Let Ri(ti) be the recommended strategies of
M . Then the strategy space of a player in M ′ is to specify his type ti, and a strategy in Ri(ti).
The mechanism then uses M ′ with the specified strategies to determine the result. It is immediate
to verify that the sets R′i(ti) = {(ti, si) | si ∈ Ri(ti) } are indeed a Set-Nash that fits the definition.

It is worth pointing out that our auctions, which are not direct revelation, have an interesting
extended direct revelation counterpart – we describe this in Section 6.1 below.

5.3 Ignorable Extensions of Games

This section formalizes a concept used in the proof of our main theorem, below. In the proof, we
first describe an extended truthful mechanism that implements a 3-approximation to the maximal
social welfare, and then show that each of our ascending auctions has “inside” it a semi-myopic
mechanism. In this section, we describe this type of building block more generally.

Given a game with incomplete information G = (T, S, u) (where T, S, u are the players’ type
space, the players’ strategies, and the players’ utility functions, as described in Section 5.1 above)
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we say that Ḡ = (T, S̄, ū) is an extension of G if Si ⊆ S̄i for all i and ūi(ti, s) = ui(ti, s) for all
ti ∈ Ti and s ∈ S (i.e. ū when restricted to S is identical to u).

Clearly a strategy that was best response in G need not be a best response in Ḡ since the new
strategies S̄i \ Si may be better. “Ignorable” extensions of G will not allow such better strategies:

Definition 13 Ḡ is an ignorable extension of G if the recommended sets Ri(ti) = Si (for all i)
form a Set-Nash equilibrium of Ḡ.

In other words, Ḡ is an ignorable extension if for all i, all ti ∈ Ti, all s−i ∈ S−i and all s̄i ∈ S̄i
there exists si ∈ Si such that ui(ti, si, s−i) ≥ ui(ti, s̄i, s−i). I.e., if all other players play original
strategies (from S−i), then player i has an original strategy (from Si) which is a best response.

Proposition 2 If {Ri(·)} are a Set-Nash equilibrium of G and Ḡ is an ignorable extension of G
then {Ri(·)} are a Set-Nash equilibrium of Ḡ.

We point out that, although these notions are related to the notion of Set-Nash equilibrium in
the pure sense, there is in an immediate, similar way to define ignorable extensions to any one of
the other three definitions of Set-Nash equilibria.

6 A Strategic Analysis of our Auctions

The strategic analysis of our auctions is performed in two parts. First (in Section 6.1), we describe
an extended direct revelation auction which we call the “Semi-Myopic Mechanism”, and show that
this mechanism has a Set-Nash equilibrium which is composed of semi-myopic strategies. Thus
this mechanism always obtains (in equilibrium) at least one third of the optimal welfare. Second
(Sections 6.2 and 6.3), we show that this semi-myopic mechanism is “embedded” inside both our
ascending auctions, in the exact sense described in Section 5.3 above. This implies that both our
ascending auctions also have a Set-Nash equilibrium which is composed of semi-myopic strategies.

6.1 Semi-Myopic Mechanisms

We now devise an extended direct revelation auction with our two basic building blocks: it has a
Set-Nash equilibrium, and, for these equilibrium strategies, the auction is a semi-myopic allocation
rule.

Definition 14 We define a family of semi-myopic mechanisms as follows:

Strategy space: Each player declares, as he arrives, his value, his deadline, and a tentative
deadline between his arrival time and his deadline. The variable d(i, t) holds i’s tentative deadline
if t is not larger than his tentative deadline, otherwise d(i, t) equals his final deadline.

Winner determination at time t: Let At, St, and ft be the natural parallels of the notions in
definition 7, where the deadline of each player in At is d(i, t). The mechanism allocates item t to
some player in ft (this choice may depend on the contents and structure of At, St, and ft).

Prices: For each player i, the mechanism maintains a tentative price for each time t, pt(i), as
follows: If i /∈ St then pt(i) = 0. For any i ∈ St, let

ct(i) = max{v(j) | j ∈ At \ St, St \ i ∪ j is independent w.r.t items t, ...,M}. (2)

17



For any i ∈ ft, the mechanism sets pt(i) = ct(i). For any i ∈ St \ ft, the mechanism may set any
price pt(i) ∈ [0, ct(i)]. The winner i of time t pays maxr(i)≤t′≤t pt′(i).

The recommended strategies: In a recommended strategy, i declares his true value and dead-
line at time r(i), and may declare any tentative deadline.

Lemma 4 When all players play recommended strategies according to their true types then the
allocation of any semi-myopic mechanism is a semi-myopic allocation rule.

The proof of this lemma is given in Appendix B.

Theorem 5 The semi-myopic mechanism Set-Nash implements a 3-approximation of the welfare.

The proof of this Theorem is given in Appendix D. In Appendix D.2 we show by an example
that the recommended strategies of the semi-myopic mechanism do not contain best responses to
mixed-correlated strategies. Hence, unfortunately, the semi-myopic mechanism does not have a
semi-myopic Set-Nash equilibrium in the mixed-correlated sense. An interesting problem that we
leave open is to devise a mechanism that Set-Nash implements (in the mixed sense) some constant
approximation of the welfare.

6.2 The Online Iterative Auction

We now show that our Online Iterative Auction is an ignorable extension of a semi-myopic mecha-
nism, thus having a Set-Nash equilibrium which approximates the welfare, according to Theorem 5.
For this, we need to refine our intuitive definition:

Definition 15 (The Online Iterative Auction) We apply the following modifications to Def. 1:

Prices: The auction maintains a tentative price pt(i) for each player i at time t, as follows: if i
is a tentative winner at the end of the iterations of time t then pt(i) equals to the tentative price of
i’s item, otherwise pt(i) = 0. The winner i of time t pays maxr(i)≤t′≤t{pt′(i)}.
Recommended strategies: i’s strategy is recommended if i chooses a tentative deadline d ≤ d(i),
plays myopically (as in Def. 2) with value v(i) and deadline d in all times r(i) ≤ t ≤ d, and plays
myopically with value v(i) and deadline d(i) in all times t > d.

It is not hard to verify that these recommended strategies are semi-myopic.

Theorem 6 The Online Iterative Auction is an ignorable extension of a semi-myopic mechanism.

The proof of this Theorem is given in Appendix D.

