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Autistic traits and individual brain
differences: functional network efficiency
reflects attentional and social impairments,
structural nodal efficiencies index
systemising and theory-of-mind skills
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Abstract

Background: Autism is characterised not only by impaired social cognitive ‘empathising’ but also by superior rule-
based ‘systemising’. These cognitive domains intertwine within the categorical diagnosis of autism, yet behavioural
genetics suggest largely independent heritability, and separable brain mechanisms. We sought to determine
whether quantitative behavioural measures of autistic traits are dimensionally associated with structural and
functional brain network integrity, and whether brain bases of autistic traits vary independently across individuals.

Methods: Thirty right-handed neurotypical adults (12 females) were administered psychometric (Social
Responsiveness Scale, Autism Spectrum Quotient and Systemising Quotient) and behavioural (Attention Network
Test and theory-of-mind reaction time) measures of autistic traits, and structurally (diffusion tensor imaging) and
functionally (500 s of 2 Hz eyes-closed resting fMRI) derived graph-theoretic measures of efficiency of information
integration were computed throughout the brain and within subregions.

Results: Social impairment was positively associated with functional efficiency (r = .47, p = .006), globally and within
temporo-parietal and prefrontal cortices. Delayed orienting of attention likewise was associated with greater functional
efficiency (r = − .46, p = .0133). Systemising was positively associated with global structural efficiency (r = .38, p = 0.018),
driven specifically by temporal pole; theory-of-mind reaction time was related to structural efficiency (r = − .40, p = 0.0153)
within right supramarginal gyrus.

Limitations: Interpretation of these relationships is complicated by the many senses of the term ‘connectivity’, including
functional, structural and computational; by the approximation inherent in group functional anatomical parcellations when
confronted with individual variation in functional anatomy; and by the validity, sensitivity and specificity of the several survey
and experimental behavioural measures applied as correlates of brain structure and function.
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Conclusions: Functional connectivities highlight distributed networks associated with domain-general properties such as
attentional orienting and social cognition broadly, associating more impaired behaviour with more efficient brain networks
that may reflect heightened feedforward information flow subserving autistic strengths and deficits alike. Structural
connectivity results highlight specific anatomical nodes of convergence, reflecting cognitive and neuroanatomical
independence of systemising and theory-of-mind. In addition, this work shows that individual differences in theory-of-mind
related to brain structure can be measured behaviourally, and offers neuroanatomical evidence to pin down the slippery
construct of ‘systemising’ as the capacity to construct invariant contextual associations.
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Background
The twenty-first century science and public rhetoric of aut-
ism have been dominated by a shift from exclusively categor-
ical construal as a disease condition to a recognition of
dimensional autistic traits throughout the general population.
In this regard, autism and autistic traits have mirrored axes
of variation within other complex neuropsychiatric condi-
tions such as schizophrenia and schizotypy [1], or obsessive-
compulsive disorder and obsessionality, compulsivity and or-
dering [2]. Although specific patterns of variation may con-
verge on general graph-theoretic hub territories such as
prefrontal cortex in schizophrenia, the devil is in the details,
and studies do not in general agree [3, 4] on how exactly
these dimensional trait measures map onto dimensional vari-
ations in brain connectivity. Categorical autism is distin-
guished by brain dysconnectivity [5, 6], and as the construal
of autism has extended to dimensional traits, so have such
dimensional behavioural and cognitive traits begun to be re-
lated to dimensional variation in brain connectivity [7]. These
dimensional relationships complement and interact with cat-
egorical differences [8], no doubt presenting developmental
endpoints of complex interactive specialisation [9, 10]. But
are broadly defined and broadly surveyed social and percep-
tual ‘autistic’ traits fundamentally neurally related to autism
itself, or are they but reflections of individual variation? [11].
Neurophysiological variables have been shown to co-

vary with behavioural measures of such traits, but these
behavioural measures have been dominated by ones that
focus on social communication in particular, most com-
monly the well validated and oft used Social Responsive-
ness Scale [12], and by informant-report or even self-
report surveys rather than experimental measures.
Although the canonical social communicative result on
autism is apparent impairment in theory-of-mind, the
past three and a half decades have not yielded conver-
gence on any single scale by which this deficit ought to
be measured. In general, different tests of theory-of-
mind seem to agree less with each other and more in
terms of their various confounds [13], such as working
memory and language. The main approach to resolving
the binary outcome of the original, ‘Sally-Anne’ test of
theory-of-mind into a continuous measure has been to

sum binary item scores across multiple test scenarios,
with checks for comprehension [14, 15]; a complemen-
tary approach is to average reaction times across re-
peated trials of ToM versus non-ToM scenarios [16]. As
the former, accuracy-based method tends to yield ceiling
effects in non-autistic populations; in this study of di-
mensional autistic traits, we implement the latter,
reaction-time approach, within a motivating, game-
based context [17] whose graphical presentation mini-
mises verbal confounds.
Social communication can be the most obvious of autis-

tic traits but is far from the only axis of variation, and ex-
perimental measures can yield information more direct
and domain-specific, complementary to that provided by
surveys. Dimensional brain-behaviour relationships may
vary across behavioural domains and across types of be-
havioural assay, and questions remain as to whether and
how such relationships differ across sensory/perceptual,
attentional, social cognitive, and verbal tasks, and across
survey and experimental behavioural measures. Might be-
haviourally measured correlations between social and
non-social autistic traits [18, 19] persist into the realm of
brain function? Or do these dimensional traits have inde-
pendent brain bases reflecting their mostly independent
heritability [7, 20–22]? And do survey and experimental
behavioural measures yield similar results?
At the same time as behavioural measures can be ex-

tended, so can metrics of brain structure and function.
The field has witnessed a shift from raw measures of dif-
fusion anisotropy and temporal correlation to derived
graph-theoretic metrics that address more specifically
the networks subserving neural information transfer
[23]. Pathways between brain regions can be represented
as a graph-theoretic complex networked system, where
regions are vertices and pathways are edges of the net-
work [24]. Such mathematical representation of white-
matter pathways is known as a ‘structural connectome’
[24, 25], defined by anatomical connections. The func-
tional connectome, on the other hand, represents rela-
tions between brain regions’ functional activities [26],
where graph edges are defined as cross-correlations be-
tween time series of functional activations. Graph-
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theoretic complex network measures allow characterisa-
tion of structural and functional brain networks at global
and nodal/regional levels [27].
Whole-brain associations between the graph-theoretic

resting-state functional network measures, DTI-derived
measures of localised white-matter integrity, and psycho-
metrics including the Social Responsiveness Scale and
Autistic Spectrum Screening Questionnaire have been
explored previously [28], linking autistic traits with re-
duced average local (but not global) functional efficiency
(a graph-theoretic measure of how well neural networks
integrate information from disparate sources) overall,
and in right posterior cingulum in particular. Associa-
tions between the Social Responsiveness Scale scores
and rs-fMRI connectivity were also explored in a region-
of-interest approach centred on rostral anterior cingu-
lum [29], finding reduced correlation with mid-insula
and heightened correlation with lateral occipital cortex,
superior parietal cortex and angular gyrus. However,
structural connectome measures as a function of dimen-
sional autistic traits have only recently begun to be
assayed [30].
This preliminary study applies both survey and experi-

mental measures to identify dimensional variation in
brain-behaviour relationships, across both social and
non-social behavioural and cognitive domains of autistic
traits in the normal population, using graph-theoretic
metrics derived from both functional (resting fMRI) and
structural (DTI) measures of brain connectivity. We ask
which combinations of behavioural (survey and experi-
mental, social and non-social) and brain (structural and
functional) measures might be sensitive to such brain-
behaviour dimensions. The straightforward hypotheses
are an association of broad measures of autistic traits
with reduced local functional network integrity (low effi-
ciency, low clustering, long path length) across the entire
brain [28], alongside similar effects within anatomical re-
gions functionally associated with specific constructs
and their measures (e.g. impaired theory-of-mind with
right temporoparietal junction [31], slowed orienting of
attention with intraparietal sulcus [32], impaired execu-
tive control with anterior cingulum [28, 33], superior
systemisimg with posterior parietal cortex and impaired
empathising with frontotemporal cortices [34]).

