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Summary 

Certain striped patterns can induce illusory motion, such as those used in op-art. The visual system 

and the vestibular system work together closely, and so it is possible that illusory motion from a 

visual stimulus can result in uncertainty in the vestibular system. This increased uncertainty may be 

measureable in terms of the magnitude of head movements. Head movements were measured using a 

head-mounted visual display. Results showed that stimuli associated with illusory motion also seems 

to induce greater head movements when compared to similar stimuli. Individuals with migraine are 

more susceptible to visual discomfort, and this includes illusory motion from striped stimuli. 

However, there was no evidence of increased effect of illusory motion on those with migraine 

compared to those without, suggesting that while motion illusions may affect discomfort judgements, 

this is not limited to only those with migraine. 
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Introduction  

Visual discomfort is a broad term encompassing a variety of symptoms including headache, eyestrain 

and illusory motion, often described as shimmer (Sheedy et al., 2003). Op-art-based visual stimuli, 

typically those including high contrast gratings, can cause visual discomfort, particularly illusions of 

motion (Troncoso et al., 2008; Patzwahl and Zanker, 2000; Zanker et al., 2003; Zanker et al., 2004; 

Zanker et al., 2010). Op-art based stimuli known as "riloid" stimuli (see Figure 1) have previously 

been demonstrated to cause illusions of motion in observers in a systematic way (Zanker et al., 2003; 

Zanker et al., 2004; Zanker et al., 2010), by varying the spatial frequency, or the waviness of the lines. 

In particular, the spatial frequency of riloid patterns has been shown to affect electrophysiological 

(VEP) responses in the early visual areas of the brain (O'Hare et al., 2015; O'Hare, 2017a; O'Hare, 

2017b).  

Visual information provides an important signal for the vestibular response (for a review, see Wade 

and Jones, 1997). There are many studies showing that visual information from stable environments 

can stabilise posture, whereas moving visual information can decrease postural stability (for a review 

see Redfern et al., 2001). Cells in the vestibular nuclei receive input from the labyrinthine system. 

Those cells of the vestibular nuclei associated with gaze stability respond to optokinetic stimuli, but 

not those cells associated with head movements, suggesting integration of vestibular and visual 

information relevant to posture does not occur in the vestibular nuclei (for a discussion, see Cullen, 

2012). However, cells in the higher visual areas such as the medial superior temporal area (MSTd) 

and the ventral intraparietal areas (VIP) are thought to integrate visual and vestibular information 

relevant to posture, as these are visual areas that also respond to physical motion in the absence of 

light stimulation (see DeAngelis and Angelaki, 2012 for a discussion). Further, cells in MSTd 

combine the information from visual and vestibular sources optimally, according to Bayesian models 

(Angelaki et al., 2011). Additionally, chemical deactivation of MSTd (using microinjections of 

GABA) impaired the ability to discriminate heading direction based on visual, vestibular and 
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combined cues, showing strong evidence that this area is involved in the integration of visual and 

vestibular cues relevant to self-motion (Gu et al., 2012).  

Certain stimuli can evoke perceptions of motion, for example illusions such as the “peripheral drift 

illusion” (Kitaoka and Ashida, 2003). Perceptions of motion can also occur from the motion after-

effect (Mather et al., 1998). Illusory motion perception from the “Rotating Snakes” illusion is also 

associated with medial temporal areas (Kuriki et al., 2008; Ashida et al., 2012). Importantly, it has 

been shown that illusory motion from the motion after-effect, can increase postural sway (Holten et 

al., 2014). Conversely, individuals with reduced postural stability tend to be more likely to perceive 

illusory self-motion (vection) when exposed to moving visual patterns, specifically optic flow stimuli 

(Apthorp et al., 2014). Uncomfortable visual stimuli might increase uncertainty, in which case 

increased movement of the observer is predicted when the stimuli are uncomfortable to look at. 

 

****************************figure 1 here********************* 

 

Migraine and Visual Response 

Migraine is a common neurological disorder (Lipton et al., 2001). The Headache Classification 

Subcommittee of the International Headache Society (2013) require five or more headache attacks 

accompanied by either nausea/vomiting, or photo/phonophobia, to warrant a diagnosis. The attacks 

must last 4-72 hours when left untreated, and involve two or more of the following criteria: pulsing 

headache, lateralised to one side, aggravated by physical activity, moderate to severe pain.  

Migraine sufferers show sensory differences compared to controls, particularly in visual processing. 

One of the sub-classifications of migraine is migraine-with-aura (MA), which is defined as those 

experiencing sensory disturbances immediately preceding the onset of the headache itself (IHS, 

2013). Those who do not experience these sensory disturbances preceding the attack are classified as 

migraine without aura (MO). Individuals with migraine also show differences in sensory processing in 
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between attacks  (for a review see O'Hare and Hibbard, 2016). In particular, sufferers typically show 

poorer performance on tasks involving motion processing (Antal et al., 2005; McKendrick et al., 

2006; Ditchfield et al., 2006; Shepherd et al., 2012; Braunitzer et al., 2012; Tibber et al., 2014). 

Additionally, those with MA have shown non-significant trends towards poorer performance 

compared to those without aura on motion tasks in some studies (e.g. Antal et al., 2005), but not 

always (McKendrick et al., 2006; Tibber et al., 2014). Additionally, there is increased perception of 

illusory motion, the motion-after-effect, in those with migraine compared to controls (Shepherd, 2001; 

Shepherd, 2006; Shepherd and Joly-Mascheroni, 2017), and there is no difference in the motion after-

effect between MA and MO groups (Shepherd, 2001). Importantly, the duration of the motion after-

effect was associated with visual triggers, photophobia, and frequency of headaches (Shepherd and 

Joly-Mascheroni, 2017). Differences in visual processing of motion is important as  this could result 

in increased susceptibility to illusory motion high contrast gratings. Indeed, there is some evidence to 

support this: those with migraine report increased visual discomfort (including shimmering and 

scintillating effects) in high-contrast gratings in comparison to control groups (Marcus and Soso, 

1989).  

As well as visual processing differences, migraine is also associated with differences in multisensory 

integration (Schwedt et al., 2013; O'Hare, 2017). In particular, the visual and vestibular systems are 

closely linked, and a mismatch between the visual-vestibular input can lead to the experience of 

vertigo (Brandt, 2013). Vestibular disorders seem relatively common in migraine: those with migraine 

can experience vertigo (Bertholon et al., 2006), and there is a sub-classification of individuals with 

“migrainous vertigo” (von Brevem et al., 2004). There is also evidence of vestibular impairment in 

around 1/3 of individuals who are not diagnosed as having migraine-with-vertigo (Boldingh et al., 

2013), and, importantly, visual stimulation can elicit motion sickness more easily in migraine 

sufferers compared to control groups (Drummond and Granston, 2004).   