Corollary 1 The Online Iterative Auction Set-Nash implements a 3-approximation of the welfare.
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6.3 The Sequential Japanese Auction

To show that our Sequential Japanese Auction is an ignorable extension of a semi-myopic mecha-
nism, we need to modify payments similarly to the modification of the Online Iterative Auction.
For this, we need to handle simultaneous “drop” announcements more carefully: At any price level
p, several players may want to drop. Furthermore, this may be an on-going process, as after one
player drops, another one now wants to drop as well. We need to determine more accurately the
order among them. This information is used in order to determine ft (interestingly, we are not able
to compute St entirely, only ft, which is enough).

Definition 16 (The Sequential Japanese Auction) The basic auction structure remains the
same as in Def 4. Two additional points should be handled:

Simultaneous “drop” announcements: Define D(p, n) as the set of players (among those
who did not drop yet), that wish to drop when the price level is p and the number of remaining
players is n. At every price level p, the auction solicits drop announcements by repeatedly accepting
only one drop announcement out of D(p, n), and decreasing n by 1.12 When D(p, n) = ∅, the price
increases. The winner is, as before, the last remaining player.

Prices: Prices pt(i) for every player i at every time t are maintained as follows: Let k be
the number of non-drop-outs just before the price ended its time-t ascend, at a level of p∗. Let
D(p∗, k), D(p∗, k− 1), ..., D(p∗, 1) be the order of drop-outs at this level. Define the critical number
x∗ = min{0 < x < k : |D(p∗, x + 1)| = 1}, and D∗ = ∪x≤x∗D(p∗, x). For any player i, if i ∈ D∗
set pt(i) = p∗, otherwise pt(i) = 0. The winner i of time t pays maxr(i)≤t′≤t{pt′(i)}.
Recommended strategies: i’s strategy is recommended if he arrives at r(i), choose a tentative
deadline d ≤ d(i), plays myopically with parameters v(i), d until time d, and plays myopically with
parameters v(i), d(i) thereafter.

Again, these recommended strategies are semi-myopic.

Theorem 7 The Sequential Japanese Auction is an ignorable extension of a semi-myopic mecha-
nism.

The proof of this Theorem is given in Appendix D.

Corollary 2 The Sequential Japanese Auction Set-Nash implements a 3-approximation of the wel-
fare.

7 Conclusions

In this paper we have analyzed two auction structures, common both in theory and in practice,
in a dynamic online setting. While, for the two auctions in the offline case, a myopic behavior
leads to the optimal allocation and is in addition an ex-post equilibrium, in the online case the
situation is more complex. We have focused on a detail-free worst-case analysis, showing that
replacing myopic behavior with the weaker notion of semi-myopic behavior grants much freedom
to the players, on the one hand, and reduces the social welfare only by a constant factor, on the

12E.g. if D(p, n) = X then some i ∈ X is chosen to be dropped, X \ i ⊆ D(p, n− 1) and i /∈ D(p, n− 1).
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other hand. This notion of semi-myopic behavior encompasses a large range of player strategies,
representing different and contradicting beliefs. Our results therefore show the relative robustness
of the two auction formats to settings with extreme uncertainties. From a game-theoretic point of
view, we have shown that there exists a “Set-Nash” equilibrium, which is all semi-myopic, in both
auctions. According to this equilibrium notion, players are not expected to choose a single tuple
of strategies, but rather one strategy out of a set of strategies. In our setting, we show that every
strategy in this set is semi-myopic, hence this guarantees a close to optimal outcome.
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A Useful Properties of Offline Allocations and Matroids

This section summarizes useful matroid properties that we use throughout our proofs. For com-
pleteness, we begin with a short introductory summary of matroids and their relevant properties.

Definition 17 (A Matroid) A Matroid is a finite set S and a collection I ⊆ 2S of independent
sets, such that:

1. ∅ ∈ I

2. If X ∈ I and Y ⊆ X then Y ∈ I.

3. If X,Y ∈ I and |X| = |Y |+ 1 then there exists j ∈ X \ Y such that Y ∪ j ∈ I.

If X ⊆ S but X /∈ I then it is a dependent set. A base of a matroid is a maximal independent set,
and a cycle is a minimal dependent set.

Claim 2 (E.g., Horowitz and Sahni (1978)) The offline allocation of M items among a set A
of players is a matroid, where S is the set of players, and a subset X of players is independent if
there exists an allocation of (part of) the items to all the players in X.

Proof: The first two conditions of the matroid are trivially satisfied. Let us verify the third one.
Let X,Y are be two independent sets with |X| > |Y |. We first claim that there exist allocations
for X,Y such that, for any j ∈ X ∩ Y , j receives the same item in both allocations. To see this,
start from arbitrary two allocations, and choose some j ∈ X ∩ Y . Suppose j receives items t1, t2
in the allocations 1, 2, where t1 < t2. Suppose that player j′ receives item t2 in allocation 1. Then
we can swap players j and j′ in allocation 1, so that j will receive item t2 (this is valid as we know
he can receive this item) and j′ will receive item t1 (this is valid as t1 < t2). Notice that we have
strictly decreased the number of players in X ∩Y that receive different items, and so repeating this
implies the result. Now, choose some item t which is being allocated for X but not allocated to
any player of Y . Suppose that t is allocated to j in the allocation of X. By our assumption, j /∈ Y ,
and so Y ∪ j is independent: use the previous allocation of Y , and allocate item t (that beforehand
was not allocated) to j.

The following claim lists some useful matroid properties. For extensive discussion and proofs,
see, e.g., the textbook by Welsh (1976).

Claim 3 Let M = (S, I) be a matroid. Then:

1. If X,Y ∈ I and |X| < |Y | then there exists Z ⊆ X \Y such that |X∪Z| = |Y | and X∪Z ∈ I.
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2. If B1, B2 are bases then |B1| = |B2|.

3. If B1, B2 are bases, then, for any j ∈ B1 \B2 there exists j′ ∈ B2 \B1 such that B1 \ j∪ j′ ∈ I
and B2 \ j′ ∪ j ∈ I.

4. Given a weight function w(·) that assigns a unique weight to each element s ∈ S, there exists
a unique base B with maximal weight

∑
s∈B w(s).

Claim 4 Let X,Y ∈ I, and X 6⊆ Y . Then, for any j ∈ Y \ X such that X ∪ j /∈ I there exists
j′ ∈ X \ Y such that X \ j′ ∪ j ∈ I and Y \ j ∪ j′ ∈ I.

Proof: If |X| = |Y | then we can assume w.l.o.g. that both are bases (as I ′ = { Z ∈ I | |Z| ≤ |X| }
are also the independent sets of a matroid), and the claim immediately follows.

