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Abstract 

The recent COVID-19 pandemic has altered the face of biology, social interaction and  

public health worldwide. It has had a destructive effect upon millions of people and 

is approaching a devastating one million fatalities. Emerging evidence has suggested 

a link between the infection and gut microbiome status. This is one of several factors 

that may contribute towards severity of infection. Given the fact that the gut is 

heavily linked to immunity, inflammatory status and the ability to challenge 

pathogens, it is worthwhile to consider dietary intervention of the gut microbiota as 

means of potentially challenging the viral outcome. In this context, probiotics and 

prebiotics have been used to mitigate similar respiratory infections. Here, we 

summarise links between the gut microbiome and COVID-19 infection, as well as 

propose mechanisms whereby probiotic and prebiotic interventions may act. 
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Introduction 
 

At the end of 2019, an emerging viral illness was identified in Hubei Provence, China. 

January 7th 2020 saw the isolation of a novel corona virus, SARS-CoV-2, from a 

patient’s respiratory sample. WHO announced “COVID-19” as the name of this new 

disease on 11 February 2020. COVID-19 incidence escalated across the world and, by 

March 12th 2020, the WHO declared a COVID-19 pandemic. Since then, an 

epidemiological account has unfolded of a virus that has threatened global health 

and attacked world economy. 

 

To date (15/9/20), over 29.5 million people are known to have contracted COVID-19 

worldwide and, devastatingly, over 933,000 have lost their lives(1). Transmission of 

the virus has been rapid and, whilst some individuals have contracted a mild to 

moderate upper respiratory tract illness, others have faced much more serious 

manifestations including multiple organ failure and death.  By looking into the profile 

of those hardest hit by the virus, lessons may be learnt and potential strategies for 

reducing the burden proposed. In this review, ways in which the gut microbiota may 

influence risk of contracting SARS-CoV-2 are considered along with how this could 

impact upon disease development in terms of severity and duration. Possible 

mechanisms within this interaction are considered along with evidence to support 

the use of gut microbiota as a potential prophylactic strategy. 

 

The gut microbiome is the totality of the mixed community of micro-organisms, 

including genetic components; microbial biodiversity and their resulting 
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functionality. Recent studies using metagenomic approaches have highlighted the 

complex inter-relationship between resident intestinal organisms and mammalian 

metabolism, and have shown that the gut microbiota plays an important role not 

only in the way we derive energy from our diet but also in the manner in which we 

store this energy. Such studies have also identified roles for the gut microbiota in the 

aetiology and/or maintenance of gut disorders. Large sequencing projects, such as 

the MetaHit(2) and the Human Microbiome project(3), have helped to unravel new 

diversity as well as understand the composition of the microbiota in different clinical 

states. With accumulating evidence surrounding COVID-19 and the microbiota, this 

review brings together evidence from recent studies, contrasted with information 

about the gut microbiota and how it might be able to help in the fight against COVID-

19 infection. 

 

There are several mechanisms whereby the gut microbiota may influence viral 

transmission and disease progression. In relation to initial infection, Zuo and co-

workers(4) compared the faecal microbiota of 15 COVID-19 patients to healthy 

controls. When focussing on the microbiota of the 7 antibiotic naïve COVID-19 

patients on admission to hospital, microbial sequencing revealed elevated levels of 

Coprobacillus spp. Clostridium ramosum and Clostridium hatherwayi were associated 

with severity of COVID-19 symptoms along with reduced levels of Alistipes spp. and 

the anti-inflammatory associated Faecalibacterium prausnitzii. It has been observed 

that COVID-19 gains entry to cells through angiotensin-converting enzyme 2 (ACE2) 

receptors(5). ACE2 is a transmembrane protein that counteracts angiotensin-

converting enzyme (ACE) and its receptors are found within epithelium cells of the 
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gut(6). Coprobacillus spp. have been observed to upregulate ACE2 in the murine gut(7)  