Methods
Subjects
Thirty right-handed volunteers (mean age ± standard
deviation: 27.29 years ± 2.88, 18 males, 12 females) par-
ticipated in the study for small monetary reimburse-
ment. All participants had normal or corrected-to-
normal vision, and no history of psychological or neuro-
logical disorders. Written informed consent was ob-
tained from participants.

Behavioural measures
Five questionnaires and three computer-based psychomet-
ric tests along with two tests of verbal fluency were ad-
ministered (Table 1, Additional file 1). All participants
completed the adult version of the Autism Spectrum Quo-
tient (AQ [35]). On the basis of our previous work [18] in
which granular scoring of the AQ made a more sensitive
correlate of other measures of autistic traits, the AQ was
scored on a symmetric 4-point Likert scale. AQ subcat-
egory scores were recorded, both the social subscore
AQSoc comprising attention switching (AQAttSw), com-
munication (AQComm), imagination (AQImag) and so-
cial skills (AQSS), and the details/patterns subscore
(AQDet). Participants’ self-reported ability to understand
others’ intentions, predict their behaviour, and respond
with appropriate emotions were measured with the Em-
pathy Quotient (EQ) [36].
The Systemizing Quotient (SQ) [37] assessed the drive to

build contexts from individual parts and details. ‘Systemiz-
ing’, having been a somewhat nebulously defined construct,
deserves some explication. Baron-Cohen et al. define a ‘sys-
tem’, in this context, as “something that takes inputs, which
can then be operated on in variable ways, to deliver different
outputs in a rule-governed way” [37]. More specifically, a sys-
tem might map between concrete motor outputs and sen-
sory inputs, as with a fidget spinner, or between mechanical
causes and effects, as with an engine, or between logical pa-
rameters input and results output, as with a computer, or be-
tween books or records and their linearly or hierarchically
ordered classification numbers, as in a library. The face valid-
ity in relation to autistic preferences and expertise at classify-
ing, ordering and predicting within explicitly defined systems
seems clear enough. However, the SQ’s construct validity as
a measure of drive to understand rule-based input-output re-
lations has been called into question by its lack of any strong
relationship to mathematical skill [38]. The SQ’s questions
focus on construction, spatial mappings, component parts,
component mechanisms and processes, and taxonomies (de-
scribed by Ling et al. [39] as ‘DIY’, ‘topography’, ‘structure’,
‘technicity’ and ‘taxonomy’, respectively)—all processes that
emphasise spatially and temporally invariant, static and
therefore predictable relations of parts and details to frames
and contexts, and thus reflect an autistic cognitive style of
bricolage, in which abstract and general representations are
effortfully, extensionally constructed bottom-up from the
underlying details and instances [40]. Baron-Cohen’s system-
izing construct thus is not so much a drive to understand
rule-based input-output relations as it is a skill of construct-
ing invariant contextual associations. SQ scores map onto
population-level sex differences in cognitive traits related to
autism [41], males being on average more prone to the SQ’s
systemizing approach to cognition, and females being greater
at the cognitive empathy tapped by same group’s
‘Empathizing Quotient’.
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Autistic sensory traits were assessed by the Sensory
Sensitivity Questionnaire (SSQ) [42–45]. At the time of
data collection, few self-report or informant-report mea-
sures of sensory processing quick enough to be accept-
able to subjects in this multi-measure study were yet
available (see Table 3 of DuBois et al. [46]), and those
that were available had been used in categorical con-
trasts of autistic and non-autistic populations (e.g. [47])
rather than as dimensional measures—a trend that con-
tinues today. Thus, the selection of a sensory measure
was based on a combination of free availability and face
validity for autism, its use as a dimensional measure
being necessarily an extrapolation.
To assess autistic social communicative traits, the So-

cial Responsiveness Scale- Adult (SRS) [12] was com-
pleted by subjects’ social partners (e.g. spouse, parent,
longtime friend). The SRS was developed as a measure
of subthreshold autistic traits and has accumulated an
extensive history and norms for use as such. One subject
did not return the SRS.
Social cognition also was measured by the ‘Reading

the Mind in the Eyes’ Test (RMET) [48]. The RMET ori-
ginally was developed as a test of the ability to infer an-
other’s mental state, its face validity being established by
its covariance with other quantitative measures of autism
spectrum conditions and autistic traits. It has been ap-
plied widely as a dimensional measure of autistic traits
(e.g. [18, 49]). Later work demonstrates that the RMET

Table 1 Mean and standard deviation of all behavioural
measures

Behavioural measures Female Male Total

AQ

Mean − 18.92 − 19.56 − 19.24

SD 27.16 19.18 23.17

EQ

Mean 45.75 39.39 42.57

SD 12.73 11.20 11.97

SQ

Mean 64.92 74.56 69.74

SD 15.89 17.25 16.57

SSQ

Mean 5.75 3.50 4.63

SD 2.45 1.50 1.98

SRS

Mean 33.00 42.76 37.88

SD 12.88 25.67 19.27

RMET

Mean 27.64 25.44 26.54

SD 4.95 4.68 4.81

COWA

Mean 49.00 43.11 46.06

SD 14.21 7.94 11.08

AnNT

Mean 18.00 16.50 17.25

SD 5.59 4.59 5.09

FC-EFT

Mean 11410.41 (ms) 8815.5 (ms) 10112.95 (ms)

SD 5561.96 (ms) 5002.31 (ms) 5282.13 (ms)

ANT (alerting effect)

Mean 48.25 (ms) 51.70 (ms) 49.97 (ms)

SD 34.53 (ms) 28.56 (ms) 31.54 (ms)

ANT (orienting effect)

Mean 58.166 (ms) 48.05 (ms) 53.11 (ms)

SD 37.64 (ms) 20.97 (ms) 29.31 (ms)

ANT (conflict effect)

Mean 116.33 (ms) 114.64 (ms) 115.49 (ms)

SD 38.56 (ms) 40.14 (ms) 39.35 (ms)

ANT (grand mean effect)

Mean 656.33 (ms) 620.52 (ms) 638.43 (ms)

SD 60.32 (ms) 34.16 (ms) 47.24 (ms)

Second-order ToM

Mean − 5.20 (s) − 0.063 (s) − 2.63 (s)

SD 4.95 (s) 10.61 (s) 7.78 (s)

Table 1 Mean and standard deviation of all behavioural
measures (Continued)

Behavioural measures Female Male Total

Egocentric first-order ToM

Mean 6.984 (s) 1.183 (s) 4.08 (s)

SD 14.01 (s) 18.65 (s) 16.33 (s)

Allocentric first-order ToM

Mean 3.94 (s) 0.548 (s) 2.24 (s)

SD 5.160 (s) 11.477 (s) 8.31 (s)

WASI (verbal IQ)

Mean 109.42 109.67 109.54

SD 9.89 7.90 8.90

WASI (performance IQ)

