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Abstract 

 

The development of novel fabrication methods to produce ceria catalysts with good high-temperature 

stability is critical for their implementation across a range of different applications. Herein, graphene 

oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene 

oxide’s two-dimensionality. While performing the synthesis without graphene oxide results in large 

agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria 

nanoflakes (< 10 nm) replicating the graphene oxide morphology. This novel shape limits the diffusion of 

atoms at high temperature to a two-dimensional plane which is translated into a low sintering degree and 

consequently, an enhanced thermal stability. In this way, the ceria flakes are capable of maintaining high 

surface areas after calcination at high temperatures (> 400 °C) which results in improved catalytic 

performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial 

effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and 

high metal-support interaction leads to lower sintering during the dry reforming of methane than 

similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using 

graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good 

catalytic performance at high temperatures. 
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1. Introduction 

 

Ceria-based materials are well-known for their use as a catalyst or catalyst support in a variety of 

environmentally sensitive applications, including automotive catalysis, VOC oxidation, solid oxide fuel 

cells, steam reformation for hydrogen production, photocatalysis, and thermochemical water splitting. 

[1–8] Ceria’s ability to easily cycle between 4+ and 3+ oxidation states allows it to act as an oxygen 

storage medium - for example, storing and releasing oxygen in response to the varying air-to-fuel ratio in 

a vehicle’s exhaust to optimize catalytic converter performance. [9] Ceria has also been utilized as a 

catalyst support or promoter in the dry reforming of methane (DRM) for syngas production, where it 

enhances activity. [10,11] The use of ceria in DRM as a catalyst support for nickel, instead of other 

supports such as Al2O3 or SiO2, also inhibits coke formation, otherwise a significant source of 

deactivation in this reaction. [12,13] Recently, ceria’s redox cycle has been utilized in the 

thermochemical splitting of water, using concentrated solar energy to reduce cerium ions to Ce3+ at high 

temperatures, followed by reoxidation with water molecules to produce hydrogen, syngas, or 

hydrocarbons. [5,14] Another recent application for ceria is room-temperature dehydrogenation of formic 

acid, where it demonstrated greatly improved activity compared with other supports. [15] Ceria 

morphology at the nanoscale has also been shown to have an effect on the olefin selectivity on the CO2 

hydrogenation reaction to hydrocarbons. [16] 

Many ceria applications involve heterogeneous surface-catalyzed reactions, so the ability to 

synthesize high surface area ceria is critical to improve performance. Surface areas over 200 m2 g-1 are 

often reported for nanostructured ceria materials synthesized via a variety of methods such as 

hydrothermal or sol-gel, and surface areas of 345 m2 g-1 has been obtained in ceria aerogel materials. 

[17–19] The morphology of nanoceria and the nature of its exposed crystal planes can also affect 

catalytic activity.[6,20–22] However, in numerous applications, ceria must also present a high thermal 

stability to maintain a useable surface area even when exposed to high temperatures. The next generation 

of low-temperature solid oxide fuel cells still have a temperature range of up to 650 °C, while the ceria 

reduction step in thermochemical water splitting generally involves temperatures greater than 1200 °C. 

Automotive catalysts can be exposed to vehicle exhaust temperatures of 850 °C, and close-coupled 

automotive catalysts can reach 1050 °C. [23,24] Dry reformation of methane often requires temperatures 

in excess of 800 °C due to the highly endothermic nature of the reaction. [25,26] 

To synthesize nanostructured ceria of various morphologies, numerous templating agents have 

been reported, such as metal-organic frameworks and carbon microspheres. [20,27,28] Carbon 

nanotubes, ZnO nanotubes, and Ag nanowires have been used as templates to synthesize ceria nanotubes, 

while polystyrene and silica spheres have been used to synthesize hollow ceria nanospheres. [29–33] 
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However, these methods often involve either an additional chemical treatment step to remove the 

template and full removal is usually difficult to achieve.  

The use of graphene oxide (GO) as a template offers an attractive alternative route for 

synthesizing high surface area nanostructured ceria catalysts. GO consists of a two-dimensional 

monolayer of carbon atoms, analogous to graphene, but interrupted by a range of oxygen-containing 

groups. [34] 

GO’s surface functional oxygen-containing groups allow it to be easily dispersed in a variety of 

solvents, unlike graphene, enabling its utilization in processes involving liquid suspensions or solutions. 

[35] The use of GO as a templating agent allows its two-dimensional structure to be replicated. For 

instance, the synthesis of manganese oxide nanoflakes has been reported by mixing a potassium 

permanganate solution into a suspension of GO, resulting in the in situ replacement of carbon atoms with 

manganese. [36] Titanium oxide nanoflakes have been synthesized by anchoring Ti16O16(OEt)32 clusters 

onto GO suspended in tetrahydrofuran, followed by calcination at 450 °C to decompose the GO, which 

resulted in a two-dimensional titania structure replicating the GO shape. [34] 

In this work, the use of GO as a sacrificial template for the synthesis of ceria nanoflakes via a 

precipitation reaction is reported. It is shown that a highly two-dimensional structure is achieved. Due to 

improved textural properties, these ceria nanoflakes demonstrate better anti-sintering behavior and higher 

catalytic activity compared with untemplated ceria particles produced in a GO-free precipitation 

synthesis. The catalytic activity of both materials (templated and un templated) is tested for CO oxidation 

for eventual application in automotive catalysis. The use of templated ceria flakes as a catalyst support 

for nickel nanoparticles in dry reformation of methane (DRM) is also examined. In both cases, the flakes 

offer enhanced catalytic activity compared with untemplated ceria particles. Templating ceria with GO 

offers a potential way for the synthesis of catalysts with better performance for high-temperature 

applications such as automotive catalysis or dry reforming of methane. 