If |X| > |Y | then assume, as before, that X is a base. There exists Z ⊆ X \ Y such that
B = Y ∪ Z is a base. Since j ∈ Y \ X then j ∈ B \ X and so there exists j′ ∈ X \ B such that
X \ j′ ∪ j ∈ I and B \ j ∪ j′ ∈ I. Since Y ⊆ B and j′ ∈ X \ Y as well, the claim follows.

If |X| < |Y | then assume that Y is a base, take some Z ⊆ Y \ X such that B = X ∪ Z is a
base, and notice that j /∈ Z as X ∪ j /∈ I. Thus we can essentially repeat the above logic: j is also
in Y \B so there exists j′ ∈ B \ Y such that B \ j′ ∪ j ∈ I and Y \ j ∪ j′ ∈ I. Since B \ Y = X \ Y ,
and X ⊂ B, then the claim follows.

Claim 5 Let B be a base of the matroid, and Y ∈ I such that |B \ Y | = 1. Then |Y \B| ≤ 1.

Proof: |B| ≥ |Y | = |B ∩ Y | + |Y \ B| = |B| − |B \ Y | + |Y \ B| = |B| − 1 + |Y \ B|. Therefore
|Y \B| ≤ 1, as claimed.

A.1 Some Useful Properties of Offline Allocations

For the following discussion, it will be convenient to assume that there exist at least M players in
At whose values are all zero, and with deadline M . This frees us from the need to worry about
cases where some items remain unallocated, as we can always assign unallocated items to these
zero-value players.

Definition 18 (A prefix) A subset X ⊆ St is called a prefix if it is a prefix of every allocation
St[t,M ] of St. I.e., every allocation of the items t, ...,M to the players in St must assign the first
|X| items to the players in X.

Claim 6 X ⊆ St is a prefix if and only if for all j ∈ X, d(j) ≤ t+ |X| − 1.

Proof: Suppose first that X is a prefix, and, by contradiction, that there exists some j ∈ X with
d(j) > t+ |X| − 1. Let St[t,M ] be some allocation of St. Since j ∈ X and X is a prefix then j is
allocated some item t′ ≤ t + |X| − 1. Suppose player j′ is allocated item d(j) (recall that we can
assume that every item is allocated to some player, as we have enough zero-value players). Then
we can switch between j and j′ and have an allocation in which X is not a prefix, a contradiction.

In the other direction, if X ⊆ St and d(j) ≤ t+ |X| − 1 for any j ∈ X then, in any allocation,
j ∈ St[t, t+ |X| − 1]. Therefore X ⊆ St[t, t+ |X| − 1], and since |St[t, t+ |X| − 1]| = |X| it follows
that St[t, t+ |X| − 1] = X, i.e. it is a prefix.
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Definition 19 For any t ≤ d ≤ M , we build the set of players Pt(d) using the following process
(fix any allocation of St):

1. Let x0 = d.

2. For i > 0, define inductively xi = max{ d(j) | j ∈ St[t, xi−1]}.

3. Let k be the least index such that xk+1 = xk, and fix Pt(d) = St[t, xk].

Claim 7 Pt(d) is the prefix with minimal length among all prefixes with length ≥ d− t+ 1.

Proof: First notice that, since every item is allocated to some player, it immediately follows that
|Pt(d)| = xk− t+1. Also notice that, by construction, any j ∈ Pt(d) has d(j) ≤ xk = t+ |Pt(d)|−1.
Therefore, by Claim 6, Pt(d) is a prefix. Suppose by contradiction that there exists a prefix P ′

with d ≤ t + |P ′| − 1 < xk. Choose index i such that xi ≤ t + |P ′| − 1 < xi+1. But then, by the
construction process of Pt(d), we must have a player in P ′ with deadline at least xi+1, contradicting
Claim 6.

Claim 8 j ∈ Pt(d) if and only if there exists an allocation of St in which j ∈ St[t, d].

Proof: If j ∈ St[t, d] then by definition j ∈ Pt(d). Let us verify the other direction. Fix any
allocation of St, and compute Pt(d) by that allocation. Assume j = St[d

′] for some d′ > d (otherwise
the claim immediately follows). Let ji be the player that determined xi and j′i = St[xi]. Then we
have j1 ∈ St[t, d]. Consider the following allocation replacements: allocate item x1 to player j1
(this is his deadline, so this is valid) and assign j2’s item to j′1, j2 will receive item x2 and assign
j3’s item to j′2, ... , jk will get item xk and j′k (that received xk) will get j’s item. Finally, allocate
j1’s item to j. Therefore we have an allocation in which j receives some item x ≤ d, as claimed.

Claim 9 ft = Pt(t) = Pt(|ft|+ t− 1).

Proof: If j ∈ ft then there exists an allocation St such that j = St[t]. Since Pt(t) is a prefix of
St[t,M ] then j ∈ Pt(t). On the other hand, Claim 8 tells us that for any j ∈ Pt(t) there exists an
allocation such that j = St[t], and therefore j ∈ ft. We conclude that ft = Pt(t). From Claim 7 we
now get also that Pt(t) = Pt(|ft|+ t− 1), as Pt(t) is a prefix with length |ft|.

Claim 10 For any t, d with t < d, minj∈Pt+1(d){v(j)} ≥ minj∈Pt(d){v(j)}.

Proof: Fix some j∗ ∈ Pt(t). We will actually show thatminj∈Pt+1(d){v(j)} ≥ minj∈Pt(d)\{j∗}{v(j)}.
Let x = |Pt(d)| + t − 1, the last item allocated to a player in Pt(d). By the above claims, for any
j ∈ Pt(d), dj ≤ x, and x ≥ d. Let j be the player with minimal value in Pt+1(d), and assume by
contradiction that v(j) < minj∈Pt(d)\{j∗}{v(j)}. Therefore j /∈ Pt(d) \ {j∗}. Fix some allocation
of St+1, and note that Pt(d) \ {j∗} and St+1[t + 1, x] are two bases of the matroid over items
t + 1, ..., x. Since j ∈ St+1[t + 1, x] \ (Pt(d) \ {j∗}), there exists j′ ∈ Pt(d) \ {j∗} \ St+1[t + 1, x]
such that St+1[t+ 1, x] \ j ∪ j′ is independent (w.r.t. items t+ 1, ..., x). As dj′ ≤ x, it follows that
j′ /∈ St+1, and therefore St+1 \ j ∪ j′ is independent as well. As j′ ∈ At+1, and by the maximality
of St+1, we must have v(j) > v(j′) ≥ minj∈Pt(d){v(j)}, a contradiction.