thus, changes in the gut microbiota may alter ability of the virus to gain cellular entry 

into the gut. Indeed, positive virus staining has been observed in intestinal ACE-2 

viral host cells(8). It is also noteworthy that COVID-19 RNA has been found in 

faeces(9). This, therefore, indicates viral replication as being likely within the 

intestine. However, whilst viral RNA has been found within faeces, to date, the 

authors are unaware of any studies where infectious viral particles have been 

recovered(10). This could, in part, be a consequence of enteric secretions emulsifying 

the virus and rendering it inactive(11). This means that whilst the virus may replicate 

within the large intestine, there is unlikely to be faecal-oral transmission. Internally, 

this could make integrity of the gut wall important for avoiding viral transfer. 

 

Gu et al.(12) reported the presence of more potential pathogens in the gut microbiota 

of 30 hospitalised COVID-19 patients compared to healthy controls. Furthermore, 

Zuo et al.(13)  used RNA shotgun metagenomics on faecal viral extractions to 

determine those with high and low SARS-CoV-2 infectivity in 15 hospitalised COVID-

19 patients. It was observed that patients with high infectivity had more potential 

pathogenic bacteria in their faeces than those with lower levels. It is important to 

consider the relevance this may have to the illness that ensues. The microbial 

community residing on mucosal surfaces of the gastrointestinal tract has both direct 

and indirect effects upon the host immune system (it is estimated that 70% of the 

immune system is located within the gastrointestinal tract)(14) and thus is a key 

player in defence against microbial infection. Research from Yaron et al.(15) using 
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antibiotics and peptides to modulate the microbiota, demonstrated importance of 

the microbiota in murine immune response to gammaherpesvirus-68. Indeed, 

impact of the gut microbiota on the body’s immune function is well evidenced, both 

in healthy and pathological conditions(16). It is worth noting that COVID-19 

progression appears to be associated with a cytokine storm that underpins hyper-

inflammation, whereby elevated levels of pro-inflammatory cytokines, including 

tumour necrosis factor [TNF], IL-6, and IL-1β, are observed(17). Approaches to combat 

this could aid in the reduction of symptom severity. 

 

Modulation of the gut microbiome through diet 

 

Generally, the various components of the large intestinal microbiota may be 

considered as exerting pathogenic or potential health promoting effects. Bacteria in 

the colon respond largely to the available fermentable substrate, which is mainly 

provided by diet(18). Through the process of fermentation, gut bacteria metabolise 

various substrates (principally dietary components) to form end products such as short 

chain fatty acids (SCFA) and gases. This anaerobic metabolism is thought to contribute 

positively towards host daily energy requirements. Fermentation by gut bacteria 

consists of a series of energy yielding reactions that do not use oxygen in the 

respiratory chains. The electron acceptors may be organic (e.g. some products of the 

fermentation) or inorganic (e.g. sulphate, nitrate). As carbohydrates form the principal 

precursors for fermentation, ATP is usually formed through substrate level 

phosphorylation by saccharolytic microorganisms. In terms of end products, a variety 
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of different metabolites arise. Predominant of these are the SCFAs acetate, propionate 

and butyrate.  

 

In the gut, resilience is connected to the functional core microbiota(19). Usually, the 

human host lives in harmony with its complex gut microbiota. However, under certain 

circumstances like antimicrobial intake, stress, poor diet and living conditions, the 

relationship may be compromised. The gut microbiota is also susceptible to 

contamination from transient pathogens, which further upsets the normal community 

structure. These factors can have consequences that may result in the onset of gut 

disorder, that can manifest through both acute and chronic means(20-22). Dietary 

modulation of the gut microbiota is a functional food concept used to mitigate this. 

 

 Probiotics 

The first records of ingestion of live bacteria by humans are over 2000 years old(23). 