 

2. Experimental 

 

GO was prepared by oxidizing and exfoliating graphite with a modified Tour et al. synthesis 

method. [34,37] 24 g of 100-500 µm natural graphite flakes (Aldrich) were added to a concentrated acid 

mixture (3 L H2SO4 : 0.3 L H3PO4) under vigorous stirring. 144 g of KMnO4 was added gradually. The 

reaction mixture was vigorously stirred for 18 h at 50 °C. Next, the mixture was cooled to room 

temperature and 1.72 L of 2 wt. % aqueous H2O2 was added dropwise to stop the oxidation reactions. 

The resulting suspension of GO was washed by repeated centrifugation and re-dispersion in distilled 

water until the pH of the supernatant matched that of the original distilled water (typically after 16 
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washing cycles). Then, un-exfoliated graphite particles were separated with two further low-speed 

(<1000 rpm) centrifugation cycles. Finally, the GO suspension was freeze-dried at -60 °C and stored at 

room temperature. 

Ceria nanoflakes were prepared using a room temperature precipitation reaction. [38] A 

suspension of GO in deionized water (3 wt. %) was prepared. 3 mL of this 3 wt. % GO suspension in 

water was added to 600 mL of deionized water, and aqueous ammonia solution (30%) was added to 

adjust the pH to 11.0. 150 mL of 0.05 mol L-1 cerium nitrate in deionized water was added dropwise to 

the GO/ammonia solution under stirring. The solution was left to stir for 3 h under ambient conditions. 

Next, three cycles of centrifugation (4000 rpm for 10 minutes) and redispersion in distilled water were 

performed to wash the product. The wet powder was freeze-dried at -60 °C. Untemplated ceria particles 

were prepared using the same procedure, without the addition of GO prior to pH adjustment. 

After synthesis, the product was calcined at 400 °C for 3 h to remove the GO. For CO oxidation 

experiments and characterization, different samples were prepared by further calcination undertaken at 

600, 800, 900, and 1000 °C for 3 h. Calcination was performed in air under static conditions. 

For dry reformation of methane, the ceria catalysts calcined at 400 °C were dispersed in ethanol 

with a corresponding amount of Ni(NO3)2·6H2O to achieve a loading of 10 wt. % Ni. After stirring for 30 

minutes, the solvent was removed by drying under vacuum in a rotary evaporator. The product was 

further dried in an oven overnight at 80 °C. Finally, the dried powder was calcined at 700 °C for 4 h in 

air under static conditions. 

Powder x-ray diffraction (XRD) was performed with either a Bruker D8-Advance or X’Pert Pro 

PANalytical instrument using Cu Kα radiation. Samples were measured in the 2 theta range of 20-90° 

with a step size of 0.0164° and 0.25 seconds per step, or 5-80° with a step size of 0.05° and step time of 

0.16 seconds per step. Crystallite size was calculated using the Scherrer equation and the unit cell 

parameter was calculated using Bragg’s law. Nitrogen adsorption experiments were performed with a 

Micromeritics 3Flex Surface Characterization Analyzer. Samples were degassed under vacuum at 200 °C 

for 90 minutes. Specific surface areas were calculated using the Brunauer-Emmett-Teller (BET) method 

and pore size was calculated using the Barrett-Joyner-Halenda (BJH) method on the desorption curves.  

Temperature-programmed reduction was performed with a Micromeritics AutoChem II 2920. 0.1 

g of each sample was heated under 50 mL min-1 of 5 % H2 in argon to 900 °C at a rate of 10 °C min-1. 

The outlet gas was analyzed to quantify the amount of hydrogen consumed with a thermal conductivity 

detector. Scanning electron microscopy (SEM) was performed with an LEO 1525 field emission gun 

scanning electron microscope. Transmission electron microscopy (TEM) was performed with a JEOL 

JEM1200EXII or JEOL JEM-2100Plus microscope.  EDX analysis was performed with an Oxford 

Instruments large area EDX detector integrated into the TEM. Raman analysis was performed with a 
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Renishaw inVia Raman Microscope. A 532 nm green laser was used, and spectra were obtained with 2-

10 s exposure time at 1-10% laser power. Thermogravimetric analysis (TGA) after the DRM reactions 

was carried out in a TA Instruments Discovery TGA, Q50. Approximately 3 mg of sample was 

combusted under 40 mL min-1 of air low from 50 to 900 °C at 10 °C min-1. 