Claim 11 ft is independent w.r.t. items t + 1, ...,M if and only if St is independent w.r.t. items
t+ 1, ...,M .
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Proof: Since ft ⊆ St, the right to left direction is immediate. We prove that if ft is independent
w.r.t. items t + 1, ...,M then so is St. Let Ãt, f̃t, S̃t be the variables after adding many zero-value
players, as explained in the opening paragraph to section A.1. By the optimality of St it follows
that St ⊆ S̃t. As f̃t is a prefix, it cannot be independent w.r.t. items t+ 1, ...,M . Thus there exists
j ∈ f̃t \ ft. By definition, S̃t \ j is independent w.r.t. items t + 1, ...,M , and therefore St \ j is
independent w.r.t. items t + 1, ...,M . If j ∈ St this will therefore imply j ∈ ft, a contradiction.
Thus j is a zero player, and St ⊆ S̃t \ j. Since S̃t \ j is independent w.r.t. items t+ 1, ...,M , so is
St, as needed.

Claim 12 Let A′t = At∪j′ (where j′ /∈ At). Let St, S
′
t and ft, f

′
t be derived from At, A

′
t, respectively.

Then:

1. If j′ ∈ f ′t then ft \ S′t 6= ∅.

2. ft 6= f ′t if and only if j′ ∈ f ′t.

Proof: From the prefix properties it immediately follows that, if ft ⊆ S′t then f ′t = ft, and thus the
first claim follows. The right to left direction of the second claim immediately follows from the fact
that j′ /∈ At. We are left to show that, if ft 6= f ′t then j′ ∈ f ′t . By the maximality of St, S

′
t it follows

that either St = S′t, or S′t = St \ j ∪ j′ for some j ∈ St \ S′t. Since ft 6= f ′t , the latter alternative
must hold. If j /∈ ft then ft ⊆ S′t, implying that f ′t = ft, a contradiction. Thus j ∈ ft. Therefore
there exists an allocation with j = St[t]. Since S′t = St \ j ∪ j′ then there exists an allocation with
j′ = S′t[t] (simply use the previous allocation, changing only the player who receives item t from j
to j′). By definition, this implies that j′ ∈ f ′t .

B Proof of Lemma 4

Recall the statement of the Lemma: when all players play recommended strategies according to
their true types, the allocation of any semi-myopic mechanism is a semi-myopic allocation rule.

To prove this, fix any time t. Let f truet be the “true” one, i.e. the relevant set computed with
the true player deadlines, and let St, ft be the actual sets computed by the mechanism according
to the declared tentative deadlines. We need to show that the mechanism chooses a player with
value at least v∗t = minj∈f truet

{v(j)}. (recall that the definition of recommended strategies in the
semi-myopic mechanism requires the declared values to be the true ones.)

Suppose first that there is some j ∈ f truet \ St. Fix some i ∈ ft. By definition, we can assume
that i is assigned to slot t by ft. Since j /∈ St, the optimality of St implies that v(i) ≥ v(j). Since
j ∈ f truet , v(j) ≥ v∗t . Thus, v(i) ≥ v∗t , as claimed.

Otherwise, f truet ⊆ St. Note that St is also a valid schedule with respect to the true deadlines as
the true deadlines are not smaller than the tentative deadlines. By the prefix construction process
described in definition 19 in Section A.1 (applied to the schedule St but with the true deadlines),
since tentative deadlines are not larger than true ones, we immediately get that ft ⊆ f truet , and the
claim follows.

C Proof of Theorem 3

Recall the statement of the Theorem: Any semi-myopic allocation rule obtains at least one third
of the optimal welfare, and this bound is tight.
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We will prove that any allocation rule that produces an allocation ON has v(OPT \ ON) ≤
2
∑M

t=1 v
∗
t , where OPT is the optimal allocation. From this, the theorem follows immediately, as any

semi-myopic allocation rule has v(ON [t]) ≥ v∗t , and therefore v(OPT ) ≤ v(OPT \ON) +v(ON) ≤
2
∑M

t=1 v
∗
t + v(ON) ≤ 2 · v(ON) + v(ON) = 3 · v(ON). We first prove two useful claims:

Claim 13 Let A,B be sets of players, where A ⊂ B. Let SA, SB be the allocation with optimal
value for A,B, respectively (both are over the same set of items). Then if j ∈ A but j /∈ SA then
j /∈ SB

Proof of Claim 13: Assume by contradiction that there exists j ∈ SB ∩ A but j /∈ SA. Notice
that SA and SB are both independent sets of the matroid over players in B. Notice also that,
by the contradiction assumption, SA 6⊆ SB, otherwise also SA ∪ j ⊆ SB, implying that SA ∪ j
is independent, with players only from A, contradicting the maximality of SA. Therefore, since
j ∈ SB \SA, there exists j′ ∈ SA \SB such that SA \ j′∪ j and also SB \ j∪ j′ are both independent.
From the maximality of SA and since j ∈ A, the first condition implies that v(j′) > v(j). But then
we obtain a contradiction to the maximality of SB.

Claim 14 Let S be the allocation with maximal value over the set of players A and the set of items
t, ...,M . Assume that S is not independent w.r.t items t + 1, ...,M . Let j ∈ S be the player with
minimal value such that S \ j is independent w.r.t items t+ 1, ...,M . Then S \ j has maximal value
among all independent sets w.r.t items t+ 1, ...,M and players in A.

Proof of Claim 14: Denote S′ = S \ j. Suppose by contradiction that the maximal allocation
X over items t + 1, ...,M has v(X) > v(S′). If j /∈ X then this contradicts the maximality of
S, as X ∪ j is independent w.r.t items t, ...,M . Otherwise j ∈ X \ S′. S′ 6⊂ X, since otherwise
S = S′ ∪ j ⊆ X contradicting the fact that S is not independent w.r.t items t + 1, ...,M . Hence
there exists j′ ∈ S′ \X such that X \ j ∪ j′ and S′ \ j′ ∪ j are independent w.r.t items t+ 1, ...,M .
Therefore S \ j′ is independent w.r.t items t + 1, ...,M , and from the choice of j it follows that
v(j) < v(j′), contradicting the maximality of X.