However, at the beginning of the last century probiotics were first put onto a scientific 

basis by the work of Metchnikoff at the Pasteur Institute in Paris. Metchnikoff(24) 

hypothesised that the normal gut microbiota could exert adverse effects on the host 

and that consumption of ‘soured milks’ could help. This was the birth of the probiotic 

concept as we now know it. A formal probiotic definition is shown in Table 1. This 

implies that health outcomes should be defined and proven, which is not an easy task. 

Most research has been directed towards the use of intestinal isolates of bacteria as 

probiotics. Over the years, many types of microorganisms have been used. They 

consist not only of lactic acid bacteria (lactobacilli, streptococci, enterococci, 
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lactococci, bifidobacteria) but also Bacillus spp., E. coli and yeasts such as 

Saccharomyces spp.(25). 

 

The actions of probiotics are usually strain specific and, generally speaking, main 

positive effects are associated with protection against gastroenteritis, improved 

lactose tolerance, stimulation of the immune system through non pathogenic means, 

influencing atopic conditions and reductions in blood lipids(26-28). Probiotic use in 

animals may take the form of powders, tablets, sprays and pastes. In humans, the 

most commonly used vector involves fermented milk products and 'over the counter' 

freeze-dried preparations of lactic acid bacteria in capsules. Recently, the market has 

expanded to include other foods such as flavoured drinks and pharmaceutical 

preparations such as tablets.  

  

 Prebiotics 

Prebiotics allow the selective growth of certain indigenous microorganisms in a given 

ecosystem (Table 1). In the gut, an effective prebiotic ingredient should: 

1. Neither be hydrolysed nor absorbed in the upper part of the gastrointestinal tract 

2. Have a selective fermentation such that the composition of the large intestinal 

microbiota is altered towards a healthier composition. 

The prebiotic concept has been derived to specifically increase the many positive 

microorganisms, such as bifidobacteria and lactobacilli, already present in the 

human colon (29). However, as knowledge of gut microbiota diversity has expanded, 

there may be other target genera such as Roseburia, Eubacterium, Faecalibacterium, 

Akkermansia, Christensensella, Propionibacteria, as has been discussed by Satokari 
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(2019)(30) and Chang et al., 2019(31). It is the case, however, that more physiological 

understanding of these groups is required and their definitive health bonuses need 

to be more thoroughly understood before they can be advocated as prebiotic 

responders(32). 

 

Fructooligosaccharides and galactooligosaccharides are the most widely researched 

prebiotics(33). Some prebiotics (inulin type fructans) occur naturally in several foods 

such as leek, asparagus, chicory, Jerusalem artichoke, garlic, artichoke, onion, and 

banana.  However, overall intake from these sources within a normal, in particular 

Western-type diet, is small. An effective route to achieve a health-promoting intake is 

through fortification of more frequently eaten foodstuffs with prebiotic ingredients. 

Prebiotics are thus a sub-category of functional food ingredients. They can be added to 

many foods including yogurts, cereals, breads, biscuits, milk desserts, ice-creams, 

spreads, drinks as well as animal feeds and supplements. Galactooligosaccharides 

(GOS) are another class of prebiotics that are manufactured and marketed in Europe as 

well as Japan. These are successful prebiotics synthesised from lactose(34). In vivo trials 

are the definitive assessment of a prebiotic effect, whether the target is the human 

situation or animals (livestock, pets). The hunt for new candidate prebiotics frequently 

explores oligosaccharides from different sources, including pectin and cellulose; starch 

and their breakdown product, maltose; xylan from wheatbran; mannose from fruits 

and vegetables; and the synthetically formed polydextrose, palatinose and 

lactulose(35). 
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Synbiotics 

A synbiotic is a combination of the concepts of probiotics and prebiotics and consists 

of a live microbial food additive together with a prebiotic oligosaccharide (Table 1). 

Advantages are that a probiotic with known benefits can be used and the prebiotic 

aids establishment of the organism in the complex colonic environment. This would be 

a synergistic synbiotic. On the other hand, the combinations used may act 

independently of each other – a complementary synbiotic. There is thus flexibility in 

the choice of live microorganisms and substrate with the best combination for a 

specific desired outcome being determined(36). 