Catalytic activity tests for CO oxidation were performed in a U-shaped quartz tube reactor (10 

mm ID) at atmospheric pressure. In a typical experiment, 10 mg of ceria catalyst was dispersed in a 4 

cm3 catalytic bed consisting of silicon carbide particles. The catalytic bed was secured at both ends with 

quartz wool. The reactant feed consisted of 2000 ppm each CO and O2 in nitrogen, with a total flow rate 

of 50 mL min-1, achieving a weight hourly space velocity (WHSV) of 300 L g-1 h 1. The catalyst was 

tested from room temperature to 500 °C, and the outlet gas was measured with a Fuji Electric ZRH 

Infrared Gas Analyzer and a Hiden mass spectrometer. Statistical analysis: each data point reported for 

CO oxidation represents the average of ten continuously logged data points during testing. Therefore, 

error bars reported in Figure 6 show instrument error. 

Catalytic activity tests for the dry reforming of methane were performed in a tubular quartz 

reactor (10 mm ID) at atmospheric pressure. Catalysts were reduced in H2 atmosphere (10 vol. % H2 

balanced in N2) at 850 °C for 1 hour prior to the activity tests. In a typical experiment, 100 mg of Ni-

ceria catalyst was loaded in the reactor, supported on a bed of quartz wool. The reactant feed consisted of 

a 1/1/6 ratio of CH4/CO2/N2, with a total flow rate of 100 mL min-1, achieving a WHSV of  60 L g-1 h-1. 

Reactants and products were monitored using an on-line gas analyzer (ABB AO2020), equipped with 

both IR and TCD detectors. The catalyst was tested between 550 and 850 °C. Long-term dry reforming 

studies were performed at a constant temperature of 800°C for 20 hours. 

 

3. Results and Discussion 

 

Ceria particles and nanoflakes were prepared via a room temperature precipitation synthesis in the 

absence and presence of GO respectively, followed by a calcination in air at 400 °C to remove the GO 

template.  An SEM micrograph of the GO used is shown in Figure 1. Prior to calcination, the nanoflakes 

are a brown powder, while after calcination at 400 °C, the product is yellow, similar to other ceria 

syntheses (Figure S1). The untemplated ceria particles were bright yellow both pre- and post-calcination. 

The GO-templated ceria nanoflakes were much more loosely packed than the untemplated ceria particles. 

Without any further treatment, the nanoflakes had a bulk density of 0.34 g mL-1, while the untemplated 

particles had a bulk density of 0.65 g mL-1. 
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Figure 1. SEM micrograph of graphene oxide used as the template for ceria nanoflakes synthesis. The 

size distribution of GO flakes was approximately 1-20 μm. 

 

     

     

Figure 2. (above) TEM micrographs of untemplated ceria particles, calcined in air between 400 and 1000 

°C. (below) TEM micrographs of GO-templated ceria flakes, calcined in air between 400 and 1000°C. 

Two-dimensional morphology is clearly retained for GO-templated ceria after thermal treatment. 

 

Figure 2 shows TEM images of GO-templated ceria nanoflakes and untemplated ceria particles 

calcined in air at different temperatures between 400 to 1000 °C. The difference between the two 

materials is significant - while the GO-templated synthesis provided a two-dimensional arrangement of 

ceria crystallites, the untemplated synthesis resulted in much larger unstructured agglomerations. Typical 

ceria flakes calcined at 400 °C were a few hundred nanometers in diameter and less than 10 nm in 

400°C 600°C 800°C 900°C 1000°C 

400°C 600°C 800°C 900°C 1000°C 
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thickness, while the size of the untemplated ceria particle agglomerations was significantly larger, in the 

micrometer range. 

 

   

Figure 3. Powder X-ray diffraction patterns for (left) untemplated ceria particles and (right) GOtemplated 

ceria flakes, calcined between 400 and 1000 °C. 

 

Subsequent calcinations in air at 600, 800, 900, or 1000 °C to assess thermal stability also show 

differences between GO-templated ceria flakes and untemplated ceria particles. While both the ceria 

nanoflakes and particles show crystallite growth with increasing calcination temperature, the ceria 

nanoflakes retained their two-dimensional morphology even at high calcination temperatures (1000 °C). 

Powder XRD patterns of the calcined ceria particles and nanoflakes crystallite sizes show that 

both are very similar. Figure 3 shows that the diffraction peaks get narrower and taller with increasing 

calcination temperature, indicating a growth in crystallite size. However, this trend is more prominent for 

the untemplated ceria particles compared to the GO-templated ceria nanoflakes for any calcination 

temperature. Crystallite size calculations using the ceria (111) peaks clearly show this trend in Table 1. 

When calcined at 400 °C, the ceria particles and flakes have a similar crystallite size, slightly smaller for 

20 30 40 50 60 70 80 90

In
te

n
s
it

y

2θ (degrees)

600°C

800°C

900°C

1000°C

400°C

20 30 40 50 60 70 80 90

In
te

n
s
it

y

2θ (degrees)

600°C

800°C

900°C

1000°C

400°C



  10.1016/j.apcatb.2018.10.011 

9 
 

the flakes (6.7 and 6.0 nm, respectively). But upon calcination at higher temperatures, crystallite size 

increases more quickly for the untemplated particles than for the GO-templated nanoflakes. This 

observation indicates that the two dimensional high aspect ratio arrangement of crystallites of the GO-

templated nanoflakes replicating the GO morphology limits the diffusion of atoms at high temperature to 

a two dimensional plane which is translated into a low sintering degree. In contrast, diffusion of atoms at 

high temperature in untemplated particles takes place in three dimensions, favoring the sintering.   