Differences in eye movements are associated with postural sway. Nystagmus eye movements are 

characteristic of migrainous vertigo (Phillips et al., 2010). Differences in eye-movements related to 

motion processing has been shown in those with migrainous vertigo, as well as MA, compared to 
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control groups (Rogalinski and Rambold, 2017). In addition, the optokinetic effect is related to 

postural sway (Blanks et al., 1996), therefore this could be a potential difference for the mechanism in 

migraine. Alternatively, there are potential neurological mechanisms for differences in motion 

processing in migraine - there is increased cortical thickness in areas MT+ and V3A in those with 

migraine compared to controls (Granziera et al., 2006). These areas are both strongly associated with 

motion processing, and also with the processing of head movements (Goosens et al., 2006; 

Arnoldussen et al., 2011; Fisher et al., 2012; Arnoldussen et al., 2013).  

Imaizumi et al., (2015) used a stabilometer to show that that postural sway is greater in migraine 

sufferers with eyes closed, compared to eyes open: this is increased on viewing the "rotating snakes 

illusion", which elicits strong illusory motion in the observer. However, there was also an increase in 

postural sway and visual discomfort, reported from the control condition of a stationary version of the 

stimulus compared to a plain grey screen. This might therefore indicate that there are residual effects 

from the pattern that were not completely removed. In order to investigate this more systematically in 

our experiments, riloid stimuli are more controlled, and only line waviness and spatial frequency will 

be manipulated. 

The aim of this experiment is to establish the most important spatial factors for eliciting head 

movements in those with and without migraine, using "riloid" stimuli. Riloid stimuli have been used 

to investigate eye movements in those with migraine previously (Zanker et al, 2005). Postural sway is 

influenced by head direction (Berensci et al., 2005). Head movements might be indicative of postural 

sway movements, and instability being transferred from the head through to the rest of the body. 

Spatial frequency and line waviness will be systematically varied to assess their impact on head 

movements. In particular, there is an "n"shaped relationship between discomfort and spatial 

frequency. The maximum discomfort judgements for striped stimuli have been found to be in the 

range 2-4 cycles/degree (Wilkins et al., 1984). The spatial frequency tuning for discomfort 

judgements is also seen in filtered noise patterns (Fernandez and Wilkins, 2008); however the tuning 

peaks at a lower frequency (1.5 cycles/degree) compared to stripes patterns (O'Hare and Hibbard, 

2011). Therefore, it is expected that there will be an “n” shaped relationship between magnitude of 
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head movements and spatial frequency, with maximum head movement on viewing the midrange 

stimulus. It is predicted that the migraine group will show increased head movements compared to the 

control group on viewing stimuli that elicit illusory motion. 

 

Materials and Methods 

Apparatus 

An ASUS computer with Intel i5-6500 core processor, 16GB RAM and a dedicated NVidia graphics 

card, running 64-bit Windows 10 was used to control the headset. A Vive headset (HTC Corporation, 

2011-2017) was used to display the stimuli, using an OLED display with a resolution of 2160 x 1200 

pixels and 90Hz refresh rate. There are two reasons for this choice of platform: the first is to enable 

control of the appearance of the environment, in order to remove these potentially stabilising effects 

(Guitton et al., 1986). The second is to enable the direct measurement of head movements. In addition 

to an accelerometer and gyroscope, the HTC Vive uses two "lighthouses" to estimate the position of 

the headset in space, and to give measurements of the x (medio-lateral plane), y (elevation) and z 

(antero-posterior plane) co-ordinates (of the head) at a fast sampling rate. This has the advantage of 

direct measurement, rather than estimating head motion from video recordings, for example. Stimuli 

were displayed using 64-bit Unity 5.61f1 (Unity Technologies, San Francisco, USA), using the 

SteamVR platform. The simulated environment comprised a box-shaped room with black floor, walls, 

and ceiling.  The riloid patterns were displayed on a virtual wall panel at a display distance of 2.3 m 

from the observer.  

An adapted version of the Pattern Glare Test (Wilkins and Evans, 2001) was used to record subjective 

responses during stimulus presentation. The original Pattern Glare Test records binary responses to 

questions regarding illusions of motion, colour and shape that may be perceived on viewing gratings. 

Three gratings are used in the original test, low, mid-range and high spatial frequency stimuli. These 

correspond to approximately 0.5, 3, and 12 cycles per degree when the test pattern is at a viewing 

distance of 40cm. For use in the current study, the questions were modified into a (1-10) Likert rating 
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scale, gathering richer data compared to a binary response. Some of the questions were omitted, e.g. 

blur of the stimulus, as sine-waves, rather than square-waves, were used in the current study. 

Questions and responses were given verbally. The question set used can be seen in Table 1. 

****************************Table 1 here *************************** 

 

Observers 

All experimental procedures adhered to the Declaration of Helsinki (2013) and were scrutinised by 

the University of Lincoln School of Psychology ethics committee. 41 observers took part in the 

original study, all with normal, or corrected-to-normal vision, established by using the FrACT Test 

(Bach, 1996, 2007). Migraine was defined as those meeting the International Headache Society 

diagnostic criteria (2013). In total, 15 individuals with migraine were included. A table of migraine 

characteristics can be seen in Table 2. Controls were defined as those experiencing no headaches on a 

regular basis, three observers recruited for the control group were excluded due to experiencing 

headaches too frequently. The remaining 13 controls (6 male) had a mean age of 26.77 (SD = 7.53) 

compared to a mean age of 29.27 (SD = 11.74) for the migraine group. 

*****************************table 2 here *************************** 

 

Stimuli 

Stimuli were nine riloid patterns, created using MATLAB version 2015b (Mathworks, Natick, USA). 

These were originally used in the work by Zanker and colleagues (Zanker et al., 2003; Zanker et al., 

2004; Zanker et al., 2010), see equation 1.  

𝐼(𝑥, 𝑦) = 0.5(1 + sin[2 𝛱 (𝑥 − 𝛷 (𝑦))]) 

Where: 
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𝛷(𝑦) = 𝐴 sin (2 𝛱 
𝑦

𝜇
) 

Where: I(x,y) defines luminance as a function of the horizontal (x) and vertical position (y), resulting in 

a sine wave of frequency f, which varied between approximately 6, 48, and 192 cycles/image, with 

phase modulated as Φ(y), amplitude A was 1, and wavelength μ was 100, 400 and 1020 pixels, resulting 

in 10, 2 and 0 (straight) cycles/image. Spatial frequencies in the display corresponded to 0.16, 1.25 

and 5.00 cycles/degree. Images were saved as 1024 x 1024 pixel JPEG images. A modified version of 

the Pattern Glare Test (Wilkins and Evans, 2001) was used to record subjective responses from the 

observer. The experimenter asked the questions and the observer answered verbally, the questions did 

not appear on the display itself.  

 

Procedure 

Participants stood in the centre of the experimental area wearing the headset. The experimental area 

was defined by the lighthouses at each corner. They were allowed time to adjust the virtual reality 

environment. During the adjustment stage, the environment was a room with furniture set to appear as 

a living space, the scene included a window looking out over a mountain scene. This was not the same 

as the experiment environment, which consisted of a totally black space (black skybox), to limit 

peripheral cues to location in space. During the experiment, participants were asked to keep as still as 

possible and not to make head movements during the display of the stimuli. There was no fixation 

point displayed during stimulus presentation, and the task was free viewing conditions. The start 

screen was a white front screen in a black skybox, with black text saying "Press the trigger to start". 

