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Abstract

The aim of this paper is the design a new one-step implicit and thermodynamically consistent
Energy-Momentum (EM) preserving time integration scheme for the simulation of thermo-elastic
processes undergoing large deformations and temperature fields. Following [12], we consider
well-posed constitutive models for the entire range of deformations and temperature. In that
regard, the consideration of polyconvexity inspired constitutive models and a new tensor cross
product algebra are shown to be crucial in order to derive the so-called discrete derivatives,
fundamental for the construction of the algorithmic derived variables, namely the second Piola-
Kirchoff stress tensor and the entropy (or the absolute temperature). The proposed scheme
inherits the advantages of the EM scheme recently published by Franke et al. [17], whilst resulting
in a simpler scheme from the implementation standpoint. A series of numerical examples will
be presented in order to demonstrate the robustness and applicability of the new EM scheme.
Although the examples presented will make use of a temperature-based version of the EM scheme
(using the Helmholtz free energy as the thermodynamical potential and the temperature as the
thermodynamical state variable), we also include in an Appendix an entropy-based analogue
EM scheme (using the internal energy as the thermodynamical potential and the entropy as the
thermodynamical state variable).

Keywords: finite element method, nonlinear thermo-elastodynamics, energy-momentum
scheme, structure-perserving discretisation.

1. Introduction

The development of thermo-elastic constitutive models for the simulation of materials under-
going external mechanical and thermal loading has been the focus of intensive study in numerous
References [17, 25]. These constitutive models are typically based on an invariant representation
of the Helmholtz free energy functional, defined in terms of the deformation gradient tensor F
(through the objective right Cauchy-Green tensorC) and the absolute temperature θ (temperature
in the sequel). Based on this energy (potential) functional, many authors [17, 25] have proposed
temperature-based consistent implicit energy momentum (EM) time integration schemes for the
long term simulation of structural components governed by this Helmholtz potential. This type of
time integration schemes are well-known for their robustness and stability properties due to their
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structure-preserving features, making them ideal for long term stable simulations. We purposely
use the term temperature-based to stress the fact that this type of algorithms rely on the temper-
ature field as the thermodynamical state variable and, as such, this temperature represents one
of the unknowns to be solved.

EM schemes are regarded as both elegant and robust because they are endowed by construction
with the discrete analogue of the conservation properties of the continuum, namely the conserva-
tion of total energy, linear and angular momenta. The consistency of EM schemes refers to their
ability to preserve (or dissipate for non-reversible constitutive models) the total energy of a sys-
tem in agreement with the laws of thermodynamics [20, 7, 17, 25]. Consistency of these methods
is attained by replacing the (exact) partial derivatives of the Helmholtz free energy functional
with respect to its arguments (C and θ) with their carefully designed algorithmic counterparts.
These algorithmic partial derivatives, also known as discrete derivatives [17, 7, 27, 18, 31], are
formulated in compliance with the so-called directionality property [18]. Unfortunately, the suc-
cess of current temperature-based EM consistent integrators rely on the introduction of discrete
derivatives incorporating consistency restoring terms [21] which are not that straightforward to
be systematised and generalised, especially if interested in pursuing multi-physics applications
beyond thermo-mechanics.

An alternative approach uses the entropy-based GENERIC framework, where the entropy η is
considered as the thermodynamical state variable (see the works of Romero [29] and Conde [25]),
where EM schemes have been also successfully developed. However, a well-accepted difficulty of
entropy-based formulations is the non-trivial consideration of temperature boundary conditions.
Indeed, unless relatively simple thermo-mechanical models are considered, a (computationally
expensive) Newton-Raphson type procedure is required in order to solve a nonlinear equation
relating η and θ on the part of the boundary subjected to prescribed temperature (at each
boundary quadrature point). This is one of the main reasons to prefer the Helmholtz free energy
functional as a thermodynamic potential over the internal energy and, thus, the temperature over
the entropy as the thermodynamical state variable.