 

Table 1. Structural properties of ceria particles and GO-templated ceria nanoflakes. 

Calcination 
T (°C) 

Crystallite 
size (nm)a 

BET 
surface 

area (m2/g) 

Avg. pore 
diameter 
(cm3/g)b 

Oxygen 
vacancies 

(%)c 

Untemplated ceria particles   

400 5.9 116 33.9 2.7 

600 10.7 18 33.3 1.3 

800 35.4 1  0.8 

900 48.7 <1  0.9 

1000 56.8 <1   0.6 

GO-templated ceria flakes   

400 5.4 113 29.1 3.3 

600 7.1 43 38.8 3.2 

800 21.4 9 49.8 1.4 

900 30.5 6 41.5 0.9 

1000 42.1 6 47.0 1.0 

a Calculated using Scherrer equation using ceria (111) peak in XRD pattern 

b Calculated using Barret-Joyner-Halenda (BJH) method on desorption curves 

c Calculated from Raman spectra F2g band shift 

 

CHN analysis indicates that the GO is eliminated from the templated ceria material after the 

initial calcination at 400 ºC. Pre-calcination, the ceria flakes and untemplated ceria particles contain 1.64 

and 0.38 wt. % carbon, respectively, confirming the presence of GO.  After calcination at 400 °C, the 

ceria flakes and untemplated ceria particles contain 0.39 and 0.34wt. % carbon, respectively. These 

comparable values confirm the volatization of GO during the calcination in air at 400 ºC. Visual analysis 

of the materials support this – before calcination, the GO-templated ceria flakes are dark brown, but after 

calcination, they are pale yellow, more typical for ceria powders (Figure S1). Numerous examples of 

GO-ceria composite materials have been reported in the literature. For instance, hydrothermal methods 

have been used to synthesize ceria nanoparticles dispersed on the surface of graphene oxide for the 

oxidation of uric acid, degradation of methylene blue, and removal of arsenic species from water. [39–

41] However, because calcination at 400 °C is sufficient to completely remove GO from such composite 
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materials, there is quite a low upper temperature limit for such catalysts to be useful. In contrast, the GO-

templated ceria flakes retain useful properties at much higher temperatures. 

Both the ceria particles and templated flakes were analyzed with Raman spectroscopy, shown in 

Figure 4. In both cases, ceria’s characteristic F2g band at approximately 466 cm-1, attributable to the 

vibrational characteristics of oxygen atoms surrounding cerium in the fluorite crystal structure, is clearly 

visible. [42] An additional defect band at 595 cm-1 is also visible in both samples calcined at 400 °C. This 

defect band can be attributed to the presence of Ce3+ related defects in the ceria lattice, or to defects 

caused by crystallite size effects – in general, in pure ceria it can be related to oxygen vacancy 

concentration due to non-stoichiometry of the CeO2 lattice. [43,44]. Shifts in the 466 cm-1 band can be 

attributed to differences in oxygen vacancy levels or lattice contraction, and this would also be indicated 

in a difference in intensity in the 595 cm-1 band. [45–47] While the GO templated and untemplated 

samples calcined at 400 °C appear to be similar, the 595 cm-1 band disappears in the untemplated ceria 

particle spectrum at calcination temperatures > 600°C, while it is retained in the GO-templated ceria 

spectrum even after treatments at 1000 °C, although its magnitude is considerably decreased.  

Oxygen vacancy quantities can be calculated via correlation with a shift in the main F2g band at 

~466 cm-1. [48,49] Results are shown in Table 1. For pure ceria, Δω = -γω/(ΔV/V0), where ω is the shift 

in Raman frequency, γ is the Grüneisen parameter (1.24 for this mode), and ΔV is the volume change 

from the reference volume. Volume changes of the unit cell are due to expansion of Ce4+ to Ce3+ (ionic 

radii 0.970 Å and 1.143 Å, respectively), which is only partially offset by the replacement of O2- with 

oxygen vacancies (ionic radii 1.380 and 1.164 Å, respectively). Assuming pure ceria with no other 

contributing defects, the relationship between oxygen vacancy concentration δ and change in volume 

ΔV/V0 is relatively linear: δ = -10(Δa/a0) = -3.3(ΔV/V0), where (Δa/a0) is the change in the lattice 

constant. Therefore, δ = 2.66(Δω/ω0). [49,50] It should be noted that the peak shift in these samples is 

quite small (<4 cm-1), creating a degree of uncertainty. Furthermore, depending how far the Raman laser 

penetrates through the catalyst materials, this is a measure of oxygen vacancies at or near the surface of 

the particles. Nevertheless, the trend is clear – untemplated ceria particles show lower levels of oxygen 

vacancies than GO-templated ceria nanoflakes. 
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Figure 4. Raman spectra of (left) untemplated ceria particles and (right) GO-templated ceria flakes, 

calcined between 400 and 1000 °C. 