Mean 102.00 109.17 105.58

SD 6.66 7.08 6.87

WASI (full-scale IQ)

Mean 106.83 110.89 108.86

SD 7.52 7.54 7.53

AQ Autism Spectrum Quotient, EQ empathy quotient, SQ systemizing quotient,
SSQ Sensory Sensitivity Questionnaire, SRS Social Responsiveness Scale, RMET
Reading the Mind in the Eyes Test, COWA Controlled Oral Word Association
test, AnNT Animal Names Test, FC-EFT forced-choice version of the Embedded
Figures Test, ANT Attention Network Task, WASI Wechsler Abbreviated Scale
of Intelligence
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measures more the ability to name emotions [50], and
verbal ability in general [51], although with this inter-
pretive caveat the RMET remains useful as a measure of
social cognitive function in the broad sense. The test
comprises 36 photographs of the eye region, for each of
which participants choose the one of four words that
best describes what the person in the picture is feeling
or thinking.
Perceptual disembedding was measured by a forced-

choice version of the Embedded Figures Test (FC-EFT)
[52, 53]. Subjects were asked to locate the embedded
shape as rapidly as possible with a 50-s timeout interval,
pressing the number key 1 for the shape on the left or
the number key 9 for the shape on the right. The
score is the mean latency of correct responses. The
EFT has been applied in many studies of dimensional
autistic traits (e.g. [18]), though a review of these by
Cribb et al. [54] suggests that the EFT may be most
effective when applied categorically or between ex-
tremes rather than along a continuum of dimensional
variation.
The Attention Network Test Revised (ANT-R) [33, 55]

combines the Posner visual attention task [56] with a
visual spatial flanker task [57] to measure alerting (tem-
poral effect of cueing), orienting (spatial effect of cue-
ing), and executive control over conflicts between
percept-action mappings (effect of flanker congruence),
the final two of which, at least, are demonstrably per-
turbed in autism [58]. Scores were computed as simple
differences of mean reaction times in trials with correct
responses: alerting, central cue minus no cue; orienting,
spatial cue minus central cue; conflict, no cue with in-
congruent flankers minus no cue with congruent
flankers. The ANT has been validated against self-report
measures of individual differences in attentional control
[59], though not to our knowledge in terms of autistic
traits per se.
Phonetic association fluency was measured by the

Controlled Oral Word Association (COWA) test [60].
The COWA evaluates the spontaneous, timed produc-
tion of words beginning with a given letter. In three 1-
min trials, participants were asked to generate as many
words as possible beginning with ‘F’, ‘A’ and ‘S’, respect-
ively, excluding proper names and names of numbers.
The score was the mean tally of qualifying words, ex-
cluding repetitions, across the three trials. Subjects also
completed the Animal Names Test [61], a semantic flu-
ency test in which subjects are asked to generate in a 1-
min timed trial as many animal names as possible, ex-
cluding the names of fish, birds and snakes. The score is
the total number of qualifying animal names, excluding
repetitions. Similar phonetic and semantic fluency tasks
have been oft applied in measurement of individual
differences [62].

Egocentric and allocentric [63] first-order theory-of-
mind (ToM), and second-order ToM, were assessed as
reaction time differences between conditions in a graph-
ical version of the Sally-Anne test. This task was imple-
mented as a computer game [17] (see Supplementary
Methods) wherein Sally is a friendly spaceship captain,
Anne is a space pirate, the ball is a cache of resources
for the player’s space station, and the basket and the box
each are one of four planets distinguished by spatial pos-
ition, colours and texture. The resulting no-theft,
unobserved-theft and observed-theft vignettes were pre-
sented mainly graphically, supplemented by simple text-
ual narrative at the bottom of the display. The subject
was reminded that Sally would always steer her space-
ship where she thought the cache was, and was asked to
set a course to meet up with her by moving a trackpad
cursor up, down, left or right to one of the four planets.
To assess general intelligence, participants were tested

with the Wechsler Abbreviated Scale of Intelligence
(WASI) [64]. The WASI’s four subtests estimate verbal
comprehension and perceptual reasoning abilities that
contribute to general intelligence.

Image acquisitions
MR image acquisitions were performed using a 3 Tesla
Philips Achieva scanner with eight-channel head coil.
The head was immobilised using cushions and straps.
During the resting-state fMRI data acquisition, partici-
pants were asked to keep their eyes closed, relax and not
think about anything specific, but to avoid sleeping. All
participants confirmed that they did not sleep and did
not come close to falling asleep during the scan.
Resting-state Blood Oxygen Level Dependent (BOLD)
signals were acquired using a 3D PRESTO (principles of
echo shifting with a train of observations) sequence [65,
66] with the following parameters: field of view (FOV)
256 mm × 256 mm × 140 mm, voxel dimension 4 mm ×
4 mm × 4 mm, 1000 time points, dynamic scan time 500
ms, repetition time (TR) 22 ms, echo time (TE) (shifted)
32 ms, SENSE p reduction = 2, SENSE s reduction = 2,
flip angle (FA) 9°. This high-frequency (2 Hz) sampling
minimises aliasing of high-frequency (~ 0.1–1 Hz)
cardiac and respiratory oscillations into the slower
(0.01–0.1 Hz) spontaneous fluctuations of BOLD signal.
However, these fMRI parameters yield lower anatomical
contrast compared to T1-weighted images. This 9° func-
tional scan therefore was followed by a similar PRESTO
scan at 25° flip angle for use in spatially co-registering
the PRESTO images against T1-weighted anatomical im-
ages [67]. Lastly, a 3D T1-weighted image (Additional
files 2, 3, 4, 5 and 6) was acquired using a Turbo Field
Echo sequence with the following parameters: FOV 240
mm × 240 mm × 160 mm, voxel dimension = 1.0 mm3

isotropic, TR 8 ms, TE 3.69 ms, flip angle 8°.
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Diffusion-weighted images were obtained using a spin-
echo (SE) echo-planar imaging (EPI) sequence, FOV 224
mm × 224 mm × 140 mm, voxel dimension = 2 mm × 2
mm × 2 mm, TR/TE = 9386/58 ms, diffusion gradient
timing (Δ/δ = 28.9/17.8 ms, b = 1000 s/mm2, 32 direc-
tions, with fat suppression using Spectral Presaturation
by Inversion Recovery (SPIR). The sequence was re-
peated three times (total gradient directions = 96) in
order to improve the quality of the diffusion-weighted
signals. Fifteen volumes with no diffusion weighting (b =
0 s/mm2) were also acquired.

Preprocessing
Individual fMRI scans were spatially re-aligned to the last
functional volume using Statistical Parametric Mapping
(SPM) software. Then, the high-contrast 25° PRESTO
scan was spatially co-registered to these realigned fMRI
scans and each T1-weighted image was linearly trans-
formed onto it using the default setting of FLIRT
(FMRIB’s Linear Image Registration Tool). T1-weighted
images were segmented into grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) maps using
FAST (FMRIB’s Automated Segmentation Tool), and
these maps were transformed to the realigned PRESTO
scans using applyxfm function of FSL (FMRIB Software
Library). Nearest-neighbour interpolation was used so as
to avoid introducing partial-volume tissue categories
whilst spatially transforming the segmented maps. Further
processing took place in DPARSF (Data Processing Assist-
ant for Resting-State fMRI) [68]. The first 10 volumes of
the realigned fMRI scans were discarded and the
remaining fMRI time series with 990 time points were de-
trended. Averaged WM and CSF signals were from the
fMRI time series using the realigned tissue-segmented
maps as masks. This and head motion parameters were
regressed out (Additional file 7) from the fMRI time series.
High-frequency respiratory and cardiac oscillations (0.1–1
Hz) and low-frequency scanner drift (< 0.01 Hz) were re-
moved by band-pass filtering at 0.01–0.1 Hz [69]. The
fMRI datasets were not spatially smoothed, as smoothing
is inherent in spatially averaging the time series from each
region of interest (described in the subsection on
“Network construction”).
We have concatenated the three sets of diffusion im-

aging data and the gradient tables. In order to correct
the distortion of diffusion-weighted images due to eddy
currents and head motion, the diffusion-weighted images
of each participant were registered to the respective first
b = 0 image using affine transformation. Rotational com-
ponents corresponding to each diffusion-weighted vol-
ume were extracted from the transformation matrix, and
the B-matrix was rotated using the extracted rotation
vector in order to correct for head motion [70].