Each trial was initiated by pressing the trigger button on the controller. The riloid was displayed for 

60 seconds. During this time the experimenter verbally asked the participant questions from the 

modified Pattern Glare Test. Participants reported their responses verbally. After the display time the 

white screen was presented again, with a pause until the individual initiated the next trial. Riloids 

were presented in random order, randomised anew for each observer. Data from the x, y, and z co-

ordinates were sampled at 50Hz. 
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Analysis 

Data from x (medio-lateral), y (elevation), and z (antero-posterior) positions of the headset were 

recorded for each observer, and these time series were read into MATLAB for analysis. Individuals 

with outlying responses were excluded from analysis, in total 6 individuals. Outlying responses were 

calculated as follows: responses from all observers were pooled into a single vector for the medio-

lateral displacement direction (x), and the mean and the standard deviation of this vector was 

calculated. Individuals with responses exceeding 3.5 times the standard deviation from the mean of 

this vector were classed as outliers and excluded.  Three separate measures were taken to estimate the 

movement of the observer whilst viewing the riloid stimuli. In the first measure, the maximum 

displacement in the lateral directions with respect to the observer (following the convention of medio-

lateral as x and antero-posterior as z) was calculated, and the hypotenuse was used as the maximum 

displacement value for each observer, thus a single figure to characterise a proxy for the maximum 

displacement area. Sway area has been used in previous research, but there are different definitions 

for calculation (e.g. Gouwanda et al., 2014; Tarantolaa et al., 1997; Gangloff and Perrin, 2002), 

therefore a simple metric was chosen as a proxy in the current study. Figure 2 shows the data from 

one observer, shown as medio-lateral (x) and antero-posterior (z) positions in space, from a top-down 

view. In the second analysis, following (Latash et al., 2003), the RMS of the movement was 

calculated. First the data were first filtered using a 4th order Butterworth filter, with a 10Hz cut-off. 

The first second was removed to reduce the effect of artefacts from the filter, leaving 59 seconds of 

data per condition. The RMS of the total path in the medio-lateral direction, and in the antero-

posterior direction was estimated using the inbuilt MATLAB function. In the final analysis, the 

overall velocity in the medio-lateral, and the velocity in the antero-posterior direction was estimated 

by normalising the total path length over time (59 seconds). Data from additional observers can be 

seen in the supplementary information. 

********************************figure 2 here **************************** 
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Statistical analysis was conducted using the programme R (R Core Team, 2013), using packages 

"afex" (Singmann et al., 2015), and "lsmeans" (Lenth et al., 2016). Data were subjected to a 2 (group, 

migraine or control) x 3 (spatial frequency) x 3 (line waviness) mixed ANOVA, including observer as 

a random variable. A Greenhouse Geissler method was used to adjust the degrees of freedom where 

the assumption of sphericity was violated.  

 

Results 

Figure 3 shows maximum displacement against spatial frequency for the migraine and control group. 

Results were averaged over line waviness for the figure. A table of means and standard deviations can 

be seen in Table 3. Results of the 2 x 3 x 3 ANOVA showed a significant main effect of spatial 

frequency only (F(1.77,42.59) = 3.88, p < 0.05, η2
G = 0.03). Post-hoc Tukey's tests showed there to be 

a significant difference between the low and midrange spatial frequencies (p < 0.05), but not between 

the low and high (p = 0.217) of the midrange and high spatial frequencies (p = 0.539). There was no 

effect of line waviness (F(1.81,43.59) = 0.21, p = 0.79, η2
G = 0.002), or migraine (F(1,24) = 0.08, p = 

0.78, η2
G = 0.0003). There were no statistically significant interaction effects (migraine and spatial 

frequency (F(1.77,42.59) = 1.89, p = 0.17, η2
G = 0.01); migraine and line waviness (F(1.81,43.43) = 

0.02, p = 0.97, η2
G = 0.0002); spatial frequency and line waviness (F(3.36,80.70) =  0.82, p = 0.50, η2

G 

= 0.02); migraine, spatial frequency and line waviness (F(3.36,80.70) = 0.63, p = 0.61, η2
G = 0.01)). 

 

*****************************figure3 here ******************************* 

**************************table 3*************************** 

RMS displacement 

RMS in the medio-lateral direction 



11 
 

Figure 4A shows the RMS displacement in the medio-lateral direction against spatial frequency for 

both the migraine and control groups, again averaged over line waviness. Table 4 shows the means 

and standard deviations. There was a main effect of spatial frequency (F(1.75,40.31) = 8.19, p = 

0.002, η2
G = 0.05). Post-hoc Tukey tests showed there was a significant difference between the low 

and midrange spatial frequencies (p = 0.0008), and between the low and high spatial frequencies (p = 

0.0215), but not between the midrange and high spatial frequencies (p = 0.4775). There was no main 

effect of migraine (F(1,23) = 0.07, p = 0.79, η2
G = 0.0002). There was no main effect of line waviness 

(F(1.86,42.85) = 0.28, p = 0.74, η2
G = 0.004). There was no interaction between migraine and spatial 

frequency (F(1.75,40.31) = 0.66, p = 0.50, η2
G = 0.004), no interaction between migraine and line 

waviness (F(1.86,42.85) = 0.08, p = 0.91, η2
G = 0.001). There was no interaction between spatial 

frequency and line waviness (F(3.09,71.14) = 0.75, p = 0.53, η2
G = 0.02). There was no three-way 

interaction between migraine, spatial frequency and line waviness (F(3.09,71.14) = 0.47, p = 0.71, η2
G 

= 0.010).  

 

**********************************figure 4 here **************************** 

************************************table 4 here************************** 

RMS in the antero-posterior direction 

Figure 4B shows the RMS displacement against spatial frequency in the antero-posterior direction for 

migraine and control groups, averaged over line waviness. Table 4 shows the means and standard 

deviations. There was no effect of migraine (F(1,23) = 0.00, p > 0.99, η2
G < 0.0001), no effect of 

spatial frequency (F(1.55,35.75) = 1.10, p = 0.33, η2
G = 0.008), and no effect of line waviness 

(F(1.97,45.34) = 0.00, p > 0.99, η2
G < 0.0001). There is no interaction between migraine and spatial 

frequency (F(1.55,35.75) = 0.01, p = 0.97, η2
G < 0.0001), between migraine and line waviness 

(F(1.97,45.34) = 0.01, p = 0.99, η2
G = 0.0002), or between spatial frequency and line waviness 

(F(3.76,86.48) = 0.11, p = 0.97, η2
G = 0.002). There is no three-way interaction between migraine, 

spatial frequency and line waviness (F(3.76,86.48) = 0.06, p = 0.99, η2
G = 0.001).  
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Velocity 

Velocity in the medio-lateral direction 

Figure 5A shows the velocity in the medio-lateral direction against spatial frequency for the migraine 

and control group, averaged over line waviness. Table 5 shows the means and standard deviations. 