 

To further quantify oxygen vacancy levels in the ceria materials, temperature-programmed 

reduction was performed, shown in Figure 5. Typically, two TPR peaks are associated with 

nanostructured ceria - a lower-temperature peak associated to readily available surface oxygen reduction, 

and a higher-temperature peak representing the reduction of the bulk lattice oxygen. [6,51] As shown in 

Figure 5a-b, both the GO-templated and untemplated ceria calcined at 400 and 600 °C clearly show both 

peaks. However, for the 800 °C calcination, this is greatly reduced for both samples. Table 2 shows the 

fraction of peaks intensities, clearly showing that the ceria flakes appear to retain more low-temperature 
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surface reducibility than the untemplated ceria particles for all three calcination temperatures in 

agreement with the Raman spectra analysis. 

 

   

Figure 5. TPR profiles for GO-templated ceria flakes and untemplated ceria particles calcined at (a) 400 

°C, (b) 600 °C, and (c) 800 °C. 

 

Table 2. Fraction of peak areas in TPR profiles for untemplated ceria particles and GO-templated ceria 

flakes. 

Calcination 

T (°C) 

Surface 
oxygen 
peak 

(fraction) 

Bulk 
oxygen 
peak 

(fraction) 

Untemplated ceria particles 

400 0.64 0.36 

600 0.53 0.47 

800 0.03 0.97 

GO-templated ceria flakes 

400 0.71 0.29 

600 0.65 0.35 

800 0.06 0.94 

 

The physical properties of both materials were also characterized by nitrogen adsorption. Both the 

GO-templated ceria flakes and untemplated ceria particles calcined at 400 °C show a type IV isotherm 

(Figure S2 in supporting information), characteristic of mesoporous materials. [52] The type H2 

hysteresis loop displayed is characteristic of a non-uniform network of pores, in both size and shape. [53] 

In both cases, the type IV isotherm is maintained upon calcination at 600 °C. As shown in Figure S2(a), 

nitrogen adsorption and desorption from untemplated ceria particles calcined at 800 °C and above is 

negligible. GO-templated ceria nanoflakes calcined at 400 °C show a pore size distribution with narrower 

pore diameters than untemplated ceria particles, shown in Figure S3. However, upon calcination at 600 

°C, both materials show a similar pore size distribution. 
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While both materials experience severe sintering at high temperatures, the GO-templated ceria 

nanoflakes maintain a higher BET surface area compared to untemplated ceria particles after calcination 

at the same temperature (Figure 6 and Table 1). This improved thermal stability of the flake materials is 

in agreement with the crystallite sizes derived from powder XRD data. 

 

 

Figure 6. (a) BET surface area vs. calcination temperature and for GO-templated ceria flakes and 

untemplated ceria particles. 

 

The catalytic activity of GO-templated ceria flakes and untemplated ceria particles for CO 

oxidation is shown in Figure 7. Catalysts were calcined in static air at 400, 600, or 800 °C respectively 

prior to testing. The GO-templated ceria flakes calcined at 400 ºC achieves similar although slightly 

superior activity than the untemplated ceria particles up to 400°C reaction conditions. At higher reaction 

temperatures (400-500 ºC), considerably higher conversions are achieved with the ceria flakes compared 

to the particles due to their considerably lower in-situ sintering as shown by the smaller reduction on 

surface area above 400ºC (Table 1). At 500 ºC, the ceria flakes achieve full conversion of CO to CO2, 

while the untemplated ceria particles only reach approximately 80% conversion. GO-templated ceria 

flakes also outperformed the untemplated particles when calcined at 600 °C - at this calcination 

temperature the GO-templated ceria flakes are capable of maintaining a high surface area and high 

concentration of their initial surface oxygen concentration, critical for the CO oxidation reaction. In 

Figure S4, this is shown in terms of turnover frequency (TOF) calculations at 450 °C.  These results 

demonstrate that templating ceria with sacrificial GO results in more thermally stable catalysts.  

Templated ceria nanoflakes perform comparably to or slightly better than some nanostructured 

ceria catalysts recently reported in the literature for CO oxidation. At 250 °C, the turnover frequency of 

these ceria nanoflakes for CO oxidation (in terms of μmol of CO converted per g of catalyst) is 19.1 

μmol g-1 min-1, while other papers show catalyst performance corresponding to 14 to  
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20 μmol g-1 min-1.[54,55] Other papers report catalysts with conversion rates corresponding to much 

higher TOF values; 53 and 163 μmol g-1 min-1 for solvothermally prepared ‘cauliflower-like’ ceria and 

microwave-assisted hydrothermally synthesized ceria nanocubes, respectively. [56,57] However, it 

should be noted that variations in reaction conditions can limit comparability; in particular, significantly 

different O2:CO ratios in reaction gas mixtures. 

 

   

Figure 7. Catalytic activity for CO oxidation of GO-templated ceria flakes and untemplated ceria 

particles, calcined at (a) 400 °C, (b) 600 °C, and (c) 800 °C. 