 

Aspects of gut microbiota modulation related to respiratory infection and COVID-19  

Immune changes brought about by the gut microbiota can influence respiratory 

conditions(37). For example, evidence from studies using germ free mice that are 

highly susceptible to numerous viral infections, including influenza, indicates that 

resident gut microbiota shapes anti-viral defences and modulates outcome of 

certain viral infections(38). Indeed, differences in the gut microbial community have 

been demonstrated in other viral infections such as influenza and pneumonia(39). 

Subsequent investigations of strategies to alter microbial changes have been seen to 

positively impact upon disease outcomes; some such studies are outlined below.  

 

Numerous studies have focused on modulation of the gut microbiota and its impact 

on upper respiratory tract infections (URTI) resulting in three meta-analyses 

reporting that probiotics can reduce severity and duration of illness(40-42); with similar 

findings for synbiotics(43). Mechanistically, modulation of the gut microbiota has 
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been demonstrated to increase positive bacteria whilst enhancing the activities of 

cytotoxic T-cells and T-suppressor cells(44-46) or through supporting natural killer cell 

activity(47). To illustrate this, De Vrese et al.(45) explored the use of probiotics in 

healthy adults aged 18-67 years. Four hundred and seventy two volunteers were 

tested over two winter periods whilst consuming a probiotic mixture with 

Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, Bifidobacterium 

bifidum MF 20/5 plus vitamins and minerals, or a placebo of just the vitamins and 

minerals. Whilst the study resulted in volunteers on the probiotic being equally likely 

to pick up a respiratory infection as the placebo, there were 13.6 % fewer virally 

induced URTIs in the probiotic treatment group(48). Furthermore, those on probiotics 

who did develop URTI had a shortened duration of symptoms by 21.5% on average 

(improved recovery by on average 2 days), less severe symptoms and volunteers 

were less likely to develop fever, combined with elevated levels of CD4+ and CD8+. 

Such a decrease in symptoms and up-regulation of immune responses, could lessen 

the impact of viral burden. For prebiotics, the use of fructans and glucans in infant 

formulae resulted in fewer (P < 0.01) episodes of physician-diagnosed overall and 

upper respiratory tract infections (n=66) compared to controls without prebiotics 

(n=68)(45). In another trial, Shahramian et al.(50) used galactans and polydextose to 

reduce respiratory tract infections in formula fed infants (n=60) studied over one 

year (p=0.01, compared to controls without prebiotics n=60). Effects were 

comparable to those of breast fed infants (n=60). 

 

SARS-CoV-2 most commonly manifests as an URTI but can, in more severe cases, 
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proliferate deeper into the lungs to become a lower respiratory tract infection (LRTI). 

Whilst evidence is still being collated, recent meta-analyses of randomised control 

trials have indicated that probiotics can reduce the incidence and severity of 

ventilator-associated pneumonia(51,52). In a study by Mahmoodpoor et al.(53), for 

example,  probiotic supplementation shortened the duration of ventilator use in 

critically ill patients. Furthermore, Shimizu et al.(54) issued synbiotics within 3 days of 

hospital admission where mechanical ventilation was used in sepsis patients. The 

intervention resulted in in less ventilator associated pneumonia (with 48.6 % to 14.3 

% of cases with no synbiotics to synbiotics  respectively), whilst increasing numbers 

of faecal Bifidobacterium spp. and Lactobacillus spp. Similar findings have been 

observed in other probiotic ventilator associated pneumonia studies(55) indicating 

that modulation of the gut microbiota may also have a part to play in LRTI.  