There was a significant effect of spatial frequency (F(1.73,39.76) = 7.46, p = 0.003, η2
G = 0.05). Post-

hoc Tukey tests showed there to be a significant difference between the low and midrange spatial 

frequencies (p = 0.0015), and between the low and high spatial frequencies (p = 0.0241), but not 

between the midrange and high spatial frequencies (p = 0.5768). There was no main effect of 

migraine (F(1,23) = 0.07, p = 0.80, η2
G = 0.0002), and no effect of line waviness (F(1.86,42.73) = 

0.34, p = 0.70, η2
G  0.004). There was no interaction between migraine and spatial frequency 

(F(1.73,39.76) = 0.65, p = 0.51, η2
G = 0.004), no interaction between migraine and line waviness 

(F(1.86,42.73) = 0.10, p = 0.90, η2
G = 0.001), and no interaction between spatial frequency and line 

waviness (F(2.95,67.90) = 0.74, p = 0.53, η2
G

 = 0.02). There was no three-way interaction between 

migraine, spatial frequency and line waviness (F(2.95,67.90) = 0.46, p = 0.71, η2
G = 0.01). 

*********************************figure 5 here ************************* 

***************************table 5 here *************************** 

 

Velocity in the antero-posterior direction 

Figure 5B shows the velocity in the antero-posterior direction against spatial frequency for the 

migraine and control group, averaged over line waviness. Table 5 shows the means and standard 

deviations. There was no significant main effect of migraine (F(1,23) = 0.00, p = 0.99, η2
G < 0.0001). 

There was no main effect of spatial frequency (F(1.57,36.21) = 1.12, p = 0.32, η2
G = 0.008), or line 

waviness (F(1.95,45.27) = 0.02, p = 0.98, η2
G = 0.0002). There is no interaction between migraine and 
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spatial frequency (F(1.57,36.21) = 0.03, p = 0.94, η2
G = 0.0002), there is no interaction between 

migraine and line waviness (F(1.97,45.27) = 0.01, p = 0.99, η2
G = 0.0002), and no interaction between 

spatial frequency and line waviness (F(3.74,86.08) = 0.11, p = 0.97, η2
G = 0.002). There is no three-

way interaction between migraine, spatial frequency and line waviness (F(3.74,86.08) = 0.05, p = 

0.99, η2
G = 0.001). 

 

 

Subjective judgements 

Illusory motion 

Figure 6A shows average ratings for perceived illusory motion against spatial frequency, averaged 

over line waviness. Figure 6B shows average ratings for perceived illusory motion against line 

waviness, averaged over spatial frequency. Means and standard deviations can be seen in Table 6. 

Analysis of variance showed there to be a statistically significant effect of spatial frequency 

(F(1.78,42.68) = 8.93, p = 0.0009, η2
G = 0.06) and of line waviness (F(1.53,36.74) = 4.66, p = 0.02, 

η2
G = 0.04) on judgements of illusory motion from riloid stimuli. Post-hoc Tukey tests showed there 

to be a significant difference between the low and midrange spatial frequency stripes (p = 0.0013), 

and between the low and high spatial frequencies (p = 0.0026), but not between the midrange and high 

spatial frequency stripes (p = 0.966). There was a significant difference between the straight and 

waviest lines (p = 0.0157), but not between the straight and medium wavy lines (p = 0.06) or between 

the medium and wavy lines (p = 0.830). There was no effect of migraine group (F(1,24) = 1.45, p = 

0.24, η2
G = 0.01). There was no interaction between spatial frequency and migraine (F(1.78,42.68) = 

1.52, p = 0.23, η2
G = 0.04), no interaction between line waviness and migraine (F(1.53, 36.74) = 0.50, 

p = 0.56, η2
G = 0.004), and no interaction between spatial frequency and line waviness (F(2.58,62.03) 

= 1.97, p = 0.14, η2
G = 0.03). There was no three-way interaction between migraine, spatial frequency 

and line waviness (F(2.58,62.03) = 1.71, p = 0.18,  η2
G = 0.03). 



14 
 

 

****************************figure 6 here ***************************** 

********************************table 6 here ******************************** 

A linear mixed effect model (Bates et al., 2015) was created to estimate the relationship between 

perceived illusory motion ratings and head movements. Perceived illusory motion ratings were used 

as a fixed effect, and observer as a random effect to predict maximum displacement. There was a 

significant relationship found (χ2 (1) = 3.9767, p = 0.04613). Perceived illusory motion perception 

increased head movements by 2.195mm ± 1.096mm (standard error). There was no relationship 

between any of the other subjective measures: perceived flicker (χ2 (1)  = 0.0047, p = 0.9456), 

perceived illusory colours (χ2 (1)  = 0.3475, p = 0.5555), perceived fading (χ2 (1) = 2.6782, p = 0.1017) 

or perceived shadowy shapes (χ2 (1)  = 0.0406, p = 0.8402) with maximum displacement head 

movements.  

A linear mixed effect model was created to estimate the relationship between perceived illusory 

motion ratings and RMS head movements in the medio-lateral direction. There was a significant 

relationship found in the medio-lateral direction (χ2 (1) = 4.1346, p = 0.04202). Perceived illusory 

motion increased head movements by 1.212mm ± 0.5934mm (standard error). There was no 

relationship with flicker (χ2 (1)  = 2.1794, p = 0.1399) or with perceived illusory colours (χ2 (1)  = 

2.0608, p = 0.1511). There was a significant relationship between medio-lateral RMS head 

movements and perceptions of fading of the lines (χ2 (1)  =  4.1874, p = 0.0407). Perception that the 

lines appeared to fade decreased medio-lateral head movements by 1.004mm, ±  0.4882mm (standard 

error). There was also a relationship between perception of illusory shadowy shapes and medio-lateral 

head movements (χ2 (1)  = 7.398, p = 0.0065), with the perception of illusory shadowy shapes 

increasing medio-lateral head movements by 1.879mm  ± 0.6852mm (standard error). 

For RMS head movement in the antero-posterior direction, there was no relationship with perceived 

illusory motion (χ2 (1)  = 0.1915, p = 0.6617), with perception of flicker (χ2 (1)  = 0.0694, p = 0.7922), 
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perceived illusory colours (χ2 (1)  = 0.6483, p = 0.4207), perception of fading (χ2 (1)  = 0.3766, p = 

0.5394) or perception of shadowy shapes (χ2 (1)  = 2.0697, p = 0.1503). 