Modelling of diffusion-weighted signals
Diffusion-weighted signal in each voxel was modelled
considering multiple fibre orientations in the voxel.
Metropolis-Hastings Markov Chain Monte Carlo sam-
pling was used for estimation of model parameters and a
Bayesian method, Automatic Relevance Determination
(ARD), was applied to determine whether the diffusion-
weighted signals of a voxel should be represented by a
single-fibre or a multiple-fibre model [71]. Diffusion-
weighted data were modelled using the bedpostx func-
tion of FDT (FMRIB’s Diffusion Toolbox) with default
values of the parameters.

Network construction
A network with N nodes and K edges can be denoted by
a graph (G(N,K)) [72]. The rows and columns of the N ×
N adjacency matrix represent the nodes and each elem-
ent (wij) of this matrix denotes the link between the ith
and the jth nodes of the network. We describe the pro-
cedures to construct adjacency matrices to represent the
functional and structural connectivity networks below.

Correlation matrix
Using FNIRT (FMRIB’s non-linear image registration
tool), the ICBM152 T1 template was non-linearly regis-
tered to each participant’s preprocessed fMRI scans, by
using the PRESTO-aligned T1-weighted image as the
registration target. This spatial transformation was then
applied to the AAL-90 atlas label map using FSL’s apply-
warp function, with nearest-neighbour interpolation to
retain the values of the atlas labels. The resulting AAL-
90 map registered to each individual participant’s func-
tional scans was masked using that participant’s similarly
registered tissue segmentation map to select only grey
matter voxels.
Using this grey matter AAL-90 label map, the averaged

time series corresponding to each AAL-90 brain area
was extracted from the preprocessed fMRI scans. The
symmetric 90 × 90 correlation matrix (Additional file 8)
for each participant was constructed by calculating the
zero-lagged Pearson correlation coefficient between all
pairs of BOLD time series. Each element (wij) of the cor-
relation matrix is the correlation between the time series
extracted from the ith and the jth AAL-90 regions.
Zeroes have been assigned to the diagonal.

Connection matrix
Similarly to the preprocessing of the functional images de-
scribed above, T1-weighted images were rigidly registered
to the corresponding first b = 0 image using FLIRT, seg-
mented GM maps were linearly transformed to the corre-
sponding b = 0 space, the b=0-registered T1-weighted
images were non-linearly registered to the ICBM152 T1
template using FNIRT and AAL-90 label maps were
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warped to the b = 0 images using the inverted non-linear
transformations with nearest-neighbour interpolation.
The voxels of the label map that corresponded to grey
matter in the b=0-registered segmented GM map were se-
lected for tractography.
Probabilistic tractography was executed from each

brain area to the other 89 brain areas using FDT
(FMRIB’s Diffusion Toolbox). For every sampled stream-
line fibre at the seed voxel, a sample direction was se-
lected from the local direction distribution. Moving 0.5
mm to a new location along the sample direction, a new
sample direction was selected from the direction distri-
bution at that new location. Five thousand streamline fi-
bres were sampled from each seed voxel in the
probabilistic tractography framework. Let us consider a
brain area comprising n voxels. Dividing the number of
fibres passing through that area by n × 5000 yields the
connection probability from the seed area to the given
area. However, the connection probability of the ith
brain area to the jth brain area is not necessarily equal
to the connection probability of the jth brain area to the
ith brain area. We have calculated undirected connec-
tion probability between those two areas (Pij) by taking
the average of those two probabilities. A symmetric con-
nection matrix (Additional file 8) of dimension 90 × 90
for each participant was constructed by performing
probabilistic tractography from all 90 brain areas. Each
element (wij) of the connection matrix denotes the un-
directed connection probability between the ith and the
jth AAL-90 regions. Zeroes have been assigned to the
diagonal.

Network metrics
Using the brain connectivity toolbox [27], we have calcu-
lated the functional and the structural network metrics
for each participant from the corresponding correlation
matrix and the connection matrix respectively, the coef-
ficient in each matrix cell serving as an adjacency weight
for the corresponding pair of AAL-90 regions. As we are
interested not in whole-group patterns but in individual
differences, weights have not been thresholded [6]; any
non-zero weight represents some measure of adjacency.
This strategy avoids the potential of artefactually gener-
ating disconnected graph components which could skew
the measures in some subjects. In selecting these met-
rics, we have taken a cue from previous studies of autism
and autistic traits: Billeci et al. [30] used characteristic
path length and clustering coefficient, and Jakab et al.
[28] used local and global efficiency. A deficit in “small-
world” network topology, defined as a combination of
high density of connections for computation within local
neural neighbourhoods and direct connection routes for
information transfer between these neighbourhoods, has
been cited as a distinguishing characteristic of the

autistic brain [73]. Small-world topology is maintained
by minimising ‘wiring’ connections whilst maintaining
strong clustering; small characteristic path length and
large clustering coefficient, therefore, constitute perhaps
the most straightforward graph-theoretic metrics of
complexity. Global and local efficiencies are related to
path length and clustering, respectively, but efficiency
can be a more powerful derived metric for empirical
data, because its summation of reciprocals of path
lengths gives weight to hubs and parallel connections
rather than to disconnected regions and serial con-
nections [74].

Strength
Strength of the ith node (swi ) of the network is denoted
by the summation over the edge weights (wij) of all links
to the ith node:

swi ¼
X

j∈N
wij ð1Þ

The value of the nodal strength reveals the significance
of that node in the network [27].

Characteristic path length
The characteristic path length of a network is defined as
the average shortest path length between all pairs of
nodes in the network [27]:

Lw ¼ 1
N

X
i∊N

P
i∊N ; j≠id

w
ij

N − 1
ð2Þ

where dw
ij (the inverse of connection strength, wij) de-

notes the element of weighted distance matrix (dw).
Characteristic path length is a global measure of integra-
tion in a network.

Clustering coefficient
The weighted clustering coefficient of the ith node of
the network (Cw

i ) is defined [75] as

Cw
i ¼

P
j;m∈N wijwimwjm

� �1
3

ki ki − 1ð Þ ð3Þ

where ki stands for the weighted degree, ki = ∑j ∈Nwij.
When ki = 0 or 1, a zero value is assigned to the cluster-
ing coefficient of that node. The clustering coefficient is
a network-based measure of segregation which denotes
the ability of specialised processing within densely con-
nected brain regions [27, 76]. The nodal clustering coef-
ficient represents how strongly a node is clustered with
its neighbouring nodes. The global clustering coefficient
of a network is calculated by taking the average of the
clustering coefficients over all the nodes of the network:
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Cw ¼ 1
N

X
i∈N

Cw
i ð4Þ

The clustering coefficient of a network (Cw) charac-
terises the level of interconnectivity of the network.