Very recently, Franke et. al. [17] have proposed a novel EM scheme in the context of thermo-
elasticity, by taking advantage of the concept of isothermal polyconvexity [1, 2, 3, 4, 30] and the
use of a novel tensor cross product pioneered by de Boer [15] and re-discovered in the context of
nonlinear continuum mechanics by Bonet et al. [10, 9, 8]. In essence, the authors propose the
consideration of four discrete derivatives which are used to form algorithmic versions of the second
Piola-Kirchoff stress tensor and the entropy of the system. In addition to the discrete derivative
with respect to the temperature, three further discrete derivatives are presented, which represent
the algorithmic counterparts of the work conjugates of the right Cauchy-Green deformation tensor,
its co-factor and its determinant. This strategy leads to simplified expressions of the algorithmic
second Piola-Kirchoff stress tensor and entropy, when comparing against those obtained following
the classical approach [18]. Finally, as the EM scheme in [17] relies on the re-definition of the
internal energy of the system in terms of the temperature, this ultimately entails a certain level
of complexity in the derivation of the discrete derivatives (refer to Appendix B).

The aim of the current paper is the development of a new polyconvexity inspired temperature-
based EM scheme which uses the Helmholtz free energy functional as the fundamental thermo-
dynamical potential. As a result, the new EM scheme will be shown to inherit the advantages of
that of [17] (i.e. consistency, stability, conservation) whilst, in addition, resulting in dramatically
far simpler algorithmic expressions. We conceive the simplification brought forward by the new
EM scheme as a crucial preliminary step in order to bridge the gap with recently published EM
schemes developed by the authors in the context of electro-elasticity [27] and, therefore, seek
extension to thermo-electro-elasticity.

The outline of this paper is as follows: in Section 2, some basic principles of kinematics are
presented. The governing equations in nonlinear thermo-elastodynamics are also presented in
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this section. Section 3 introduces the Helmholtz free energy functional and the internal energy
functional. Section 4 presents the weak forms associated with the governing equations in thermo-
elastodynamics. These will help introducing the new temperature-based one-step implicit EM
time integrator scheme for thermo-elastodynamics in Section 5. Section 6 briefly describes the
finite element implementation of the new time integrator scheme and Section 7 presents a series
of numerical examples in order to validate the conservation properties and robustness of the new
scheme. Finally, Section 8 provides some concluding remarks. Appendix A presents an entropy-
based EM scheme, counterpart of the temperature-based scheme pursued in this paper. Appendix
B outlines the definition of the discrete derivative expressions featuring in the proposed time
integrator in Section 5. Appendix C summarises the EM scheme in Reference [17], illustrating
the differences between this and the new EM proposed. Appendix D presents the steps that need
to be carried out in order to derive the thermo-elastic constitutive model presented in Section
3.1.1.

2. Nonlinear continuum thermo-mechanics

A brief introduction into nonlinear continuum mechanics and the relevant governing equations
will be presented in this section.

2.1. Kinematics: motion and deformation

Let us consider the motion of a continuum with reference configuration B0 ∈ R3 of boundary
∂B0 and unit outward normal N (refer to Figure 1). After the motion, the continuum occupies
a deformed configuration B ∈ R3 with boundary ∂B and unit outward normal n. The deforma-
tion mapping φ (X, t) links a material particle from the reference configuration X ∈ B0 to the
deformed configuration x ∈ B according to x = φ (X, t). Associated with the mapping φ (X, t)
it is possible to define the two-field deformation gradient tensor F [11, 19, 16, 5] as

F = ∇0φ (X, t) ; FiI =
∂φi
∂XI

. (1)

Associated with F it is possible to define its co-factor H and its Jacobian J , defined as

H = (detF )F−T ; J = detF . (2)

Equivalent expressions to those in (2) for both H and J can be obtained by making use of
the tensor cross product operation, introduced by de Boer [15] and rediscovered by Bonet et al.
[10] in the context of nonlinear solid mechanics, as4

H =
1

2
F F ; HiI =

1

2
EijkEIJKFjJFkK ; (3a)

J =
1

3
H : F ; J =

1

3
HiIFiI . (3b)

4Eijk (or EIJK) symbolises the third order alternating tensor components and the use of repeated indices implies
summation, unless otherwise stated. Lower case indices {i, j, k} will be used to represent the spatial configuration
whereas capital case indices {I, J,K} will be used to represent the material configuration.
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2.2. Governing equations in nonlinear thermo-mechanics: conservation of linear momentum and
angular momentum

The local form of the conservation of linear momentum [19] can be written as

ρ0v̇ −DIV (FS)− f 0 = 0; in B0;

(FS)N = t0; on ∂tB0;

φ = φ̄; on ∂φB0;