A linear mixed effect model was used to investigate the relationship between velocity in the medio-

lateral direction and subjective judgements. There was a relationship between perceived illusory 

motion and medio-lateral velocity (χ2 (1)  = 4.3699, p = 0.03658), with medio-lateral head movements 

increasing by 0.05819m/s ±  0.02770m/s (standard error). There was no relationship between medio-

lateral head velocity and perceived flicker (χ2 (1)  = 2.4901, p = 0.1146), or perceived illusory colours 

(χ2 (1)  = 2.7185, p = 0.09919). There was a relationship between medio-lateral velocity and 

perceptions of fading of the lines (χ2 (1)  = 4.4447, p = 0.03501), with a reduction in medio-lateral head 

movements of 0.04829m/s ±  0.02279m/s (standard error). There was a relationship between medio-

lateral velocity and perceived shadowy shapes (χ2 (1)  = 8.8704, p = 0.0028), with medio-lateral 

velocity increasing by 0.09595m/s ± 0.03190m/s (standard error). 

For velocity in the antero-posterior direction, there was no relationship with perceived illusory motion 

(χ2 (1)  = 0.1743, p = 0.6763), with flicker (χ2 (1)  = 0.0644, p = 0.7996), with perceived illusory colours 

(χ2 (1)  = 0.599, p = 0.439), with fading (χ2 (1)  = 0.3108, p = 0.5772), or with shadowy shapes (χ2 (1)  = 

2.0365, p = 0.1536).  

 

Discussion 

An effect of spatial frequency on head movements was found; the midrange spatial frequencies 

(around 1.25 cycles per degree in this experiment) were capable of systematically inducing increased 

head movement for both migraine and control groups. Additionally, there was a relationship between 

reports of illusory motion and head movements in the current observers. This relationship was only 

seen in the medio-lateral head movements, not in the antero-posterior head movements. There was no 

effect of line waviness on head movements. There was no evidence of a group difference between 

migraine and control groups.  
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Increased head movements from op-art based stimuli could result from increased visual discomfort, 

which includes illusions of motion, commonly referred to as "shimmering" or "scintillating" patterns 

elicited by high contrast gratings (Wilkins et al., 1984). The results of this experiment show that 

increased visual illusions can elicit vestibular motion large enough to be measured using a virtual 

reality headset.  As postural sway is influenced by head movements (Berensci et al., 2005), this might 

have implications for the design of virtual environments, as an increase in head movements may lead 

to an increase in disorientation, and postural sway in observers.   

The effect of spatial frequency on head movements was found using three different measures, the 

maximum displacement, the RMS displacement and also the velocity. When the medio-lateral and 

antero-posterior head movements were analysed separately, it was found that head movements were 

greater in the antero-posterior direction compared to the medio-lateral direction, in line with findings 

of greater movement in the antero-posterior direction compared to the medio-lateral direction in quiet 

standing (e.g. Latash et al., 2003). In addition, the relationship between perceived illusory motion and 

head movements was only seen for the medio-lateral movements, not the antero-posterior movements. 

This was true for both measures of RMS and velocity that were split into the separate directions. In 

addition, head movements in the medio-lateral direction only also show a relationship with perceived 

shadowy shapes, and apparent fading of the lines. Shadowy shapes are seen in regular patterns, such 

as the Hermann grid illusion (Hermann, 1870). However, this is unlikely to be the same mechanism as 

the Hermann grid illusion disappears with sine-wave modulation, which is the case with the riloid 

patterns (Geier et al., 2008). Interestingly, the perceived fading of the lines has a negative relationship 

with medio-lateral head movements. It might be that the apparent fading of the stimulus reduces the 

apparent contrast, resulting in a weaker stimulus and therefore less able to evoke head movement; 

however, this interpretation is speculative at present as the current study does not provide direct 

evidence for this possibility. This is a similar direction selectivity as shown by Holten et al., (2014), 

who also found movement specific to the medio-lateral direction. In the current study, observers were 

not asked about the direction of the perceived motion. However, as all riloid stimuli were presented in 

the same orientation, this could explain the direction specificity of the results. Future studies could 
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address this by using patterns that evoke sensations of illusory motion in the antero-posterior 

direction, i.e. illusions of expansion and contraction. 

Eye movements affect postural control (Uchiyama & Demura, 2009); it could therefore be argued that 

illusions of motion affect the control of the eyes, and this affects head movements, rather than any 

visual discomfort arising from the illusions. However, illusions of motion from riloid stimuli have not 

been demonstrated to have an effect on eye movements themselves (Hermens et al., 2012). 

Alternatively, there are neural accounts for increased discomfort from op-art based visual stimuli. One 

possibility is that stimuli with statistical properties very different to those of natural images are unable 

to be efficiently coded by the visual system (Juricevic et al., 2010). As a result, these stimuli might 

cause excessive responses which are metabolically costly. This possibility has been demonstrated in 

models of uncomfortable stimuli and artworks (Penacchio et al., 2015; Hibbard and O'Hare, 2015). 

Also, there is some evidence to support this idea in terms of increased VEP responses to 

uncomfortable riloid patterns (O'Hare et al., 2015). The “rotating snakes” illusion induces more 

activity in the medial-temporal areas (specifically, V5) compared to a control stimulus that does not 

evoke perceptions of illusory motion (Kuriki et al., 2008). Adaptation to perceived illusory motion 

resulting from the “rotating snakes” illusion is present through additional visual areas, V1, V2, V3A 

and also V4, under stable fixation conditions, suggesting firstly that there is a network of activation 

for illusory motion perception, and also the cortical activity is unlikely to be accounted for by eye 

movements alone (Ashida et al., 2012). However, as neither eye movements nor EEG responses were 

measured in the current study, it is not possible to draw conclusions about the mechanism at this 

point. 

It was expected that those with migraine would show increased head movements as a result of 

viewing stimuli that elicits visual discomfort, particularly illusions of motion. This was not found to 

be the case. However, those with a predisposition to relying on visual information more might be 

more affected by the illusory effects of the stimuli, rather than those with a diagnosis of migraine. 

Previous research by Imaizumi et al., (2015) demonstrated a difference between migraine and control 

groups on postural sway after viewing the rotating snakes illusion. It could be that the rotating snakes 
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elicits a more powerful illusion of motion compared to riloid patterns, and demonstrated the group 

differences. Alternatively, it could be that Imaizumi et al., (2015) used a stabilometer to measure 

postural sway, which is different from the head movements measured using the HTC Vive in the 

current study. HTC Vive has been shown to be reasonably reliable and accurate, except for when 

tracking is lost, i.e. communication between the headset and the lighthouses is temporarily disrupted, 

for example when the observer moves around the game area (Niehorster et al., 2017). This is not the 

case in the current study. 

Another difference between the current study and that of previous work is that Imaizumi et al., (2015) 

calculated the Romberg Ratio in their analysis, which is the ratio of the measurement with eyes closed 

to eyes open. The Romberg Ratio has been found to be unreliable (Tjernström et al., (2015), and so 

this was not used in the current study.  

Participants answered questions regarding the stimuli verbally during the stimulus display time, in 

order to obtain an instantaneous subjective measure without the need to remember answers. However, 

answering subjective questions placed a cognitive load on the observer, and it has been shown that the 

difficulty of a cognitive task reduces postural sway (Swan et al., 2007). It is therefore possible that the 

observed lack of inter-group difference in postural sway (compared to previous work by Imaizumi et 

al., 2015) could be due to the introduction of a cognitive task. 