Global and local efficiencies
Global and local efficiencies measure the integration of
information from distributed brain areas and estimate
how well these brain areas communicate. Global effi-
ciency of the network is computed using the following
expression [77]:

Ew
glob ¼

1
N

X
i∈N

P
j∈N ; j≠iðdw

i jÞ − 1

N − 1
ð5Þ

On the other hand, local efficiency of the ith node of
the network is the global efficiency of the neighbour-
hood of that node [27]:

Ew
loc;i ¼

1
2

X
i∈N

P
j;m∈N ; j≠i wijwjm dw

jm Nið Þ
h i − 1

� �1
3

ki ki − 1ð Þ
ð6Þ

where dw
jmðNiÞ denotes the shortest path between the jth

and mth nodes which are within the neighbourhood of
the ith node.

Statistical analyses
Behavioural measures and the functional and structural net-
work metrics were z-transformed. Behavioural measures
were correlated with the network metrics using multi-linear
regression. Age, gender, full-scale IQ, head-motion effect
(average frame-wise displacement [78]) and brain volumes
were considered as confounding factors, and were removed
from the neuroimaging-based measures using multiple linear
regression. Spearman correlation coefficients between the
resulting residuals of the neuroimaging-based measures and
the behavioural measures were computed across all subjects.
Tail probabilities, one-sided with respect to whichever tail
was nearest, were estimated using permutation testing (as in
the supplementary information of [79]) as [min(|{ρrand |
ρobs>ρrand}|, |{ρrand | ρobs<ρrand}|)+1]/N where ρobs is the
Spearman correlation computed from the actual data and
the ρrand are the N = 10000 Spearman correlations computed
on the N = 10000 random permutations of the data (Add-
itional file 9). Statistical significances of the correlations be-
tween the nodal/regional neuroimaging-based measures and
each behavioural measure were thresholded at 5% false dis-
covery rate (FDR) [80], except in the case of theory-of-mind
measures with an a priori hypothetical association with brain
regions in the right temporoparietal junction. Effect sizes are
indicated by absolute values of the correlation coefficients.

Results
Global functional clustering, characteristic path length
and efficiency correlated with Social Responsiveness
Scale (Table 2). This global association was driven by
nodal strength, clustering and efficiency in a network
spanning most of the cerebral cortex (as well as putamen
and globus pallidus), with strength differences in pre-
frontal, medial-anterior temporal and temporoparietal
cortices (full details in Table 3). Global functional clus-
tering, characteristic path length and efficiency also cor-
related with the orienting score on the Attention
Network Test (Table 2). This global association was
driven by nodal clustering (but not significantly by nodal
strength or efficiency) in a similarly widespread cerebral
network encompassing a smaller number of regions in
prefrontal, temporal and parietal cortices as well as puta-
men and globus pallidus (full details in Table 4, illus-
trated in Fig. 1). We have not observed any significant
associations between global (p > 0.05) or nodal (pFDR >
0.05) functional network measures and other behavioural
measures (Table 2).
Global structural clustering and efficiency correlated with

Systemizing Quotient (SQ) scores (p < 0.05) (Table 5). This
global association was driven by nodal strength, clustering
and efficiency in a network comprising the medial temporal
lobes and right temporal pole (full details in Table 6, illus-
trated in Fig. 1). At the nodal level, allocentric first-order
theory-of-mind reaction time difference was associated with
efficiency (ρ = − 0.397, one-tailed p = 0.0153) and clustering
(ρ = − 0.400, one-tailed p = 0.014, both uncorrected given a
priori association of theory-of-mind with right temporoparie-
tal junction) in right supramarginal gyrus, which was the only
brain region to manifest any significant uncorrected correl-
ation with theory-of-mind. We have not observed any sig-
nificant associations between global (p > 0.1) or nodal (pFDR
> 0.05) structural network measures and other behavioural
measures (Table 5). Global structural characteristic path
lengths were not significantly associated with any behavioural
measures (p > 0.05).

Discussion
We applied both survey and experimental measures, and
both functional and structural brain imaging, to assay
brain-behaviour relationships in both social and non-
social autistic trait dimensions. Various social and non-
social measures correlated with both global functional
and regional structural network efficiency, although the
direction of these correlations was contrary to hypoth-
esis: greater autistic traits tended to associate with
greater efficiency. Where correlations were detected,
more specific capacities such as systemising and theory-
of-mind were related to structure of specific brain re-
gions whereas general or integrative traits such as social
responsiveness and attention orienting associated with
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function of anatomically distributed networks. This work
incidentally shows that individual differences in theory-
of-mind can be measured using reaction time differences
from even small numbers of trials, and introduces a new
perspective on the ‘systemising’ construct as the capacity
to construct invariant contextual associations.
One non-social survey measure—the Systemizing

Quotient—covaried with global structural network ef-
ficiency driven especially by medial temporal lobes,
and one social experimental measure—theory-of-
mind—covaried with nodal efficiency and clustering
near right temporoparietal junction. One social cogni-
tive survey measure—the SRS—and one non-social ex-
perimental measure—ANT orienting—covaried with
global functional network efficiencies. AQSS and
AQDet despite tapping a social communicative con-
struct related to the SRS and an attentional construct
related on face to the ANT, respectively, bore no sig-
nificant relationship, and neither did sensory, percep-
tual, empathic or verbal measures. This pattern of
results might have as much to do with the relatively
well established validity of the SRS and the ANT as it
might with any primacy of social responsiveness and
attentional orienting, although the developmental rela-
tionship between these two constructs [81, 82] does
not escape our notice.
The nodal functional results are less certain than the

corresponding global results, because of two sources of
variation that render fMRI-based network localisations
inherently broad. First, functional connectivity studied

across the entire brain emphasises widespread networks
and not localised neighbourhoods, because the time
series correlations on which it is based are essentially
transitive, making the resulting connectivity graph a
transitive closure: if, for example, supramarginal gyrus is
functionally connected with orbitofrontal cortex, and
orbitofrontal cortex is functionally connected with med-
ial temporal lobe, then supramarginal gyrus will to some
degree be functionally connected to medial temporal
lobe. Second, functional maps at the population level are
accurate only in broad strokes; individual differences in
functional anatomical boundaries [83] imply that mul-
tiple functional subregions are collapsed into single ana-
tomical parcels at the resolution of AAL-90, and thus
that multiple functional relationships amongst these re-
gions are likewise collapsed into single edges within any
network graph. So it makes sense that the fMRI con-
nectivity results highlight distributed networks associ-
ated with domain-general properties such as attentional
orienting and a broad measure of social responsiveness.
Both in the case of attentional orienting and in the

case of social cognition, these fMRI-based measures
found brain networks to be physiologically more effi-
ciently organised for individuals higher in autistic traits,
even though high autistic traits mean that one is behav-
iourally less efficient at each of these cognitive skills, tak-
ing longer to orient attention and being less socially
responsive. This disjunction between physiological and
behavioural measures of efficiency can be interpreted in
at least three ways:

Table 2 Spearman correlation coefficients between questionnaire/behavioural measures and global functional network measures

Behavioural measure Clustering
coefficient
ρ (p)

Characteristic
path length
ρ (p)

Efficiency
ρ (p)

Behavioural
measure

Clustering
coefficient
ρ (p)

Characteristic
path length
ρ (p)

Efficiency
ρ (p)