 

CO oxidation is a surface-catalyzed reaction, proceeding via the Mars-Van Krevelen mechanism. 

[58] Nevertheless, higher surface areas do not necessarily correlate with better catalytic performance, 

because, among other reasons, the nature of the exposed ceria crystal planes can influence activity. [59] 

In any case, prevention of excessive sintering is very important, as demonstrated with these ceria samples 

- where GO templating leads to smaller crystallite sizes and larger surface area upon calcination at 400-

1000 °C, resulting in more active and thermally stable catalysts. [6,60,61] In addition, CO oxidation over 

ceria-based catalysts is rather sensitive to oxygen vacancy concentration in such a way that the greater 

the population of oxygen defects, the better the CO oxidation performance. [62,63] The observed 

catalytic trends correlate perfectly with the Raman and TPR experiments, which show how ceria 

nanoflakes retain a higher population of oxygen defects after thermal treatment compared to ceria 

nanoparticles and thus improved reducibility, exhibiting improved oxidation activity. 

In addition to bare ceria nanoflakes and particles, nickel-loaded ceria nanoflakes and particles 

were synthesized as catalysts for the dry reforming of methane. Nickel is a common low-cost alternative 

to noble metal catalysts for this application. While noble metals such as Pt, Pd, or Rh typically retain 

higher stability, activity and resistance to coke formation than non-noble alternatives, the interaction 

between the metal and support can play a large role in modifying metal dispersion and electronic effects 
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– and thus overall catalyst performance. [26,64–66] Here, the effect of using GO-templated ceria 

nanoflakes vs. untemplated ceria particles as a support for nickel is explored. 

Powder XRD patterns of the Ni-ceria samples are shown in Figure 8. After nickel deposition and 

calcination at 700 °C, but pre-reaction, NiO is visible in the diffraction pattern. Using the Scherrer 

equation, the sizes of the ceria crystallites are calculated to be 6.6 and 5.7 nm on templated ceria flakes 

and untemplated ceria particles, respectively, while the size of NiO particles is calculated to be 20 and 24 

nm, respectively. These values are broadly similar, given the limitations of Scherrer equation 

calculations, indicating that both templated Ni-ceria flakes and untemplated Ni-ceria particles initially 

have similar crystallite sizes for both the ceria and NiO components of the catalyst. 

 

   

Figure 8. Powder XRD patterns of Ni-ceria catalysts, pre- and post-reaction. (a) Untemplated Ni-ceria 

particles. (b) GO-templated Ni-ceria flakes. 

 

Additionally, TPR experiments were conducted on the Ni-deposited ceria nanoflakes and 

particles, shown in Figure 9. The TPR profiles are similar to the ones of the bare ceria materials (Figure 

5) with the addition of low temperature peaks (<400 °C), attributable to NiO reduction. The lowest 

temperature (~200 °C) peak can be attributed to the reduction of larger “free” NiO not bound to the ceria 

support, while the higher-temperature peak (at ~325 °C) is attributed to NiO bound to the surface of 

ceria. [67,68] For this main peak, the NiO-ceria nanoflake TPR profile shows a shift to higher reduction 

temperatures compared with the NiO-ceria particle sample. There are two possible explanations for this. 

The size of NiO particles can affect the reduction temperature, so this is possibly indicative of different 

NiO particle sizes on the ceria nanoflake sample. [69,70] Alternatively, metal-support interactions can 

influence the reduction temperature as well. In the case of nickel-ceria, stronger interaction between NiO 
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and the ceria support results in higher reduction temperatures. [71,72] XRD analysis showed that the NiO 

crystallite sizes in the nanoflake and untemplated particle systems were similar, so the shift to a higher 

reduction temperature is likely due to differences in NiO-ceria interaction in the two catalysts. A shoulder 

extending from approximately 450 to 500 °C is visible for the NiO/ceria nanoflake TPR profile, but not 

the NiO/ceria particle sample, attributed to readily available surface oxygen in the ceria flakes. 

 

 

Figure 9. TPR profiles for nickel-deposited GO-templated ceria flakes and untemplated ceria particles. 

 

TEM micrographs of the fresh Ni-loaded ceria flakes and particles are shown in Figure 10a-b. 

EDX analyses and maps (Figure S6-8) show that the smaller (<10 nm) crystallites are primarily ceria, 

while the larger (20-40 nm) crystallites are nickel (NiO according to XRD). These ceria crystallite sizes 

match those calculated using Scherrer equation analysis using the ceria XRD patterns in Figure 3 (~6 nm 

for both materials, Table 1), and Ni-loaded ceria XRD patterns in Figure 8. In Figure 10a, of the fresh Ni-

loaded ceria flakes, NiO particles can be seen clustering around the edges of ceria crystallite 

agglomerations. However, for the fresh untemplated Ni-loaded ceria particles, shown in Figure 10b, 

while some NiO particles appear to be similarly deposited on the edge of ceria crystallite agglomerations, 

much of the visible nickel is not deposited on ceria. These un-supported NiO particles were evenly 

dispersed across the TEM sample grid, a phenomenon not observed with the Ni-ceria flake sample. This 

observation suggests that NiO particles have a better interaction with the ceria support when supported 

on ceria flakes than ceria particles in agreement with the TPR data. Surface defects such as oxygen 

vacancies are known to be preferential nucleation sites for metal particle formation. [73,74] Therefore, 

the ceria flakes promote better nickel dispersion and stronger Ni-ceria interaction than the ceria particles, 

in agreement with the higher surface oxygen vacancy concentration of the nanoflakes, seen in Raman and 