We now proceed to show that any allocation rule that produces an allocation ON has v(OPT \
ON) ≤ 2

∑M
t=1 v

∗
t . Fix some scenario, and let OPT and ON be the optimal and online allocations

for this scenario. We describe f : OPT \ON → {1, ...,M} such that f is 2 to 1 (i.e., for any t, the
set f−1(t) contains at most two elements) and v(j) ≤ v∗f(j) for any j ∈ OPT \ON . The function
f is defined as follows. Let Xt be the optimal allocation of items t + 1, ...,M among players in
OPT [1, t] \ ON . For any j ∈ OPT \ ON (say j = OPT [t′]), let t∗j = min{t ≥ t′ | j /∈ Xt }. Then
we fix f(j) = t∗j .

Claim 15 For any j ∈ OPT \ON , v∗f(j) ≥ v(j).

Proof of Claim 15: Let t = f(j). First notice that j ∈ At: j /∈ ON , r(j) ≤ t as j ∈ OPT [1, t],
and d(j) ≥ t since either j ∈ Xt−1 or j = OPT [t]. Let mt ∈ St be the player who determined v∗t ,
(if v∗t = 0 then set mt = null, so St \ mt = St). We first show that, by Claim 13, j /∈ St \ mt:
define A as OPT [1, t] \ ON minus all players with deadline < t, and B = At. Clearly A ⊆ B.
By definition, Xt is optimal for A (over items t + 1, ...,M). St \mt is optimal for B (over items
t+ 1, ...,M): if mt = null this follows from the optimality of St, and if mt 6= null this follows from
Claim 14. Therefore, since j /∈ Xt then j /∈ St \mt. If j 6= mt then j /∈ St, and since j ∈ At it
follows from the optimality of St that v(j) ≤ v(mt). If j = mt then this trivially holds. Therefore
v(j) ≤ v(mt) = v∗f(j), and the claim follows.
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Claim 16 f is 2 to 1. I.e., f maps at most two players to t.

Proof of Claim 16: Fix any time t. Let j1 ∈ Xt−1 be the player with minimal value such
that Xt−1 \ j1 is independent w.r.t. items t + 1, ...,M , and denote Y = Xt−1 \ j1 (if Xt−1 itself is
independent w.r.t. items t + 1, ...,M then set Y = Xt−1). If Xt ⊆ Y then by the optimality of
Xt it follows that Xt = Y and the claim follows: by definition, f maps only j1 and OPT [t] to t.
Otherwise, Xt \ Y 6= ∅. We first show that Xt \ Y = {OPT [t]}. This is implied by Claim 13: set
A = OPT [1, t − 1] \ ON , and B = OPT [1, t] \ ON . Since Y is optimal for A (by Claim 14) and
Xt is optimal for B (by definition) it follows that, if j ∈ OPT [1, t − 1] but j /∈ Y then j /∈ Xt,
i.e. that Xt \ Y = {OPT [t]}. To conclude, we observe that Xt is a base in the matroid over
items t + 1, ...,M and players OPT [1, t] \ ON , and that Y is an independent set of that matroid.
Therefore |Y \Xt| ≤ |Xt \Y | = 1, and thus |Xt−1 \Xt| ≤ 2. Since OPT [t] ∈ Xt then, by definition,
the players mapped to t are exactly those in |Xt−1 \Xt|, and the claim follows.

This concludes the proof of Theorem 3.

D Proofs deferred from Section 6

D.1 Proof of Theorem 5

In order to prove that the semi-myopic mechanism Set-Nash implements a 3-approximation of the
welfare, we only need to prove that the recommended strategies are a Set-Nash equilibrium:

Lemma 5 For any player i, and any s−i ∈ R−i(∗), i has a best response to s−i in Ri(ti).

Proof: Let σ be the scenario in which all players besides i play s−i, and i does not show up at all.
Let

t∗ = argminr(i)≤t≤d(i){v∗t (σ)}. (3)

Notice that player i can win and pay exactly v∗t∗ by arriving at time t∗, declaring any value larger
than v∗t∗ , and a deadline equal to t∗.

Claim 17 t∗ and v∗t∗ does not depend on the choice of the winner i ∈ ft of time t ∈ [r(i), d(i)]
(where the winners prior to time r(i) are fixed).

Proof of Claim 17: By contradiction, assume that there exist two different scenarios, σ1, σ2, that
differ only in the choice of the winners (notice that the ft’s themselves might become different during
the scenario run due to a previous choice of different winners). Let v∗(σi) = minr(i)≤t≤d(i){v∗t (σi)},
and let t∗i be the minimal time in which v∗(σi) is obtained.

We first assume w.l.o.g. that v∗t∗2
(σ1) > v∗t∗2

(σ2) = v∗(σ2). Let us justify this. If v∗(σ1) 6= v∗(σ2)

then w.l.o.g. v∗(σ1) > v∗(σ2) and therefore also v∗t∗2
(σ1) > v∗(σ2). If v∗(σ1) = v∗(σ2) then, by the

contradiction assumption, t∗1 6= t∗2, so w.l.o.g. t∗2 < t∗1. Therefore v∗t∗2
(σ1) > v∗(σ1) = v∗(σ2), as

needed. Notice also that from this it follows that t∗2 > r(i), as Ar(i)(σ1) = Ar(i)(σ2).
Since v∗t∗2

(σ1) > v∗t∗2
(σ2) then ft∗2(σ1) 6= ft∗2(σ2), and therefore, by the prefix properties of Sec-

tion A.1, ft∗2(σ1) 6⊆ St∗2(σ2). Fix some j ∈ ft∗2(σ1) \ St∗2(σ2). Since v(j) ≥ v∗t∗2
(σ1) > v∗t∗2

(σ2) it

follows that j /∈ At∗2(σ2). This implies that, in σ2, j is the winner of some time t′ < t∗2, i.e.,
j ∈ ft′(σ2) = Pt′(t

′, σ2). As d(j) ≥ t∗2 then Pt′(t
′, σ2) = Pt′(t

∗
2, σ2). By Claim 10 of Section A.1, it

therefore follows that v∗t′(σ2) ≤ v∗t∗2(σ2), contradicting the choice of t∗2.
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Claim 18 i’s price in any strategy si is at least v∗t∗ (where the other players play s−i).