2 o ToM − 0.121 (0.257) 0.087 (0.321) − 0.202
(0.142)

Reading the Mind in
the Eyes

0.170 (0.185) − 0.220 (0.119) 0.233
(0.108)

Egocentric 1o ToM − 0.030 (0.445) − 0.015 (0.464) − 0.003
(0.496)

Controlled Oral Word
Association

− 0.032 (0.436) − 0.024 (0.448) 0.033
(0.434)

Allocentric 1o ToM − 0.036 (0.430) 0.017 (0.468) − 0.006
(0.492)

Animal names − 0.123 (0.251) 0.094 (0.300) − 0.042
(0.405)

AQ Soc 0.308 (0.053) − 0.277 (0.069) 0.277
(0.071)

Embedded figures − 0.029 (0.438) 0.055 (0.382) 0.039
(0.419)

AQ Det − 0.106 (0.277) 0.127 (0.237) − 0.077
(0.329)

ANT alerting − 0.202 (0.142) 0.100 (0.304) − 0.206
(0.136)

Empathy quotient − 0.175 (0.173) 0.187 (0.159) − 0.145
(0.218)

ANT orienting − 0.423
(0.010)*

0.441 (0.007)* − 0.406
(0.013)*

Systemizing quotient − 0.006 (0.488) 0.021 (0.459) 0.011
(0.475)

ANT conflict − 0.095 (0.313) 0.170 (0.186) − 0.115
(0.275)

Sensory Sensitivity
Questionnaire

0.049 (0.410) 0.013 (0.461) 0.008
(0.491)

ANT grand mean − 0.002 (0.488) 0.028 (0.427) − 0.017
(0.458)

Social
Responsiveness
Scale

0.455
(0.0075)*

− 0.387 (0.018)* 0.467
(0.006)*

*p < 0.05
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Table 3 Spearman correlation coefficients between Social Responsiveness Scale scores and nodal functional network measures

Region Nodal strength ρ (p) Nodal clustering ρ (p) Nodal efficiency ρ (p)

L precentral gyrus 0.442 (0.008) 0.452 (0.006)

R precentral gyrus 0.468 (0.005) 0.514 (0.002)

L superior frontal gyrus 0.549 (0.001) 0.523 (0.001)

L superior frontal (orbital) 0.545 (0.001) 0.423 (0.011) 0.434 (0.010)

R superior frontal (orbital) 0.558 (0.0006) 0.466 (0.004) 0.449 (0.006)

R middle frontal gyrus 0.510 (0.003) 0.510 (0.002)

L middle frontal (orbital) 0.603 (0.0004) 0.636 (0.0002) 0.639 (0.0002)

R middle frontal (orbital) 0.547 (0.001) 0.518 (0.002) 0.532 (0.001)

L inferior frontal (opercular) 0.382 (0.020) 0.413 (0.013)

R inferior frontal (triangular) 0.446 (0.007) 0.401 (0.015)

L inferior frontal (orbital) 0.440 (0.007) 0.434 (0.009)

R inferior frontal (orbital) 0.389 (0.017)

L Rolandic operculum 0.397 (0.015)

R Rolandic operculum 0.490 (0.003) 0.452 (0.006)

L supplementary motor area 0.590 (0.0006) 0.366 (0.023) 0.449 (0.007)

L medial superior frontal gyrus 0.510 (0.003)

L olfactory 0.396 (0.017) 0.437 (0.008)

R olfactory 0.355 (0.027) 0.365 (0.025)

R superior frontal gyrus (medial) 0.413 (0.013) 0.358 (0.027)

L superior frontal (medial orbital) 0.362 ( 0.024)

R superior frontal (medial orbital) 0.379 (0.021)

L insula 0.409 (0.013) 0.383 (0.019)

R insula 0.377 (0.020) 0.351 (0.029)

L anterior cingulate, paracingulate 0.368 (0.022)

R anterior cingulate, paracingulate 0.437 ( 0.009) 0.376 ( 0.021)

L median cingulate, paracingulate 0.560 (0.0008) 0.468 (0.004)

L posterior cingulate 0.368 (0.024) 0.386 (0.020)

R posterior cingulate 0.372 (0.022)

R hippocampus 0.576 (0.001) 0.410 (0.011) 0.345 (0.030)

L parahippocampal gyrus 0.405 (0.012) 0.337 (0.030)

R parahippocampal gyrus 0.431 (0.008) 0.412 (0.011)

L amygdala 0.449 (0.006) 0.415 ( 0.013)

R amygdala 0.479 (0.003) 0.418 (0.010) 0.393 (0.016)

L calcarine cortex 0.483 (0.003) 0.461 (0.005)

R calcarine cortex 0.445 (0.007) 0.385 (0.017)

L cuneus 0.388 (0.016) 0.401 (0.014)

R cuneus 0.409 (0.012) 0.381 (0.020)

L lingual gyrus 0.487 (0.003) 0.445 (0.006)

L superior occipital gyrus 0.464 (0.005) 0.492 (0.002)

L fusiform gyrus 0.356 (0.026) 0.363 (0.022)

R fusiform gyrus 0.413 (0.012) 0.408 (0.012)

L postcentral gyrus 0.355 (0.029)

R postcentral gyrus 0.355 (0.027)

L inferior parietal lobule 0.492 (0.003) 0.433 (0.010)
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(1) Despite the deficits in these two specific
behavioural measures, autistic traits can make
people more efficient at other aspects of cognition.
This scenario is easy to imagine and is enunciated
in Asperger’s absent-minded “Professor” whose
“besonderen Leistungen” (“unusual achievements”)
come hand in hand with “Hilflosigkeit dem prak-
tischen Leben gegenüber” (“helplessness in the face
of practical life”) [84], a trope repeated time and
again in postmodern literature and media (e.g. [85],
p. 6). In terms of neural and cognitive mechanisms,
a perturbed excitatory/inhibitory balance [86] pro-
duces abnormally low network entropy [87] which
when it arises during activity-dependent develop-
ment evokes abnormal desegregation between net-
works [88, 89] consistent with the observation of
enhanced ‘rich club’ connectivity of network hubs
in autism [6, 90]. The cognitive result can be tem-
porally inefficient orienting [91] and spatially ineffi-
cient filtering [92]. This ‘sticky’ style of attention
may lead to rumination on particular stimuli and
details, and to compensatory processing [93] that
yields ultimately a more complete style of represen-
tation based on bricolage [40]; likewise, time and

cognitive effort not spent on exhausting and often
futile attempts at social understanding may instead
be invested in understanding the more tractable
world of deterministic systems and rules.