Individuals experiencing migraine with visual aura (MA) tend to show poorer performance on visual 

tasks compared to those experiencing migraine without aura, for example Shepherd (2000) reports 

trends towards greater number of illusions on the Pattern Glare Test and also poorer contrast 

sensitivity in MA compared to those without aura; however the difference between MA and other 

migraine was not significant. Additionally, some authors have shown no difference between those 

with and without aura in tasks involving the perception of motion stimuli (e.g. Tibber et al., 2014). In 

the current study, there were only three individuals with a diagnosis of MA, and so it might be argued 

that the lack of effect is due to including both MA and those without aura in the group. However, in 
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the study by Imaizumi et al., (2015) only one of the participants experienced MA, yet these authors 

demonstrated effects of perceived illusory motion on postural sway.  

The behavioural ratings showed effects of spatial frequency for perceived illusory motion, flicker, and 

illusory colours. The midrange and thin lines causes the greatest effect, rather than the wider lines. 

The midrange lines are within the spatial frequencies previously shown to cause discomfort from 

filtered noise patterns (O’Hare and Hibbard, 2011). The higher spatial frequencies are slightly above 

the range previously shown to cause most discomfort from striped patterns (Wilkins et al., 1984). 

There was no effect of group on perceptions of illusory motion from riloid stimuli. This is unexpected 

as those with migraine would be expected to show increased discomfort from striped stimuli (Wilkins 

et al., 1984). However there is also wide variation in subjective discomfort in normal populations also 

(Conlon et al., 1999). In visual search tasks, it has been found that susceptibility to visual discomfort, 

not migraine diagnosis, was a predictor of performance (Conlon and Humphreys, 2001). This might 

account for the null effect of migraine group on perceived motion, and also on postural sway. As there 

were effects of some aspects of visual discomfort, but not others, then it might be worthwhile in future 

research to separate visual discomfort into its component attributes, to allow more specific 

conclusions. 

 

Conclusion 

Spatial frequency of riloid stimuli increased head movements and perceived illusory motion in 

observers. This would suggest that visual discomfort, possibly from either eye movements or 

excessive neural responses, is related to increased head movements. There was no increase in head 

movements or perceived illusory motion in migraine compared to control groups. This could be due to 

variation in visual discomfort in the general population in addition to those with migraine. However, 

there was increased visual discomfort in terms increased colour illusions from riloid stimuli in the 

migraine compared to the control group, in line with previous research. This might suggest that future 

research into visual discomfort might benefit from considering the different components separately. 



20 
 

  

Acknowledgements 

Alex Sharp received funding from University of Lincoln Summer Internship Programme "UROS". 

 

References  

Angelaki, D. E., Gu, y., DeAngelis, G. C., (2011). Visual and vestibular cue integration for heading 

perception in extrastriate visual cortex. The Journal of Physiology, 589(4), 825-833.  

Antal, A., Temme, J., Nitsche, M. A., Varga, E. T., Lang, N., and Paulus, W., (2005). Altered motion 

perception in migraineurs: Evidence for interictal cortical hyperexcitibility. 25(10), 788-794. 

Apthorp, D., Nagle, F., Palmisano, S., (2014). Chaos in balance: non-linear measures of postural 

control predict individual variations in visual illusions of motion. PLoS ONE, 9(12), e113897 

Arnoldussen, D. M., Goosens, J., and van den Berg, A. V., (2013). Visual perception of axes of head 

rotation, Front. Beh. Neurosci., doi: 10.3389/fnbeh.2013.00011 

Arnoldussen, D. M., Goossens, J., van den Berg, A. V., (2011). Adjacent visual representations of 

self-motion in different reference frames. Proc Natl Acad Sci., 108(8), 11668-73. 

Ashida, H., Kuriki, I., Murakami, I., Hisakata, R., Kitakoa, A., (2012). Direction-specific fMRI 

adaptation reveals the visual cortical network underlying the “Rotating Snakes” illusion. 

NeuroImage,, 61(4), 1143-1153. 

Bach, M., (1996). The "Frieburg Acuity Test" - Automatic measurement of visual acuity. Optometry 

and Vision Science, 73, 49-53. 

Bach, M., (2007). The "Freiburg Acuity Test" - Variability unchanged by post-hoc reanalysis. 

Graefe's Arch Clin Exp Ophthalmol., 245(7), 965-71 

https://doi.org/10.3389/fnbeh.2013.00011


21 
 

Bates, D., Maechler, M., Bolker, B., Walker, S., (2015). Fitting linear mixed effects models using 

lme4. Journal of Statistical Software, 67(1), 1-48. 

Berencsi, A., Isihara, M., Imanaka, K., (2005). The functional role of central and peripheral vision in 

the control of posture. Hum Mov Sci, 24(5-6), 689-709. 

Bertholon, P., Tringali, S., Faye, M. B., Antoine, J. C., Martin, C., (2006). Prospective study of 

positional nystagmus in 100 consecutive patients. Annals of Otology, Rhinology and Laryngology, 

115(8), 587-594. 

Blanks, R. H. I., Fowler, C. G., Zizz, C. A., Williams, K. E., (1996). Postural adjustments produced 

by moving visual (horizontal optokinetic) patterns. J. Am Acad Audiol., 7, 39-48. 

Boldingh, M., Ljøstad, U., Mygland, Å., Monstad, P., (2013). Comparison of interictal vestibular 

function in vestibular migraine vs migraine without vertigo. Headache, 53, 1123-1133. 

Brandt, T. (2013). Vertigo: its multisensory syndromes. Springer Science & Business Media. 

Braunitzer, G., Rokszin, A., Kóbor, J., Benedek, G., Nagy, A., Kincses, Z. T., (2012). Delayed 

development of visual motion processing in childhood migraine. Cephalalgia, 32(6), 492-6.  

Breheny, P., and Burchett, W., (2013). Visualisation of regression models using visreg. R package, 1-

15. 

Conlon, E., Lovegrove, W., Chekaluk, E., Pattinson, P., (1999). Measuring visual discomfort. Visual 

Cognition, 6, 637-663. 

Conlon, E., and Humphreys, L., (2001). Visual search in migraine and visual discomfort groups. 

Vision Research, 41, 3063-3068. 

Cullen, K., (2012). The vestibular system: multimodal integration and encoding of self-motion for 

motor control. Trends in Neurosciences, 35(3), 185-196. 



22 
 

DeAngelis, G. D., and Angelaki, D. E., (2012). Visual-vestibular integration for self-motion 

perception, Chapter 31. In: Murray, M. M., and Wallace, M. T., (Eds), The Neural Basis of 

Multisensory Processes. Taylor and Francis. 

Ditchfield, J. A., McKendrick, A. M., and Badcock, D. R., (2006). Vision Research, 46(1-2), 141-8. 