TPR analysis. 
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Figure 10. TEM micrographs of Ni-ceria catalysts, both fresh and post-methane reforming reaction. Dark 

and light areas are Ni and ceria, respectively. (a) Fresh Ni-ceria flake catalyst after calcination at 700 °C. 

(b) Fresh Ni-ceria particle catalyst after calcination at 700 °C. (c) Post-20 h, 800 °C reaction Ni-ceria 

flake catalyst. (d) Post 20 h, 800 °C reaction Ni-ceria particle catalyst. 

 

Catalytic activity of the Ni-loaded ceria particles and flakes for the dry reforming of methane 

(DRM) is shown in Figure 11a-b. In both cases, conversion of CH4 is lower than conversion of CO2 

across the temperature range tested, a common observation in DRM because methane activation is the 

rate-limiting step. [75]  For CO2, conversion levels range from approximately 20% at 550 °C to 90% at 

850 °C, while CH4 conversion levels are less than 5% and 60-65% at 550 and 850 °C, respectively. The 

ratio of H2 to CO produced ranges from 0.5 to 0.8 across the same temperature range. While this is 

promising, conversion levels do not appear to be as high as other nickel-based DRM catalysts recently 

reported in the literature. However, with papers reporting wide variation in Ni loading (1 to 63.5 %), 

reduction temperatures, space velocity and gas ratios, results are not always directly comparable. [76] 

The Ni supported on ceria flakes and particles perform similarly, although there are small differences. In 
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both cases, the syngas H2/CO ratio is close to 1 at high reaction temperatures, which is the limit imposed 

by the stoichiometry of the reaction.  

 

  

  

Figure 11. (a) Catalytic activity of Ni-loaded ceria flakes and particles for the dry reforming of methane, 

showing both CH4 and CO2 conversion. (b) The ratio of H2 to CO produced as a function of temperature. 

(c) Long-term catalytic activity of Ni-loaded ceria flakes and particles at 800 °C for the dry reforming of 

methane, showing both CH4 and CO2 conversion. (d) The ratio of H2 to CO produced as a function of 

time at 800 °C. 

 

Longer-term studies of the dry reforming reaction were undertaken at 800 °C, shown in Figure 

11c-d. In contrast with the short-term temperature curve experiment shown in Figure 11a, where there 

were only small differences, in a long-term experiment the difference in activity between the two 

catalysts is quite dramatic. Untemplated Ni-ceria particles experience severe deactivation after 
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approximately 5 hours, while the Ni-ceria flakes demonstrated much higher stability for both CH4/CO2 

conversion and maintaining a high H2/CO ratio. This can also be seen in the TOF values (Figure S5) – for 

both CH4 and CO2 conversion over the 20-hour reaction, the activity of the Ni-ceria particles decreases 

significantly more than the activity of the Ni-ceria flakes. After 20 hours, the Ni-ceria flakes experience a 

reduction in activity of 18% for CO2 conversion and 40% for CH4 conversion, while the activity of Ni-

ceria particles is reduced by 66% and 89%, respectively. Although only small improvements in activity 

are initially achieved with the ceria flakes compared with ceria particles, the main benefit of utilizing 

GO-templated ceria flakes is the improved thermal stability and resistance to sintering that is due to the 

stronger nickel-ceria interaction of the ceria flakes. 

Nickel sintering and carbon deposition are the two major causes of catalyst deactivation of Ni 

based catalysts for dry methane reforming. [77] Post-reaction analysis was undertaken to determine the 

significance of these factors. Post-reaction powder XRD patterns are shown in Figure 8. Compared with 

the pre-reaction patterns, nickel is now present as Ni instead of NiO. Similarly to the pre-reaction NiO-

ceria samples, the ceria crystallite sizes are similar in the spent catalysts – 34.4 and 33.1 nm for flakes 

and particles, respectively. In contrast, the Ni metal particles deposited on the post-reaction ceria 

particles are calculated to be 56 nm, compared with 43 nm for post-reaction ceria nanoflakes. This is an 

indication that while ceria nanoflakes do not entirely prevent nickel sintering, they do hinder sintering in 

comparison to nickel particles deposited on untemplated ceria, and shows that the Ni particles are better 

dispersed on ceria flakes than ceria particles post-reaction, in agreement with the TPR results. 

TEM micrographs of post-reaction spent Ni-ceria catalysts are shown in Figure 10c-d. After the 

20 h stability experiment, the Ni-ceria flake catalyst, shown in Figure 10c, has retained its two-

dimensional structure. However, the nickel particles have sintered, showing a wide range of sizes. 