(2) fMRI-based connectivity may measure a crude
combination of connectivities within anatomically
superimposed functional networks that differ in
fMRI-indistinguishable parameters such as operat-
ing frequency band and cellular physiology. Previ-
ous studies of eyes-closed resting EEG taken
together show, if nothing else, that the picture of
autistic brain connectivity becomes complicated
when frequency band is taken into account. Find-
ings include elevated short-range coherence in the
theta band and reduced long-range coherence in
the lower-alpha band [94], elevated short-range and
reduced long-range coherence in delta band correl-
ating with score on the Autism Diagnostic Observa-
tion Schedule (ADOS) [73], and reduced delta and
theta coherences at all ranges with reduced alpha
and beta coherences at some short-range electrode
pairs [95]. An eyes-open resting MEG study meas-
uring graph-theoretic relations amongst correlations
between signal envelopes in a variety of frequency

Table 3 Spearman correlation coefficients between Social Responsiveness Scale scores and nodal functional network measures
(Continued)

Region Nodal strength ρ (p) Nodal clustering ρ (p) Nodal efficiency ρ (p)

R inferior parietal lobule 0.356 (0.028) 0.393 (0.017)

L supramarginal gyrus 0.478 (0.004) 0.403 (0.014) 0.417 (0.011)

R supramarginal gyrus 0.479 (0.004) 0.443 (0.007)

L angular gyrus 0.572 (0.0006) 0.457 ( 0.006) 0.511 (0.003)

R angular gyrus 0.448 (0.007) 0.445 (0.007)

L precuneus 0.617 (0.0002) 0.567 ( 0.001)

R precuneus 0.374 (0.023) 0.359 (0.026)

L paracentral lobule 0.374 (0.021)

R paracentral lobule 0.419 (0.011)

L putamen 0.369 (0.023)

R putamen 0.587 (0.0004) 0.550 (0.0008)

L pallidum 0.486 (0.004) 0.444 (0.008)

R pallidum 0.649 (0.0001) 0.366 (0.021)

R lenticular nucleus, pallidum 0.357 (0.026)

L thalamus 0.358 (0.026)

L Heschl’s gyrus 0.363 (0.022) 0.354 (0.027)

L superior temporal pole 0.499 (0.003) 0.444 (0.007)

R superior temporal pole 0.354 (0.029) 0.365 (0.023)

L middle temporal gyrus 0.503 (0.003) 0.459 (0.007) 0.473 (0.005)

L middle temporal pole 0.451 (0.007) 0.399 (0.015)

R middle temporal pole 0.466 (0.006) 0.392 (0.016)

R inferior temporal 0.578 (0.0007) 0.417 (0.010) 0.417 (0.011)
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bands found greater gamma network efficiency but
lesser beta efficiency in autism, both categorically
and in correlation with ADOS scores, along with
greater alpha efficiency categorically [96]; these au-
thors suggested an altered balance between height-
ened bottom-up, gamma-mediated signalling and
attenuated top-down, beta-mediated signalling [97].
Both EEG [98] and intracranial [99] recordings in
humans have demonstrated that BOLD fMRI is
most positively coupled to gamma oscillations.
Viewed through this lens, then, our fMRI connect-
ivity data become consistent with the thesis of
heightened bottom-up, gamma-mediated connectiv-
ity not only in autism categorically but perhaps also
with autistic traits dimensionally. This second case
of interpretation is not at all mutually exclusive
with the first case above; indeed, such an altered
balance between bottom-up and top-down informa-
tion flow could be the physiological substrate of
autistic cognitive superiorities and deficits.

(3) There may be a discontinuity between clinically
autistic impairment on the one hand and subclinical

levels of nominally ‘autistic’ traits that form part of
general individual differences on the other. Autistic
traits in separate domains of cognitive function tend
to be inherited largely independently [100, 101] and
constitute distinct domains of function in the non-
autistic population [102], but once they cross water-
shed levels they may begin to synergise, reinforcing
each other as development proceeds [19]. The re-
sult might be a classic inverted-U dose-response
curve: traits that individually and in moderate doses
are cognitively adaptive may in combination and in
higher doses become cognitively impairing overall,
as development proceeds. Indeed, DTI-based im-
aging shows that local nodal network inefficiency
manifests as early as 6 months of age in familially
high-risk infants who later are diagnosed with aut-
ism, progressing from right primary auditory and
middle and superior temporal gyri to higher-order
cortices [103].

Perhaps related to this third possibility of discontinuity
across the diagnostic boundary is the current result’s
place within a mixed bag of previous findings: both func-
tional [28] and structural [30] imaging studies have iden-
tified reduced average nodal resting-state functional
network efficiency as a function of autistic traits in non-
autistic adults [28], driven by inefficiencies in the
default-mode network centred on posterior cingulum.
However, structural imaging in categorically autistic
children shows the opposite relationship, heightened ef-
ficiency with increasing autism severity [30]. Studies of
autistic traits and simple functional connectivity, not de-
riving network metrics, have found mixed results in
which autistic traits are related to lesser functional con-
nectivity between a rostral anterior cingulate region of
interest and bilateral mid-insula [29] but greater func-
tional connectivities between the same region of interest
and other insular subregions [29, 104] as well as lateral
occipital cortex, superior parietal cortex and angular
gyrus [29], and perhaps developmentally related to lesser
connectivity within the default-mode network centred
on posterior cingulum [104]. One study identified op-
posite occipitofrontal connectivity perturbations in two
subgroups [105]. To the extent that this collection of
methods and results can support any general conclusion
about functional network characteristics and autistic
traits, that conclusion seems the negative one that this
relationship is not necessarily monotonic across the aut-
ism diagnostic boundary and/or across development,
and that these dependencies may differ between brain
networks. Indeed, recent theoretical work points out that
in this context of normal individual differences in cogni-
tion, so-called ‘autistic’ trait dimensions, defined so gen-
erally as to encompass much individual cognitive

Table 4 Spearman correlation coefficients between Attention
Network Test orienting scores and nodal functional clustering
coefficients

Regions Clustering coefficient
ρ (p)

R precentral gyrus − 0.511 (0.003)

L superior frontal − 0.417 (0.010)

L middle frontal (orbital) − 0.480 (0.004)

R middle frontal (orbital) − 0.431 (0.009)

L inferior opercular frontal − 0.412 (0.012)

R olfactory − 0.450 (0.006)

R middle orbitofrontal − 0.429 (0.007)

R gyrus rectus − 0.439 (0.008)

L amygdala − 0.485 (0.003)

R amygdala − 0.479 (0.004)

R calcarine cortex − 0.553 (0.0008)

L superior occipital gyrus − 0.445 (0.006)

R postcentral gyrus − 0.434 (0.007)

R inferior parietal lobule − 0.481 (0.004)

R supramarginal gyrus − 0.571 (0.001)

L putamen − 0.437 (0.006)

R putamen − 0.480 (0.003)

L pallidum − 0.471 (0.004)

R pallidum − 0.434 (0.010)

L superior temporal pole − 0.424 (0.009)

L middle temporal pole − 0.494 (0.003)

R middle temporal pole − 0.455 (0.005)

All results are significant at 5% FDR level
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Fig. 1 Examples of functional and structural, experimental and survey results. Regional correlations between nodal functional network efficiencies
and Attention Network Test orienting scores (top), and between nodal structural network clustering coefficients and Systemizing Quotient scores
(bottom). Sizes of the regions reflect of AAL-90 parcellations and are not individually any indication of network extents. Orienting is associated
with a functional attention network comprising basal ganglia and frontal, parietal and visual cortices, overlapping substantially with that for social
responsiveness (not shown), whereas systemising is associated with structural contextual-association networks within parahippocampal cortices.
Right supramarginal gyrus, the cortical region most strongly associated with attention orienting functionally, also is the region associated with
theory-of-mind structurally

Table 5 Spearman correlation coefficients between questionnaire/behavioural measures and global structural network measures

Behavioural
measures

Clustering
coefficient
ρ (p)

Characteristic
path length
ρ (p)

Efficiency
ρ (p)

Behavioural
measures

Clustering
coefficient
ρ (p)

Characteristic
path length
ρ (p)

Efficiency
ρ (p)

2 o ToM 0.127 (0.248) − 0.051 (0.394) 0.144
(0.218)

Reading the Mind in
the Eyes

− 0.162 (0.195) 0.210 (0.135) − 0.141
(0.229)

Allocentric 1o ToM − 0.266 (0.076) 0.216 (0.130) − 0.280
(0.065)