Drummond, P. D., and Granston, A., (2004). Facial pain increases nausea and headache during 

motion sickness in migraine sufferers. Brain, 127(3), 526-534. 

Fernandez, D., and Wilkins, A. J., (2008). Uncomfortable images in art and nature. Perception, 37(7), 

1098-113. 

Fisher, E., Bülthoff, H. H., Logothesis, N. K., Bartels, A., (2012). Human areas V3A and V6 

compensate for self-induced planar visual motion. Neuron, 73(6), 1228-40. 

Gangloff, P., Perrin, P. P., (2002). Unilateral trigeminal anaesthesia modifies postural control in 

human subjects. Neuroscience Letters, 330(2), 179-182. 

Geier, J., Bernáth, L., Hudák, M., Séra, L., (2008). Straightness as the main factor for the Hermann 

grid illusion. Perception, 37, 651-665. 

Goosens, J., Duklow, S. P., Menon, R. S., Vilis, T., van den Berg, A. V.,  (2006). Representation of 

head-centric flow in the human motion complex. J Neurosci, 26(21), 5616-27. 

Gouwanda, D., Gopalai, A. A., Lim, Z. S., Lim, K. H. (2014). Measuring human balance on an 

instrumented dynamic platform: A postural sway analysis. In: Goh, J., (ed), The 15th International 

Conference on Biomedial Engineering. IFMBE Proceedings, 43, Springer, Cam. 

Granziera, C., DaSilva, A. F. M., Snder, J., Tuch, D. S., Hadjikhani, N., (2006). Anatomical 

alterations of the visual motion processing network in migraine with and without aura. PLoS Med, 

3(10), e402. 

Gu, Y., DeAngelis, G. C., and Angelaki, D. E., (2012). Causal links between MSTd neurons and 

multisensory heading perception. J Neurosci, 32(7), 2299-2313. 



23 
 

Guitton, D., Kearney, R. E., Wereley, N., Peterson, B. W., (1986). Visual, vestibular and voluntary 

contributions to human head stabilization. Experimental Brain Research, 64(1), 59-69. 

Headache Classification Committee of the International Headache Society (2013). Classification and 

diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia, 33, 629–

808. 

Hermann, L., (1870). Eine Erscheinung simultanen Contrastes. Pflügers Archiv für die gesamte 

Psychologie, 3, 13-15. 

Hermens, F., Zanker, J., (2012). Looking at Op Art: gaze stability and motion illusions. i-Perception, 

3(5), 282-304. 

Hibbard, P. D., O'Hare, L., (2015). Uncomfortable images produce non-sparse responses in a model 

of visual cortex. Royal Society Open Science, 2(2), doi: 10.1098/rsos.140535 

Holten, V., van der Smagt, M., Donker, S. F., Verstraten, F. A. J., (2014). Illusory motion of the 

motion aftereffect induces postural sway. Psychological Science, 25(9), 1931-1834. 

Imaizumi, S., Honma, M., Hibino, H., and Koyama, S., (2015). Illusory visual motion stimulus elicits 

postural sway in migraine patients. Frontiers in Psychology, 6, 542. 

Juricevic, I., Land, L., Wilkins, A., Webster, M. A., (2010). Visual discomfort and natural image 

statistics. Perception, 39(7), 884-99. 

Kitaoka, A., and Ashida, H., (2003). Phenomenal characteristics of the peripheral drift illusion. 

Vision, 15, 261-262. 

Kuriki, I., Ashida, H., MuraKami, I., Kitakoa, A., (2008). Functional brain imaging of the Rotating 

Snakes illusion by fMRI. Journal of Vision, 8, 16, doi: 10.1167/8.10.16 

Latash, M. L., Ferreira, S. S., Wieczorek, S. A., Duarte, M., (2003). Movement sway: changes in 

postural sway during voluntary shifts of the centre of pressure. Exp Brain Res, 150, 314-324. 

http://dx.doi.org/10.1098/rsos.140535


24 
 

Lenth, R. V., (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 

69(1), 1-33. 

Lipton, R. B., Diamond, S., Reed, M., Diamond, M. L., Stewart, W. F., (2001). Migraine diagnosis 

and treatment: Results from the American Migraine Study II. Headache: The Journal of Headache and 

Face Pain, 41(7), 638-645. 

Marcus, D. A., and Soso, M. J., (1989). Migraine and stripe-induced visual discomfort. Archives of 

Neurology, 46(10), 1129-32. 

Mather, G. Verstraten, F., Anstis, S., (1998). The motion aftereffect: A modern perspective. 

Cambridge, Mass, MIT Press. 

McKendrick, A. M., Badcock, D. R., Badcock, J. C., Gurgone, M., (2006). Motion perception in 

migraineurs: Abnormalities are not related to attention. Cephalalgia, 26(9), 1131-1136. 

Niehorster, D. C., Li, L., Lappe, M., (2017). The accuracy and precision of position and orientation 

tracking in the HTC Vive virtual reality system for scientific research. iPerception, 8(3), DOI: 

10.1177/2041669517708205. 

O'Hare, L., and Hibbard, P. B., (2011). Spatial frequency and visual discomfort. Vision Research, 

51(15), 1767-77. 

O’Hare, L., and Hibbard, P. B., (2016). Visual processing in migraine, Cephalalgia, 36(11), 1057-

1076. 

O’Hare, L. (2017). Multisensory Integration in Migraine: Recent Developments. Multisensory 

Research, 30(6), 549-563. 

O'Hare, L., Clarke A. D. F., Pollux, P. M. J., (2015). VEP responses to Op-Art stimuli. PLoS ONE, 

10(9), e0139400 

O'Hare, L., (2017a). Steady-state VEP responses to uncomfortable stimuli. European Journal of 

Neuroscience, 45(3), 410-422. 



25 
 

O'Hare, L., (2017b). Visual discomfort from flash afterimages of riloid patterns. Perception, 46(6), 

709-727. 

Patzwahl, D. R., and Zanker, J. M., (2000). Mechanisms of human motion perception: combining 

evidence from evoked potentials, behavioural performance, and computational modelling. European 

Journal of Neuroscience, 12, 275-282. 

Penacchio, O., and Wilkins, A. J., (2015). Visual discomfort and the spatial distribution of Fourier 

energy. Vision Research, 108, 1-7. 

Phillips, J., Longridge, N., Mallinson, A., Robinson, G., (2010). Migraine and vertigo: A marriage of 

convenience? Headache, 50, 1362-1365 

Redfern, M. S., Yardley, L., Bronstein, A. M., (2001). Visual influences on balance. Journal of 

Anxiety Disorders, 15(1-2), 81-94. 

Rogalinski, S., and Rambold, H. A., (2017). Probing early motion processing with eye movements: 

Differences of vestibular migraine, migraine with and without aura in headache-free interval. 

Headache, 58(2), 275-286. 

Schwedt, T. J., (2013). Multisensory integration in migraine. Current Opinion in Neurology, 26(3), 

248-253. 