Additionally, the ceria flakes are surrounded by a network of carbon nanotubes. In comparison, the Ni-

loaded ceria particle catalyst is shown in Figure 10d. While the large ceria agglomerations seen in Figure 

10b are still evident, the nickel is now also present in very large agglomerations being difficult to 

distinguish any structure at the nanoscale.  Furthermore, no carbon nanotubes are visible. While both the 

Ni-ceria flake and Ni-ceria particle catalysts show sintering of the nickel particles (Figure 10c-d, S9-11), 

the sintering appears to be more severe for the untemplated Ni-ceria particle catalyst. The nanoflake 

catalyst shows a wide range of Ni particle sizes, from <100 nm to ~500 nm, while the untemplated 

particle catalyst only shows 300-500 nm and larger Ni particles.  

TGA was performed on the post-20 h reaction Ni-ceria catalysts, shown in Figure 12. The TGA 

curve of the Ni-ceria flakes shows a sharp decrease in mass at approximately 500-600 °C, indicative of 

the presence of deposited carbon on the catalyst after reaction. However, the Ni-ceria particles do not 

show a similar decrease in mass.  This indicates that significant carbon deposition occurred on the Ni-
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ceria flakes, but not the Ni-ceria particles, confirming a different reaction behavior, and correlates well 

with TEM post-reaction analysis. 

 

 

Figure 12. TGA curves for post-20 h reaction Ni-ceria flakes and particles in air. 

 

In summary, the post-reaction analysis indicates that nickel sintering, and not carbon deposition, 

is responsible for the significant difference in catalyst deactivation in the long-term DRM experiment 

between the GO-templated and untemplated Ni-ceria catalysts. While both catalysts experienced nickel 

sintering, the untemplated Ni-ceria particle catalyst suffered from more severe sintering (Figure 10c-d, 

S6). While TGA analysis (Figure 12) showed carbon formation for the Ni-ceria flake catalyst and not the 

Ni-ceria particle catalyst, the TEM images (Figure 10c) showed that this was a network of filamentous 

carbon. Carbon deposition has often been reported to be a significant factor in nickel catalyst 

deactivation. [78–80] However, the type of carbon deposit - encapsulating, filamentous, or other - affects 

methane reforming catalysts in different ways, if at all, and the relationship between catalytic activity and 

quantity of carbon deposited on the catalyst is not always straightforward. [81] While the formation of 

amorphous carbon can coat and deactivate catalysts, filamentous carbon growth can lead to structural 

modifications within the catalyst (such as forced separation of the nickel and ceria crystallites) which 

reduces activity. [82] Nevertheless, not all filamentous carbon growth appears to be harmful to catalytic 

activity. Additionally, it should be underlined that carbon formation is difficult to avoid for Ni-based 

materials during methane reforming reaction and the formation of carbon (soft or hard) is an indication of 

catalytic activity. [63] The key is developing Ni-based materials which lead to soft carbon formation, 

which is possible if Ni sintering is hindered, since large Ni clusters are more prone to forming hard 
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carbon deposits than small Ni clusters. [64,83] In this scenario, Ni-ceria nanoflakes are excellent 

materials due to their resistance towards metallic sintering. 

Overall, GO-templated ceria flakes outperform untemplated ceria particles for both CO oxidation 

and, with nickel deposition, the dry reforming of methane. Their improved resistance to sintering, higher 

BET surface area after exposure to high temperatures, and higher surface reducibility leads to a clear 

stability advantage in high-temperature reactions. 

 

4. Conclusions 

In conclusion, sintering-resistant GO-templated ceria nanoflakes have been successfully 

synthesized via a room-temperature precipitation reaction. The improved textural properties provided by 

GO templating result in a ceria catalyst capable of maintaining a higher surface area than untemplated 

ceria particles when calcined above 400 °C, demonstrating lower crystallite growth and improved 

resistance to sintering. Furthermore, Raman and TPR analysis show that GO-templated ceria flakes have 

a higher level of oxygen vacancies than untemplated ceria particles.  For these reasons, GO-templated 

ceria flakes demonstrate improved catalytic activity for CO oxidation. Ceria flakes also inhibit sintering 

of deposited nickel particles when compared with nickel deposited on untemplated ceria particles. This 

presents advantages for the dry reformation of methane, where Ni/GO-templated ceria flakes maintains a 

considerably higher activity for the conversion of both methane and carbon dioxide than untemplated 

Ni/ceria particles in long-term stability tests. 

It should be noted that, while more sintering-resistant than untemplated ceria particles, the 

nanoflakes do still lose specific surface area with exposure to high temperatures. Future research will 

include steps to mitigate this behavior further – for example, by investigating the applicability of GO 

templating to ceria-zirconia mixed oxides or the inclusion of other promoters such as Nd, Pr, La, etc. 

which are known to improve thermal stability in applications such as automotive catalysis. 

The capability to produce thermally stable ceria-based materials which limit high-temperature 

sintering is critical for ceria’s further development across a range of environmentally applications. The 

use of GO as a sacrificial template offers a potential route for synthesizing thermally stable ceria 

catalysts, one in which a simple precipitation reaction is utilized and the template easily removed post-

synthesis. 
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