Controlled Oral Word
Association

− 0.079 (0.333) 0.114 (0.273) − 0.073
(0.349)

Egocentric 1o ToM − 0.205 (0.137) 0.149 (0.216) − 0.169
(0.181)

Animal names 0.077 (0.342) − 0.005 (0.487) 0.154
(0.207)

AQ Soc − 0.104 (0.295) 0.136 (0.235) − 0.115
(0.273)

Embedded figures − 0.088 (0.314) − 0.002 (0.498) − 0.076
(0.335)

AQ Det − 0.067 (0.366) 0.107 (0.288) − 0.063
(0.372)

ANT alerting 0.003 (0.495) 0.056 (0.379) 0.043
(0.415)

Empathy quotient 0.221 (0.124) − 0.235 (0.106) 0.213
(0.131)

ANT orienting 0.152 (0.210) − 0.164 (0.196) 0.152
(0.206)

Systemizing
quotient

0.368 (0.023)* − 0.256 (0.090) 0.385
(0.018)*

ANT conflict − 0.052 (0.396) − 0.041(0.410) − 0.068
(0.365)

Sensory Sensitivity
Questionnaire

0.156 (0.202) − 0.242 (0.097) 0.107
(0.286)

ANT grand mean 0.293 (0.211) − 0.283 (0.196) 0.301
(0.207)

Social Responsiveness
Scale

0.207 (0.128) − 0.175 (0.168) 0.219
(0.116)

*p < 0.05
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variation, may well be influenced by mechanisms
distinct from those that produce the syndrome of
autism [11].
Our DTI data, in contrast to fMRI, offer by their na-

ture a more granular description of connectivity,
highlighting specific anatomical nodes of convergence
associated with contextual association (tapped by the
Systemizing Quotient) and theory-of-mind in particular.
In this analysis, greater network integrity of a functional
brain region reflects greater ability within the corre-
sponding domain of cognitive function, regardless of
whether such ability maps onto greater or lesser levels of
autistic traits.
It seems especially notable that this analysis con-

firms right supramarginal gyrus in particular as a
driver of faster perspective-taking, a result consistent
with experimental evidence relating the right tempor-
oparietal junction to allocentric perspective-taking
[106] and attribution of mental states [31]; the poster-
ior inferior extent of this AAL-90 region is consistent
with the localisation of theory-of-mind activations
[107], although an analysis in individual subject space
could provide more specific anatomical confirmation.
Likewise notable is the absence, within these func-
tional and structural graph measures, of any associ-
ation of right supramarginal gyrus with the RMET,
contrary to the case of simple correlative analysis
with task-based fMRI [108].
Interpretation of the SQ’s bilateral medial temporal

localisation is complicated by the persistent ambiguity
as to what skill or trait it is that the SQ is measuring
[39], although we have argued (vide supra) that the
SQ measures invariant contextual association. Like
the slowed attentional orienting discussed above, in-
variant contextual association can be straightforwardly
associated with autistic bricolage, the building up of
configural representations from their component parts
and details. And indeed contextual association in gen-
eral has been proposed [109, 110] as a parsimoniously
unifying theme for parahippocampal cortex’s func-
tional associations with mapping and navigation as
well as episodic memory, all skills associated with
autism. The computational structure of the medial
temporal lobe can support representations of spatial,
temporal, and conceptual distances and contexts [111];
autistic differences in synaptic strengths might bias

hippocampal firing sequences towards representation of
short distances, producing a knack for local detail.

Limitations
Interpretation of these relationships between brain con-
nectivity and behavioural measures is complicated many
meanings of the term ‘connectivity’ [88, 112], referring
variously to functional connectivity (correlated time
series), anatomical connectivity (tracts and synapses) and
computational connectivity (mutual information), on
multiple spatial and temporal scales. Indeed, the ques-
tion of connectivity differences in autistic versus non-
autistic brains, or in this case as a function of individual
differences in autistic traits, depends at least as much on
what we look for and how we look for it as it does on
what we are looking at.
Individual functional mapping both of task-related ac-

tivations within delimited brain areas [113] and of
resting-state network correlations across the whole brain
[83] shows that individual functional anatomical bound-
aries are idiosyncratic, and anatomically neighbouring
functions are interdigitated when examined on spatial
scales finer that gyral and sulcal definitions [83]. Any
study that bases and expresses its localisations in terms
of central tendencies across individuals, then, can yield
only approximate results. Nevertheless, such results do
retain an approximate meaning because functional ana-
tomical adjacencies and parallel connections are pre-
served across individuals, even though their geometric
details are not [83]. In terms of the current study, even
though a particular AAL-90 parcel will in general in-
clude more than a single functional brain region, at a
population (and sample) level, this blurring of several
individual functional anatomies into each AAL-90
parcel does not impair power to make inferences
about the functional anatomical neighbourhood of
that parcel (e.g., [114–116]), and to support hypoth-
eses that localise a functional region wholly or prob-
abilistically to a particular parcel, e.g. theory-of-mind
whose right temporoparietal hypothesis falls within
AAL-90’s right supramarginal gyrus parcel.
No matter how powerful the physiological assays,

brain-behaviour correlations can be only as sensitive and
specific as the behavioural measures are. Of especial
relevance to this current work, quantitative assessment
of sensory sensitivity remains a developing endeavour, in

Table 6 Spearman correlation coefficients between Systemizing Quotient (SQ) scores and nodal structural network measures

Regions Strength vs SQ
ρ (p)

Regions Clustering coefficient vs SQ
ρ (p)

Regions Efficiency vs SQ
ρ (p)

L Parahippocampal 0.585 (0.0003) R Parahippocampal 0.556 (0.0007) L Parahippocampal 0.556 (0.001)

R Parahippocampal 0.592 (0.0004) R Middle temporal pole 0.517 (0.0013) R Parahippocampal 0.564 (0.0005)

R Olfactory 0.555 (0.0007)

All results are significant at 5% FDR level

Paul et al. Molecular Autism            (2021) 12:3 Page 14 of 18



which survey reports such as the SSQ may not converge
with direct observations [117]. Likewise, the story sur-
rounding FC-EFT and EFT variants in general as a
measure of autistic perceptual focus on detail has be-
come more and more equivocal [54], and the RMET
seems to accomplish its correlation with autistic traits
more by measuring verbal skills than by measuring
empathy per se [50, 51].

Conclusions
This study associates more autistotypal (i.e. more im-
paired) levels of social responsiveness and attention
orienting with greater efficiency of brain-wide func-
tional networks, and greater levels of systemising and
of social perspective-taking with greater structural
network efficiencies centring on medial/anterior tem-
poral lobe and right temporoparietal junction, respect-
ively. The skills indexed by widespread functional
network efficiency may be more general across social
and non-social domains of cognition, and those
indexed by anatomically specific structural network
efficiency more domain-specific. This study has not
investigated intra-individual variation in the moment-
to-moment dynamics of functional brain connectivity
[118, 119], an approach that in future may help to re-
solve apparent inconsistencies between these and
other early results on dimensional relationships be-
tween autistic traits and neural connectivity. Further
work can complement the current results with EEG
or MEG imaging modalities sensitive to high-
frequency signals and can resolve the open questions
of whether these relationships between autistic traits
and brain network efficiencies are invariant across de-
velopment, and across the diagnostic boundary be-
tween autistic traits and autism spectrum conditions.
Understanding how people with autistic traits think
can ultimately help inform individualised supports for
people within and beyond the autism spectrum.
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