 

Influence of the gut microbiota may be at least partially responsible for the strongest 

COVID-19 risk factors. Advancing age is a risk factor for COVID-19, with Worldwide 

data reporting deaths in 14.8% of individuals over 80 years of age contracting COVID-

19, contrasting with 8% for those 70-79 years of age and 3.6% in 60-69 years of 

age(56). Populations of gut bacteria change with age(57), for example, lower levels of 

bifidobacteria are associated with older populations(58). These changes in 

composition of the gut microbiota may be a contributing factor to other age related 

physiological changes such as reduced gut epithelial barrier function, poorer immune 

function and an increased inflammatory state (loosely termed “inflammageing”)(59).  

This may be instrumental to the increased risk of infection observed in the elderly.  
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Alteration of the gut microbiota can also reduce inflammatory status in the elderly. 

Studies in older populations by ourselves, for example, have shown that prebiotic 

galactooligosaccharides can lead to enhanced bifidobacterial levels in older 

populations concurrent with increased anti-inflammatory interleukin 10 and reduced 

pro-inflammatory cytokines, including IL-6, IL-1β and TNF-α(60,61). As an increased 

inflammatory state seems central to advanced COVID-19 manifestation, 

prophylactically reducing general inflammation could help support overall immune 

function.  

 

Excess weight appears to be another risk factor for COVID-19. According to the 

Intensive Care National Audit & Research Centre (ICNARC) report on COVID-19 in 

Critical Care of United Kingdom (March 27th 2020)(62), out of 775 patients, 72.1% 

were overweight or obese; furthermore, 60.9% of ICU patients that died were obese. 

Having looked at these data, Muscogiuri et al.(63) suggested that those with 

cardiometabolic conditions were more likely to be at a higher risk of a poorer COVID-

19 prognosis. 

Obesity is also associated with low-grade chronic inflammation, characterised by a 

elevated levels of pro-inflammatory cytokines(64). These changes are linked to 

increased circulating levels of endotoxin, which is a component of Gram-negative 

bacterial cell walls that normally remains separate from the blood system due to the 

epithelial barrier. In addition to this impact on inflammatory state, a poorer gut 

barrier which may be a facet of ageing, can also enable passage of bacteria and 
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viruses from the gut lumen to the blood which could lead to increased secondary 

infections in COVID-19 patients(65). In this context, it has been reported that 

probiotic use can help improve barrier integrity in the gut(66,67).  Moreover, Luo and 

coworkers(68) also considered that modulation of the gut microbiota may help to 

avoid secondary infections by reducing microorganism transfer to the gut. This is of 

relevance due to findings on COVID-19 and secondary infections.  Zhuo et al.(69) in 

Wuhan indicated that, in a cohort of volunteers with COVID-19, 50% of those that 

died had secondary bacterial infections.  

In individuals with metabolic syndrome, treatment with prebiotic 

galactooligosaccharides enhanced beneficial members of the microbial community, 

including bifidobacteria, whilst reducing markers of metabolic illness and levels of 

inflammation as determined by faecal calprotectin levels(70). Furthermore, murine 

studies suggest that these effects are mediated in part through improvements in 

epithelial wall integrity mediated by the gut bacteria(71). Thus, changes observed 

within gut microbiota modulation studies act to reduce inflammatory status and may 

reduce carriage across the gut epithelium. Such changes could act against hyper-

inflammation and secondary infections.  

Is there a role for the gut microbiome and probiotics/prebiotics in the treatment of 

COVID-19? 

In the current climate, a reduction in illness severity and duration could be an asset 

not only to National Health Services, but obviously also to those suffering with 

COVID-19. As mentioned, there is a body of evidence supporting a prophylactic role 

of probiotics, prebiotics and synbiotics in reducing symptoms with regards to upper 
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respiratory tract infections. Studies modelling the impact of probiotic consumption 

on respiratory infections in the pre-COVID-19 era, highlight economic savings that 

could be brought about by probiotic consumption in the general population(72,73). 