Proof of Claim 18: Recall that σ denotes the scenario in which i does not show up at all. Let σ′

be the scenario in which i plays some strategy si and the others play s−i. Denote by t0 the minimal
t with i ∈ ft(σ′). We claim that there exists a scenario σ′′, that differs from σ only in the choice of
winners in ft, such that At0(σ′) = At0(σ′′)∪ i. This follows by the an inductive argument: At time
t < t0, At(σ

′) = At(σ
′′)∪ i. Since i /∈ ft(σ′) then, by Claim 12, ft(σ

′) = ft(σ
′′). Choose the winner

in σ′′ to be the winner of σ′. Therefore At+1(σ
′) = At+1(σ

′′) ∪ i, and the inductive claim follows.
Now, at time t0, since i ∈ ft0(σ′) then, by Claim 12, there exists some j ∈ At0(σ′′)\St0(σ′) such

that j ∈ ft0(σ′′). Therefore i’s payment in σ′ is at least v(j) ≥ v∗t0(σ′′). By Claim 17, v∗t0(σ′′) ≥ v∗t∗ ,
since σ′′ differs from σ only by the choice of winners from the ft’s. Thus, i’s payment is at least
v∗t∗ , and the lemma follows.

Claim 19 The (recommended) strategy of arriving at time r(i), declaring the true value and dead-
line and declaring a tentative deadline equal to t∗ is a best response of i against s−i.

Proof of Claim 19: If v(i) ≤ v∗t∗ then i cannot possibly gain positive utility, as Claim 18 shows,
and indeed any recommended strategy will not allocate any item to i.

If v(i) > v∗t∗ then, if player i arrives at time t∗ and declares tentative deadline t∗ he will win item
t∗ for a price of v∗t∗ . Let σ be the scenario in which i does not show up at all and σ′ be the scenario
in which i arrives at r(i) and declares tentative deadline t∗. We claim by induction that, for any
t < t∗, the winners of σ and σ′ are identical, and that i’s tentative price is at most v∗t∗ . Therefore
i will win item t∗ for a price of v∗t∗ , and the claim follows. For any t < t∗, we have by Claim 10
and the construction of t∗ that minj∈Pt(t∗,σ){v(j)} ≤ minj∈Pt∗ (t∗,σ){v(j)} = v∗t∗(σ) < v∗t (σ). By
the maximality of St(σ

′) it follows that, in σ′, i replaces the minimal player in Pt(t
∗, σ), therefore

ft(σ) ⊆ St(σ′), and so ft(σ) = ft(σ
′). By Claim 17 we can assume w.l.o.g. that the winner has not

changed in the transition from σ to σ′. i’s price at time t is (at most, as the mechanism has some
freedom in setting this) minj∈Pt(t∗,σ){v(j)} ≤ v∗t∗ , and therefore i’s final price was not affected as
well.

This concludes the proof of Lemma 5, and hence the proof of the Theorem.

D.2 Bad Examples

We show, by an example, that the recommended strategies of the semi-myopic mechanism do not
necessarily contain best responses to mixed-correlated strategies, i.e., it does not necessarily contain
a best response against a distribution over all R−i(∗). We start with a basic problematic scenario,
and then add to it a second scenario, together obtaining the counter example.

The basic problematic scenario demonstrates that a player might be tempted to arrive later, or
to declare a deadline higher than his true one, although this is not his best response:

Example 2 Consider the following scenario, where (v, d) denotes a player with value v and dead-
line d):

• At time 1 arrive players (ε, 1), (x1, 4), (x2, 4), (x3, 4), (x4, 4).

• At time 2 arrive players (y1, 2), (y2, 3).
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• At time 3 arrive players (z1, 5), (z2, 5).

• At time 4 arrives a (very large) player (z3, 4).

where the values satisfy: ε < x2, x3 < y1 < x1 < z1, z2 < y2 < x4 < z3.
If all players declare their true value and tentative deadline equals to their true deadline, a

semi-myopic mechanism can choose the winners (first to last) x1, y1, y2, z3, z1. In this case, player
x4 loses. However, if he delays his arrival to time 2, or, equivalently, declares a deadline of 5,
the winners will be ε, y2, x4, z1, z3, so x4 wins with price x1. Notice, however, that this is not
his best response. His best response, to arrive at time 1 and declare tentative deadline 1, is still
recommended.

Example 3 Let scenario 1 be the scenario of example 2, where we consider the decisions faced by
x4, and define scenario 2 as follows:

• At time 1 arrive player (x, 1) and our player (x4, 4).

• At time 2 arrives player (x, 2).

• At time 3 arrives player (x, 3).

(where x = x4 − ε). The best response of x4 to scenario 1 is to arrive at time 1 and declare
deadline 1. The best response to scenario 2 is to arrive at time 1 and declare a deadline of 4 (thus
winning item 4 with price 0). Now suppose that player x4 knows/estimates that both scenarios have
probability half. Then, a quick calculation shows that if x4 plays some recommended strategy (and
thus arrives at time 1) with tentative deadline lower than 4, then with probability half (for scenario
2) he will win one of the items 1 to 3 with a resulting utility (i.e. value minus price) of ε. If his
tentative deadline will be 4 then with probability half (for scenario 1) he will lose. Therefore, any
recommended strategy has resulting utility at most (x4 + ε)/2. However, if x4 will arrive at time
2 and will declare deadline 4, a non-recommended strategy, his resulting utility will be half times
x4 − 0 (for scenario 2) plus half times x4 − x1, better than (x4 + ε)/2 for small enough ε.

D.3 Proof of Theorem 6

In order to prove that the Online Iterative Auction is an ignorable extension of a semi-myopic
mechanism, we first prove that the iterative auction is an extension of a semi-myopic mechanism,
and then show that this extension is ignorable.

Lemma 6 If all players i play strategies in Ri(∗) then the iterative auction is a semi-myopic
mechanism.

Proof: We need to map every recommended strategy of the iterative auction to a strategy of the
semi-myopic mechanism, such that the result of the iterative auction (winners plus payments) will
match the criteria of a semi-myopic mechanism. This is done as follows. At time t, map every
player that plays myopically with (v, d) to a type (v, d), and denote this set of types as At. Let
St be the optimal allocation of items t, ...,M to the players of At. All we need to show is that
the iterative auction selects a winner from ft and sets correct payments. In what follows, we use
the notion of a prefix and the claims of Section A.1. Let Y = Y [t, ...,M ] and pt[t, ...,M ] be the
tentative allocation and prices of the iterative auction with the myopic strategies, at the end of
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time t. For any d ≥ t, let PY (d) be the appropriate prefix of Y , according to definition 19. Define
l(d) = min{d′ ≥ t | PY (d′) = PY (d)}, and

ct(d) = max{v(j) | j ∈ At \ Y and d(j) ≥ l(d) }.