φ̇
∣∣∣
t=0

= ˙̄φ; in B0;

φ|t=0 = φ̄; in B0,

(4)

where ρ0 : B0 → R+ represents the mass density of the continuum in the reference configuration,
v the velocity field and (•̇) := d(•)

dt
denotes differentiation with respect to time. Furthermore,

f 0 represents a body force per unit undeformed volume B0 and t0, the traction force per unit
undeformed area applied on ∂tB0 ⊂ ∂B0, such that ∂tB0 ∪ ∂φB0 = ∂B0 and ∂tB0 ∩ ∂φB0 = ∅.
Finally, S represents the second Piola-Kirchhoff stress tensor and the local conservation of angular
momentum leads to the well-known tensor condition S = ST .

Figure 1: The mapping φ and the mechanical and thermal portions of the boundary where Dirichlet conditions
are imposed in the reference (and deformed) configurations, namely ∂φB0 (and ∂φB) and ∂θB0 (and ∂θB).

2.3. Governing equations in non-linear thermo-mechanics: conservation of energy

In the absence of internal state variables (i.e. plastic strain), the local form of the balance of
energy can be written in a Lagrangian setting as

θη̇ + DIVQ−Rθ = 0; in B0;

Q ·N = −Qθ; on ∂QB0;

θ = θ̄; on ∂θB0;

θ|t=0 = θ̄; in B0,

(5)

where θ is the absolute temperature field and η and Q, the entropy and heat flux per unit unde-
formed volume B0, respectively. In addition, Rθ represents the heat source per unit undeformed
volume B0 and Qθ, the heat source per unit undeformed area applied on ∂QB0 ⊂ ∂B0. In (5),
∂θB0 represents the part of the boundary ∂B0 where essential temperature boundary conditions
are applied such that ∂QB0∪∂θB0 = ∂B0 and ∂QB0∩∂θB0 = ∅. In order to develop a suitable EM
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time integrator in the context of thermo-elasticity, we advocate in this work for an alternative
but equivalent (at the continuum level) expression of (5), namely

d

dt
(θη)− θ̇η + DIVQ−Rθ = 0; in B0;

Q ·N = −Qθ; on ∂QB0;

θ = θ̄; on ∂θB0;

θ|t=0 = θ̄; in B0.

(6)

3. Constitutive equations in nonlinear thermo-elasticity

The governing equations presented in Section 2 are coupled by means of a suitable constitutive
law. The objective of the following section is to introduce some notions on constitutive laws in
thermo-elasticity.

3.1. The Helmholtz free energy

In the case of thermo-elasticity, the Helmholtz free energy Ψ per unit of undeformed volume
can be defined in terms of ∇0φ and θ, namely Ψ = Ψ(∇0φ, θ) (see [26]), as

Ψ (∇0φ, θ) = W (F ,H , J, θ) . (7)

In this work it is assumed that the Helmholtz free energy is rank-one convex with respect to
the deformation gradient ∇0φ and concave with respect to the absolute temperature θ, i.e.

(u⊗ V ) : ∂2
∇0φ∇0φ

Ψ : (u⊗ V ) ≥ 0, ∀u,V ∈ R3; ∂2
θθΨ ≤ 0. (8)

Above condition (8) is strongly connected with the notion of material stability [24] and ensures
the stability of the system of governing equations (4) and (6) [13, 14]. A sufficient condition for
(8) to hold is obtained when the extended representation W (F ,H , J, θ) is convex with respect to
the set V = {F ,H , J} (namely, polyconvex with respect to the mechanics [1, 3, 4]) and concave
with respect to θ, namely

gV := δVT : [HW ] : δV ≥ 0, ∀ δV ; gθ := ∂2
θθW ≤ 0, (9)

with δV and the Hessian operator [HW ] defined as

δV =

δFδH
δJ

 ; [HW ] =

∂2
FFW ∂2

FHW ∂2
FJW

∂2
HFW ∂2

HHW ∂2
HJW

∂2
JFW ∂2

JHW ∂2
JJW

 . (10)

For the requirement of objectivity, the energy functional W (7) can be re-expressed in terms
of a set of objective arguments as

Ψ (∇0φ, θ) = Ψ̃ (C, θ) = W̃ (C,G, C, θ) , (11)

where Ψ̃ represents the Helmholtz free energy in terms of the right Cauchy-Green strain tensor
C and θ and W̃ denotes its extended counterpart, expressed in terms of the extended symmetric
kinematic set {C,G, C}, defined as