Sheedy, J. E., Hayes, J. N., Engle, J., (2003). Is all aesthenopia the same? Optom Vis Sci., 80(11), 

732-9. 

Shepherd, A. J., (2000). Visual contrast processing in migraine. Cephalalgia, 20, 865-880. 

Shepherd, A. J., (2001). Increased visual after-effects following pattern adaptation in migraine: a lack 

of intracortical excitation? Brain, 124, 2310-2318. 

Shepherd, A. J., (2006). Local and global motion after-effects are both enhanced in migraine, and the 

underlying mechanisms differ across cortical areas. Brain, 129(7), 1833-43. 



26 
 

Shepherd, A. J., and Beaumont, H. M., and Hine, T. J., (2012) Motion processing deficits in migraine 

are related to contrast sensitivity. Cephalalgia 32 (7), 554-570. 

Shepherd, A. J., and Joly-Mascheroni, R. M., (2017). Visual motion processing in migraine: 

Enhanced motion after-effects are related to display contrast, visual symptoms, visual triggers and 

attack frequency. Cephalalgia, 37(4), 315-326. 

Singmann, H., Bolker, B., Westfall, J., Aust, F. (2015). afex: Analysis of factorial experiments. R 

package version 0.13–145. 

Swan, L., Otani, H., Loubert, P. V., (2007). Reducing postural sway by manipulating the difficulty 

levels of a cognitive task and a balance task. Gait and Posture, 26(3), 470-474. 

Tarantolaa, J., Nardonea, A., Tacchinia, E., Schieppatib, M., (1997). Human stance stability improves 

with the repetition of the task: the effect of foot position and visual condition. Neuroscience Letters, 

228(2), 75-78. 

Tibber, M. S., Kelly, M. G., Jansari, A., Dakin, S. C., Shepherd, A. J., (2014). An inability to exclude 

visual noise in migraine. Invest. Ophthalmol. Vis. Sci., 55(4), 2539-46. 

Tjernström, F., Bjöklund, M., Malmström, E. M., (2015). Romberg ratio in quiet stance 

posturography – test to retest reliability. Gait and Posture, 42(1), 27-31. 

Troncoso, X. G., Macknik, S. L., Otero-Millan, J., and Martinez-Conde, S., (2008). Microsaccades drive 

illusory motion in the Enigma illusion. PNAS, 105(41), 16033-16038. 

R Core Team, (2013). R: A Language and Environment for Statistical Computing. http://www.R-

project.org (accessed 27 February 2017). 

Wade, M. G., and Jones, G., (1997). The role of vision and spatial orientation in the maintenance of 

posture. Phys Ther, 77, 619-628 

Wickham, H., (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180-

185. 



27 
 

Wilkins, A. J., Nimmo-Smith, I., Tait, A., McManus, C., Della Sala, S., Tilley, A., Arnold, K., Barrie, 

M., and Scott, S., (1984). A neurological basis for visual discomfort. Brain, 107(4):989-1017. 

Wilkins, A.J. and Evans, B.J.W. (2001). Pattern Glare Test. IOO Marketing Ltd., London. 

Uchiyama, M., and Demura, S., (2009). The role of eye movements in upright postural control. Sport 

Sciences for Health, 5(1), 21-27. 

von Brevem, M., Radtke, A., Clarke, A. H., Lempert T., (2004). Migrainous vertigo presenting as 

episodic positional vertigo. Neurology, 62, 469-72. 

Zanker, J. M., Doyle, M., and Walker R., (2003). Gaze stability of observers watching Op Art 

pictures. Perception, 32, 1037-1049. 

Zanker, J. M., (2004). Looking at Op-art from a computational viewpoint. Spatial Vision, 17(1-2), 75-

94. 

Zanker, J. M., Allen, W., and Leonards, U., (2005). From Op Art paintings to gaze stability in 

migraine sufferers. Spatial Vision, 18(4). 502-50. 

Zanker, J. M., Hermens, F., and Walker, R., (2010). Quantifying and modelling the strength of motion 

illusions perceived in static patterns. Journal of Vision, 10(13), 1-4. 

 

 

 

 

 

 

 



28 
 

 

 

Figure Captions 

Figure 1: Schematic riloid stimuli. Left to right is increasing spatial frequency (λ), top to bottom is 

increasing μ (decreasing line waviness).  

Figure 2:  Data from one observer, showing head displacement for each of the riloid stimuli. The 

mediolateral (x) position is plotted against the antero-posterior displacement (z). Each point represent 

co-ordinates for a head position at a different time points. This shows a top-down view of the path of 

head movements for one observer. Each stimulus is represented by a different colour. Stimulus 1 = 

low spatial frequency, waviest lines. 2 = mid-range spatial frequency, waviest lines. 3 = high spatial 

frequency, waviest lines. 4 =low spatial frequency, medium wavy lines. 5 = midrange spatial 

frequency, medium wavy lines. 6 = high spatial frequency, medium wavy lines. 7 = low spatial 

frequency, straight lines. 8 = midrange spatial frequency, straight lines. 9 = high spatial frequency, 

straight lines. 

Figure 3: Average maximum displacement (in metres) for the three spatial frequency stimuli, 

averaged over line waviness. Narrower boxes indicate the migraine group, wider boxes indicate the 

control group. Notches indicate the median, box boundaries show the 25th and 75th percentiles, 

whiskers indicate the range, outliers are marked by individual points. Red = low spatial frequency, 

blue = medium spatial frequency, black = high spatial frequency stimuli. 

Figure 4: Average RMS displacement (in metres) for the three spatial frequency stimuli, averaged 

over line waviness for the migraine and control groups. Thinner boxes indicate the migraine group, 

wider boxes indicate the control group. A: RMS displacement in the medio-lateral direction. B:  RMS 

displacement in the antero-posterior direction. Notches indicate the median, box boundaries show the 

25th and 75th percentiles, whiskers indicate the range, outliers are marked by individual points. Red = 

low spatial frequency, blue = medium spatial frequency, black = high spatial frequency stimuli. 
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Figure 5: Average velocity (m/s) for three spatial frequency stimuli, averaged over line waviness, for 

the migraine and control groups. Migraine group indicated by the thinner boxes, control group by the 

wider boxes. A: Velocity in the medio-ventral direction. B: Velocity in the antero-posterior direction. 

Notches indicate the median, box boundaries show the 25th and 75th percentiles, whiskers indicate the 

ranges, outliers marked by individual points. Red = low spatial frequency, blur = medium spatial 

frequency, black = high spatial frequency stimuli. 

Figure 5: Ratings for perceived illusory motion. Migraine indicated by thinner boxes, controls by the 

wider boxes. A: perceived illusory motion for three spatial frequencies, averaged over line waviness. 

Red = low, blue = mid, black = high spatial frequency stimuli. B: perceived illusory motion for three 

levels of line waviness, averaged over spatial frequency. Red = wavy, blue = medium wavy, black = 

straight lines. Notches indicate the median, box boundaries show the 25th and 75th percentiles, 

whiskers indicate the range, outliers are marked by individual points. 

 

 