Notice that, by abuse of notation, we have defined both ct(d) for an item d ∈ {t, ...,M}, and (in
Eq. (2) in Section 6.1) ct(i) for a player i. Those are two differently defined terms, although we
will see below that they are equal, for d = Y [i].

Claim 20 pt(d) ≥ ct(d).

Proof of Claim 20: Fix any j ∈ At \ Y with d(j) ≥ l(d). If d(j) ≥ d then since j is myopic,
pt(d) ≥ v(j). Thus, assume d(j) < d. By the construction of PY (l(d)) = PY (d), there exist players
i1, ..., ik and items t1, ..., tk such that t1 = l(d) ≥ t, tk = d, for any index 1 ≤ x ≤ k, ix = Y [tx],
and for any index 1 ≤ x ≤ k − 1, d(ix) ≥ tx+1. Since d(ix) ≥ tx+1 it follows that pt(tx) ≤ pt(tx+1),
otherwise ix would have placed his name on item tx+1. Therefore pt(d) = pt(tk) ≥ pt(t1). Since
t1 = l(d) ≤ d(j), j ∈ At \ Y (i.e., j is active at time t but was not a tentative winner at the end of
the time-t iterations), and j is myopic, it follows that pt(t1) ≥ v(j), and the claim follows.

Claim 21 If pt(d) > pt−1(d) then pt(d) ≤ ct(d).

Proof of Claim 21: Suppose by contradiction that d is the maximal one with pt(d) > ct(d) + ε,
for some small ε > 0. Thus, at some point in the iterative process of time t, the price of item
d was ct(d) + ε/2, and then some player, j, placed a bid on item d, further increasing its price.
Let X[t, ...,M ] be the tentative allocation at this point, just before j’s action. Let us examine the
identity of this player j. Note that by the auction rules, j /∈ X.

Since d(j) ≥ d ≥ l(d) and v(j) > ct(d), we conclude that j /∈ At \ Y . Thus, j ∈ Y . The
maximality of d implies that ct(d) ≥ ct(d + 1) ≥ pt(d + 1) which is in turn larger or equal to the
price of item d + 1 at the time j placed a bid on d. Since j is myopic but did not bid on item
d+ 1, we conclude that d(j) ≤ d. This implies that j /∈ Y [d+ 1,M ], and also that d(j) = d. Since
d(j) = d the prefix properties imply that j /∈ Y [t, l(d)− 1]. Thus, j ∈ Y [l(d), ..., d].

Since j ∈ Y [l(d), ..., d] \X[l(d), ..., d], there must exist some i ∈ X[l(d), ..., d] \Y [l(d), ..., d]. In a
similar way to the previous paragraph, if i ∈ Y [d+ 1,M ] then i placed a bid on an item with price
strictly larger than ct(d) ≥ ct(d+ 1) ≥ pt(d+ 1) which is larger or equal to the current price of item
d+1, a contradiction to the myopic behavior of i. If i ∈ Y [t, l(d)−1] then, by the prefix properties,
d(i) < l(d), a contradiction. And if i ∈ At \ Y with d(i) ≥ l(d) then v(i) ≤ ct(d) by definition,
therefore i placed a bid on an item with price higher than his value, again a contradiction. Since
we have reached a contradiction, the claim follows.

Claim 22 Y = St, and, for any d ≥ t and i = Y [d], ct(d) = ct(i) (as defined in Eq. 2).

Proof of Claim 22: We first show that, for any j ∈ At \ Y , Y \ i∪ j is independent w.r.t. items
t, ...,M if and only if d(j) ≥ l(d). Since Y [t, ..., l(d)− 1] is a prefix, any allocation X that contains
it cannot allocate an item ≤ l(d) − 1 to player j /∈ Y [t, ..., l(d) − 1]. Therefore d(j) ≥ l(d). In the
other direction, if d(j) > d we can simply allocate d to player j instead of to i, thus having an
allocation to Y \ i ∪ j. Otherwise, l(d) ≤ d(j) ≤ d, and we can use the exact same chain argument
of Claim 20 to obtain an allocation, when replacing i with j.
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From this and Claim 20 we have that for any d ≥ t, i = Y [d], and j ∈ At\Y such that Y \i∪j is
independent w.r.t. items t, ...,M , v(i) ≥ pt(d) ≥ ct(d) ≥ v(j). This property immediately implies,
by the matroid basic properties, that Y is the optimal allocation. By using the above claim again
we now get that ct(d) = ct(i).

From this last claim it follows that the winner of time t belongs to ft, as ft ⊆ St = Y , and
therefore all first |ft| items of St must be sold to the players of ft. It remains to show that the
prices charged by the auction match the criteria of the semi-myopic mechanism.

Claim 23 In the Online Iterative Auction, the winner i of time t pays maxr(i)≤t′≤t{ct′(i)}.

Proof of Claim 23: Let pt(i) be i’s tentative price at time t. Let t′ be such that i = Y [t′]. By
the above claims, pt(i) = pt(t

′) ≥ ct(t′) = ct(i). We additionally show that either pt(i) = pt−1(i) or
pt(i) = ct(i), and the claim will follow. Assume pt(i) 6= pt−1(i). Therefore i must have placed his
name on item t′ during the iterative process of time t. Thus pt(t

′) > pt−1(t
′), and, by the above

claims, it follows that pt(i) = pt(t
′) = ct(t

′) = ct(i).

This concludes the proof of Lemma 6.

We now continue with the proof of the theorem. By Lemma 6, the Online Iterative Auction
with the sets R(∗) constitutes a semi-myopic mechanism. Thus, the Online Iterative Auction is
an extension of the semi-myopic mechanism. It remains to argue that it is an ignorable extension,
i.e., if we fix any player i and and combination of recommended strategies of the other players,
s−i ∈ R−i(∗), then i has a best response to s−i in Ri(∗).

Suppose i plays some strategy s̄i, denote this scenario by σ′, and let Yt(σ
′) (for any time t) be

the tentative winners at time t in scenario σ′. Let t0 be the first time t such that i ∈ ft(σ′).
Since all players besides i are myopic with tentative deadline and then with final deadline, we

can map them to types (v, d) as in Lemma 6. Let σ be this scenario, where i does not show up at
all. If t0 > 1, i /∈ f1(σ′) and therefore f1(σ) = f1(σ

′). Let σ represent the scenario in which ties
are broken such that the winner of time 1 is the winner of time 1 in σ′. This holds (inductively)
for all t < t0. Thus, At0(σ′) = At0(σ) ∪ i, and t0 is also the first time t such that ft(σ) 6⊆ Yt(σ′).