C = F TF ; G =
1

2
C C = HTH ; C =

1

3
G : C = J2, (12)

and θ. The first law of thermodynamics and the absence of internal state variables leads to

DΨ̃ (C, θ) [δφ] = S :
1

2
DC[δφ]; DΨ̃ (C, θ) [δθ] = −ηδθ, (13)
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where DΨ̃[a] represents the directional derivative of Ψ̃ along the field a. In addition, the second
Piola-Kirchhoff stress tensor S and the material entropy η are defined in terms of the derivatives
of Ψ̃ (C, θ), namely

S = 2∂CΨ̃; η = −∂θΨ̃. (14)

An alternative but equivalent definition of the directional derivatives of Ψ̃ (C, θ) to those in

(13) can be obtained by considering the equivalent extended representation W̃ (11),

DW̃ [δφ] = ∂CW̃ : DC[δφ] + ∂GW̃ : DG[δφ] + ∂CW̃DC[δφ]; DW̃ [δθ] = ∂θW̃ δθ. (15)

From (12), the directional derivatives of {C,G, C}, featuring in (15), can be expressed as

DC[δφ] = (∇0δφ)T F + F T∇0δφ; DG[δφ] = C DC[δφ]; DC[δφ] = G : DC[δφ]. (16)

Finally, inserting (16) into (15)a and comparison with (13) enables to obtain an equivalent
expression for S and η to those in equations (14) as

S = 2∂CW̃ + 2∂GW̃ C + 2∂CW̃G; η = −∂θW̃ . (17)

3.1.1. Additive split of the Helmholtz free energy

Following calorimetry principles (refer to Appendix D), the Helmholtz energy can be formu-
lated through an additive decomposition as

W (F ,H , J, θ) = Wm (F ,H , J) +Wθ(θ)− (θ − θR)ηR (J)︸ ︷︷ ︸
−Wc(J,θ)

;

W̃ (C,G, C, θ) = W̃m (C,G, C) + W̃θ (θ)− (θ − θR)η̃R (C)︸ ︷︷ ︸
−W̃c(C,θ)

,
(18)

where θR denotes the reference temperature and ηR(J) (or η̃R (C)) is a function that mea-
sures the entropy generated through deformation at the reference temperature θR

5. An exam-
ple of mechanical contribution complying with (18) is the Mooney-Rivlin model WMR(F ,H , J)

(W̃MR(C,G, C)), defined as

Wm (F ,H , J) = WMR(F ,H , J) =
µ1

2
IIF +

µ2

2
IIH − (µ1 + 2µ2) ln J +

λ

2
(J − 1)2;

W̃m (C,G, C) = W̃MR(C,G, C) =
µ1

2
trC +

µ2

2
trG− (µ1 + 2µ2) lnC1/2 +

λ

2
(C1/2 − 1)2,

(19)

where IIA = A : A and {µ1, µ2, λ} are positive material parameters related to the shear and bulk
moduli of the material in the origin (when ∇0φ = I and θ = θR), namely {µR, λR} as

µR = µ1 + µ2; λR = λ+ 2µ2. (20)

The purely thermal contribution in (18) is defined as (see [17] and Appendix D)

Wθ (θ) = W̃θ (θ) = cv

(
θ − θR − θ ln

θ

θR

)
, (21)

where cv ≥ 0 is the specific heat capacity. A very typical expression adopted for the reference
entropy function ηR(J) (and η̃R(C)) is that of a Mie-Gruneisen model, defined as

ηR(J) = cvΓ0

{
Jq−1
q

if q > 0;

ln J if q = 0.
η̃R(C) = cvΓ0

{
C
q
2−1
q

if q > 0;

lnC1/2 if q = 0,
(22)

5In this case, we have assumed that the reference entropy function is only dependent upon the volumetric
deformation.
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with q ≥ 0 a material parameter and Γ0 a material parameter. For an additively decomposed
mechanical contribution such as that in (19), the inequalities (9) become

gF :=δF : ∂2
FFWmF : δF ≥ 0; gH :=δH : ∂2

HHWmH : δH ≥ 0;

gJ :=W ′′
mJ
− (θ − θ0)η′′0 ≥ 0; gθ :=W ′′

θ ≤ 0,
(23)

which, for the model under consideration, lead to

gF = µ1IIδF ; gH = µ2IIδH ;

gJ =

{ µ1+2µ2
J2 + λ− cvΓ0(θ − θR)(q − 1)Jq−2 if q > 0;

µ1+2µ2
J2 + λ− cvΓ0

(θ−θR)
J2 if q = 0;

gθ = −cv
θ
.