Given the potentially life-threatening nature of COVID-19, such studies are all the 

more pertinent now. It is worth noting that probiotics are accepted as safe in most 

situations and have been utilised without adverse effect in many trials with 

vulnerable individuals(23,25). 

Mechanisms that might explain these positive gut modulating effects are through 

direct interaction with the intestinal immune and epithelial cells or indirect 

modulation by the intestinal microbiome. Beneficial effects include enhancement of 

the intestinal epithelial barrier, competition with pathogens for nutrients and 

adhesion to the intestinal epithelium, production of anti-microbial substances and 

modulation of the host immune system (both innate and adaptive)(74). See Figure 1. 

Central to the maintenance of epithelial integrity and modulation of the immune 

system are SCFA. These are end products of microbial fermentation, particularly 

associated with breakdown of carbohydrates in the colon. SCFA, including acetate, 

propionate and butyrate exert effects throughout the body(75). SCFA have been 

observed to bind to free fatty acid receptors (Ffar), which are highly expressed by 

immune function cells. Subsequently, SCFA have been observed to promote 

development of naive CD4+ T cells into regulatory T cells(76) and enhance cytotoxic T-

cell, T-suppressor cell, CD8+ T cell and natural killer cells activities(44,47,77). Moreover, 

SCFA are involved in enhancing the immune response to pathogens via IL-18, 

defensins and toll like receptors(78,79).  As such, enhancing the immune system to 
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fight against infections could be a good weapon against COVID-19 and associated 

secondary infections. 

 

Fibres have been shown to possess immunomodulatory properties(78), in the case of 

infant gut microbiota the prebiotic inulin has been observed, in vitro, to attenuate 

proinflammatory responses(79), whilst Vogt and coworkers(80) found that inulin 

supplementation along with Hepatitis B vaccination led to higher in vitro antibody 

titres compared to control intervention. Research by Trompette et al.(81) showed that 

high fibre levels in the diet of mice influenced the gut microbiota and SCFA levels. It 

was observed that allergic airway disease symptoms were greater in low fibre fed 

animals, whilst inclusion of SCFA in the diet negated this difference. Airway allergy 

disease is associated with inflammation. In this study, via the gut microbiota, SCFA 

production led to reduced inflammation via Ffar, therefore illustrating how the 

gut:lung axis could operate.  

 

Research into respiratory syncytial virus of infants, a key cause of LRTI, has shown an 

altered microbial community to be associated with severe disease symptoms(82). A 

recent review by Enaud et al.(83) documented current knowledge about the gut:lung 

axis. He et al.(84) discussed how ACE2 expression is down-regulated in SARS patients 

during infection. This is of interest in terms of the gut microbiota as ACE2 regulates 

expression of amino acid transporters that control intestinal uptake of tryptophan. 

Tryptophan regulates antimicrobial peptides, which could result in changes to the 

gut microbiota. 
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There is evidence supporting a common mucosal immunity, whereby the immune 

status of the gut is evidenced to affect other sites of the body(85). As such, 

differences in the gut microbiota observed during COVID-19 could also be involved in 

gut-lung cross talk (86). Enaud et al.(83) detailed how probiotics may impact respiratory 

immunity. Probiotics have been demonstrated to improve levels of type I 

interferons, increase the number and activity of antigen presenting cells, NK cells, 

and T cells, plus systemic and mucosal specific antibodies in the lungs. Probiotics 

may also influence the balance between pro-inflammatory and immunoregulatory 

cytokines that allow viral clearance while minimising immune response-mediated 

damage to the lungs. The concept of gut:lung axis has also been illustrated during 

lung viral infections when symptoms are worse in antibiotic microbial-disrupted mice 

compared to colonised counterparts; these differences have been mitigated by 

probiotic treatment in antibiotic treated animals(87). The observed effects were a 

result of the gut microbiota upregulating expression of toll like receptor 7 influenza 

infected macrophages, supporting the immune response. 

 
Further evidence of the gut:lung axis in action is illustrated in research of Haak et al. 