Define t∗ as in Eq. 3 of the proof of Lemma 5, and fix j ∈ ft(σ) \ Yt(σ′). Since i ∈ ft0(σ′),
we use a chain argument similar to that of Claim 20 to conclude that i’s payment is at least
v(j) ≥ v∗t0(σ) ≥ v∗t∗(σ). As i can win and pay v∗t∗(σ) by a strategy in Ri(∗) (e.g., arriving at time
t∗ and bidding only on item t∗), the theorem follows.

D.4 Proof of Theorem 7

We will prove that the Sequential Japanese Auction is an ignorable extension of a semi-myopic
mechanism by the following claims:

Lemma 7 If all players i play strategies in Ri(∗) then the Sequential Japanese Auction forms a
semi-myopic mechanism.

Proof: Let p∗ be the last price reached by the auction of time t, and suppose there are k players
that did not drop out just before p∗ was reached.

Claim 24 Fix any j ∈ At \ St. As long as j does not drop, then every i ∈ Pt(d(j)) does not drop.
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Proof of Claim 24: By contradiction, let i ∈ Pt(d(j)) be the first to drop, say at price p. Since
j did not drop, v(j) ≥ p. By the maximality of St, v(i) > v(j). Thus i did not drop because of the
price. But the number of non-dropped players is at least |Pt(d(j))| + 1 > d(i). Therefore i could
not have dropped at this point, a contradiction.

Claim 25 p∗ = max{ v(j) | j ∈ At \ St }.

Proof of Claim 25: Let j∗ be the player with maximal value among those in At \ St. By the
previous claim, j∗ will drop because the price will reach his value, as |Pt(d(j∗))| ≥ d(j∗). Thus
p∗ ≥ v(j∗). Suppose by contradiction that p > v(j∗), and choose some p in between. Thus, when
the price reaches p, all the non-drop-outs belong to St. Consider the one that receives, according to
St, the latest item. The number of non-drop-outs is smaller than his deadline, so he will drop. The
one that receives the item before last will next drop, by the same argument, and so on. Therefore
the price will not increase beyond p, a contradiction.

Claim 26 For any i ∈ ft, p∗ = ct(i).

Proof of Claim 26: For any j ∈ At \ ft, St \ i∪ j is independent: choose an allocation in which i
receives item t, and then remove i and allocate t to j. Therefore the claim follows from the previous
claim, and from the definition of ct(i).

Claim 27 For any l′, |D(p∗, l′) ∪ · · · ∪D(p∗, 1)| = l′.

Proof of Claim 27: Since D(p∗, l′), ..., D(p∗, 1) includes only players that did not actually drop
before phase (p∗, l′), and there are exactly l′ of those, then l′ ≥ |D(p∗, l′) ∪ · · · ∪ D(p∗, 1)|. On
the other hand, every player among the l′ players that did not drop yet will drop in some phase
D(p∗, l′), ..., D(p∗, 1), so l′ ≥ |D(p∗, l′) ∪ · · · ∪D(p∗, 1)|.

Claim 28 If |D(p∗, l′ + 1)| = 1 then D(p∗, l′) ∪ · · · ∪D(p∗, 1) is a prefix.

Proof of Claim 28: Since |D(p∗, l′ + 1)| = 1 then any j ∈ D(p∗, l′) ∪ · · · ∪D(p∗, 1) has deadline
d(j) < t + (l′ + 1) − 1, i.e. d(j) ≤ t + l′ − 1. Since |D(p∗, l′) ∪ · · · ∪D(p∗, 1)| = l′ it follows from
Claim 6 that D(p∗, l′) ∪ · · · ∪D(p∗, 1) is a prefix.

Claim 29 Let x∗ be the critical number of drop-outs, and D∗ = ∪x≤x∗D(p∗, x), as in def. 16. Then
D∗ = ft.

Proof of Claim 29: Let l = |ft|. Notice that, for any l′ > l, ft ∩ D(p∗, l′) = ∅: If i ∈ ft
then v(i) > p∗ and d(i) ≤ |ft| + t − 1 < l′ + t, so i will not drop. This, in turn, implies that a
player in ft will drop in one the of phases (p∗, l), ..., (p∗, 1), so ft ⊆ D(p∗, l) ∪ · · · ∪D(p∗, 1). Since
|D(p∗, l)∪ · · · ∪D(p∗, 1)| = l, we conclude that ft = D(p∗, l)∪ · · · ∪D(p∗, 1). It is left to show that
x∗ = l. As D(p∗, l) ⊆ ft and ft ∩ D(p∗, l + 1) = ∅ then D(p∗, l + 1) ∩ D(p∗, l) = ∅. This implies
that |D(p∗, l + 1)| = 1, so x∗ ≤ l. But if x∗ < l then D(p∗, x∗) ∪ · · · ∪ D(p∗, 1) ( ft is a prefix,
contradicting the minimality of ft (by claims 7, 9). Therefore x∗ = l and D∗ = ft.

From all the above, the proof of the Lemma immediately follows: First, the winner belongs to
D∗ = ft. Second, all time t prices for players not in ft equal 0, and for players in ft, time t prices
equal p∗ = ct(i), i.e. as required by the price rules of the semi-myopic mechanism.
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We now continue with the proof of the theorem. Using the above claim, it only remains to
show that, fixing some player i and some strategies s−i ∈ R−i(∗) of the other players, i has a best
response in Ri(∗). Consider some strategy si of i. Let t0 be the first time in which i enters D∗. We
first notice that, in every time prior to t, i can wave participation without affecting the winner: If
the price when i participates reached a level p∗, then clearly, when i does not participate the price
cannot rise above p∗. By definition, a player in D∗ will not drop before there will be at most |D∗|−1
other non-drop-outs (as the price does not reach his value). Therefore the last non-drop-outs will
be exactly all players in D∗, and so the winner will be the same.

Now suppose the price level at time t, in which i entered D∗, is p∗. Therefore i’s price will be
at least p∗. We claim that, by arriving at time t and playing the fixed confidence strategy (p∗, 1),
i can win item t for a price p∗. Since this strategy is in Ri(∗), the claim will follow. To see this,
observe that |D(p∗, x)| > 1 for any 1 < x < x∗ (since D(p∗, x)∩D(p∗, x− 1) 6= ∅). Therefore, even
if i will not be willing to drop out until being the last non drop out, all others will drop out at
price p∗, and so i will win t and will pay p∗.
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