(88). Faecal samples were taken from 360 allogeneic hematopoietic stem cell 

transplant patients (these patients often develop respiratory infections). Within the 

patients following transplant, 41% developed viral respiratory infections and 31.5% 

of developed LRTI. When correlating with the microbiota, it was observed that those 

with higher levels of butyrate producing bacteria were five times less likely to 

develop LRTI. As a word of caution, probiotic intake in those in intensive care (IC) 

does require more research to establish safety protocols across the range of 
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available probiotics and the different pathological conditions that require IC. 

 

Clincaltrials.gov currently reveals nine trials exploring the impact of probiotics on 

COVID-19; these include a prophylactic focus on Lactobacillus rhamnosus GG in 

household contacts of COVID-19 sufferers (Wischmeyer and Sung, North 

Carolina)(89), and two studies (Spain and Brussels) on health care personal / 

professionals (Rodriguez Blanque, Kenz)(89). The other studies focus on those already 

with symptomatic COVID-19 (non ICU) to assess changes in symptoms (Navarro, 

Desroisers, Pugliese, Graz, Gea Gonzalez, Sapienza, Saralaya)(89, 90). 

 

In an exciting development, one newly completed study published by d’Ettorre et al., 

(91) examined seventy patients positive for COVID-19 requiring non-invasive oxygen 

therapy who were provided with hydroxychloroquine therapy along with antibiotics 

and tolilzumab; in 28 of these, an oral probiotic mixture was also administered. 

Along with improved gut symptoms the probiotic group had an eight-fold reduction 

in risk of developing respiratory failure. This shows much promise and data evidence 

for the use of probiotics to combat respiratory difficulties. As clinical evidence 

gathers, the role for a simple and safe prebiotic or probiotic intervention against 

COVID-19 infection could become more important.  

 

Also of note, Cao and co-workers suggested that polysaccharides within a lung 

cleansing concoction were likely to be an effective approach for managing mild 

COVID-19 symptoms, and this was considered to be due to gut microbiota 

modulation and immune function supporting roles of these ingredients(92). This 
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suggests that prebiotics may be used to support the gut microbial composition and 

aid against secondary bacterial infection in these patients. 

 

It is also worth noting that differences in intestinal microbiome may compromise the 

effectiveness of vaccine antigens as a consequence of chronic inflammation of the 

intestinal tract(93). Indeed, meta-analysis of pre- and probiotic studies have 

concluded that intervention alongside influenza vaccination can lead to elevated 

immunogenicity through enhancing sero-conversion of inoculated persons (94-96).  

Dietary intervention, therefore, may be an important prerequisite before vaccination 

against COVID-19 particularly in those at risk of an altered gut microbiota such as 

individuals with metabolic disorders and the elderly.  

 

In China, recommendations have been made with regards to modifying the gut 

microbiota to improve outcomes in patients with severe COVID-19 symptoms(97). 

These recommendations were based on observed differences in the faecal 

microbiota in those with COVID-19 compared to healthy controls which suggested 

that the virus can replicate and exist in the digestive tract(98). Additionally, Pan et 

al.(99) reported the presence of gastrointestinal symptoms in half of COVID-19 

patients within a group of hospitalised Chinese patients with disease severity 

correlating with the severity of gut symptoms. This a clear demonstration that, in 

China at least, the gut microbiota is considered to be an important influencer on 

COVID-19 outcome. 
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In conclusion, there is currently clinical evidence gathering to indicate that 

modulation of the gut microbiota can positively influence COVID-19 disease 

progression. This is further supported by reported positive effects of probiotics 

against other coronavirus strains(100). Studies are underway across the globe to 

investigate whether altering the gut microbiota through diet might be a feasible 

addition to our COVID-19 treatment armoury and recently, Baud et al.(101) have 

suggested specific evidence-based probiotic products that may have relevance to 

reducing the coronavirus pandemic burden.  

The race for a vaccine and pharmaceutical treatments for the current COVID-19 

pandemic continues. However, both are likely to be some way from routine use and, 

in the meantime, attention should be given to emerging, but convincing, evidence 

that gut health may be related to COVID-19(12,102,103,104). The approaches suggested 

here to improve gut microbial health are safe and straightforward to implement and 

have a scientific basis. In the current climate, a reduction in illness severity and 

duration could be an asset not only to health systems worldwide, but also to those 

suffering with COVID-19. 
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Approach Definition  Main points Reference 

Probiotic Live 
microorganisms 
that, when 
administered in 
adequate 
amounts, confer a 
health benefit on 
the host. 
 

Probiotics must have been shown in well 
controlled studies to confer benefits to 
health. 

Commensals from human samples, with 
adequate evidence can be probiotics. 

Live cultures associated with fermented 
foods but have no evidence of a health 
benefit are not probiotics. 

Undefined faecal transplants are not 
probiotics. 

25 

Prebiotic A substrate that is 
selectively 
utilised by host 
microorganisms 
conferring a 
health benefit. 
 

Most prebiotics are given orally and target 
the gut microbiota although other sites, such 
as the vaginal tract, oral cavity and skin are 
under investigation. 
 
Health benefits include cardiometabolism, 
mental health and bone.  
 
Currently established prebiotics are 
carbohydrate-based, but other substances 
such as polyphenols and polyunsaturated 
fatty acids may evolve. 
 
Beneficial effect(s) of a prebiotic on health 
must be confirmed in the host for its  
intended use. 

35 

Synbiotic A mixture, 
comprising live 
microorganisms 
and substrate(s) 
selectively 
utilized by host 
microorganisms, 
which confers a 
health benefit on 
the host. 
 

Host microorganisms includes both 
autochthonous and allochthonous 
microorganisms (such as probiotics). 
 
A complementary synbiotic is a mixture of a 
probiotic plus prebiotic. 
 
A synergistic syniotic is composed of a live 
microbe(s) and a selectively utilized 
substrate(s), but neither needs to meet the 
minimum criteria stipulated previously for 
probiotics and prebiotics. 

36 
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3. Better maintenance 
of gut barrier function

4. Increased macrophage 
activity
Increase anti-
inflammatory cytokines

5. Reduced pro-inflammatory cytokines

dendrite

M cells
Increased T-helper cell activity

SCFA

Tight junction proteins

1. Competitive 
exclusion of 
pathogenic 
organisms2. Enhanced SCFA production

Intervention to increase 
positive gut microorganisms 

Figure 1: Possible pre or probiotic mechanisms in the fight against COVID-19
Through increasing levels of positive microorganisms in the gut – this can impact on a range of pathways that could be of benefit in the 
fight against COVID-19:
1. Intervention with pre and probiotics positively alters the bacterial community in the gut, often to the detriment of potentially 
pathogenic microorganisms (through the production of metabolites and/or competitive exclusion. This can reduce the risk of gut 
related illness.
2. The gut microbiota produce SCFA that have systemic effects in the body, including provision of a cellular energy source.
3. Increased SCFA levels are associated with improved tight intestinal junctions, possibly restricting the passage of endotoxin from the 
gut lumen; these effects may be in part mediated by cytokines. Increased levels of bifidobacteria have also been associated with 
improvement of tight junctions. It is worth noting that both ageing and obesity, (which are COVID-19 risk factors), are associated with a 
poorer gut barrier function.
4. Free fatty acid receptors can be found on dendritic cells, as such SCFA stimulation of dendrites can impact on regulatory T-cells 
resulting in enhanced macrophage activity and increased anti-inflammatory cytokines.
5. Macrophages are associated with pro-inflammatory status, however SCFA have been observed to down-regulate pro-inflammatory 
cytokine release.
By supporting the immune function and reducing inflammatory status the gut microbiota could be a tool to aid the body in defending 
from COVID-19
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