(24)

Clearly, the only term in (24) which might compromise stability (inequalities (23)) is gJ . For
materials where volumetric deformations are small (i.e. J ≈ 1), the critical temperature θcr
violating (23) can be estimated as

θcr = θR

(
1− γ

θR

)
; γ =

{
µ1+2µ2+λ
cvΓ0|(q−1)| if q > 0;
µ1+2µ2+λ

cvΓ0
if q = 0.

(25)

It is possible to define the total Helmholtz functional W (F ,H , J) in (18) complying with the
material stability condition in (9) unconditionally, namely, for the entire range of deformations
and temperature values [12]. In order to do this, the mechanical contribution Wm in (19) is
carefully modified as

Wm (F ,H , J) = WMR(F ,H , J) + θRcvΓ0(J − 1)− θRηR(J);

W̃m (C,G, C) = W̃MR(C,G, C) + θRcvΓ0(C1/2 − 1)− θRη̃R(C).
(26)

Notice that the second term on both right-hand sides of (26) has been added in order to satisfy

the stress-free condition for Wm(F ,H , J) (and W̃m(C,G, C)), namely (refer to equation (17)a)(
2∂CW̃m + 2∂GW̃m C + 2∂CW̃mG

)∣∣∣C = I
G = I
C = 1

= 0; (27)

Furthermore, notice that a sufficient condition for the satisfaction of the material stability
condition in (9) is the concavity of the entropy function ηR(J) with respect to the Jacobian term
J (i.e. ∂JJηR ≤ 0), satisfied by the expressions in equation (22)a.

The constitutive model presented throughout this section has been included as an example.
It is not essential for the time integrator that will be presented in Section 5.1 and alternative
multiplicative split-based thermo-mechanical models can also be used.

3.1.2. The internal energy

Satisfaction of condition (9)b enables to establish a one-to-one and invertible relationship

between the Helmholtz free energy functional W̃ (C,G, C, θ) and the internal energy functional

Ũ(C,G, C, η) by means of a partial Legendre transform as

Ũ(C,G, C, η) = max
θ

{
θη + W̃ (C,G, C, θ)

}
. (28)

From the internal energy it is possible to obtain the second Piola-Kirchhoff stress tensor and
the temperature as

S = 2∂CŨ + 2∂GŨ C + 2∂CŨG; θ = ∂ηŨ . (29)
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From equation (17)b it is possible to obtain an explicit expression of θ as a function of η for
the specific thermo-mechanical model in (21) and (22) as

η =: −∂θW̃ =

(
η̃R(C) + cv ln

θ

θR

)
→ θ = θR exp

(
η−η̃R(C)

cv

)
. (30)

Introduction of (30) into (28) enables to obtain the following additive decomposition of the
internal energy functional

Ũ (C,G, C, η) = Ũm (C,G, C) + Ũc (C, η) , (31)

with

Ũm(C,G, C) = W̃m(C,G, C); Ũc(C, η) = θR

(
κ

(
exp

(
η−η̃R(C)

cv

)
−1

)
+ η̃R(C)

)
. (32)

3.2. Fourier law

Fourier law relates the spatial heat flux q and the spatial gradient of θ by virtue of the following
expression

q = −k∇θ, (33)

where k represents the semi-positive definite second order thermal conductivity tensor in the
deformed configuration. As customary in continuum mechanics, the relation between q and its
material counterpart Q featuring in equation (6) can be carried out by making use of the Gauss’
theorem and the Nanson’s rule (i.e. da = HdA) as∫

B
divq dv =

∫
∂B
q · da =

∫
∂B0
Q · dA, (34)

with
Q = HTq = −HTk∇θ. (35)

The spatial gradient of θ (35) can be conveniently related to its material counterpart as

∇θ = F−T∇0θ = J−1H∇0θ. (36)

Finally, introduction of (36) into (35) yields

Q = −K∇0θ; K = J−1HTkH . (37)

4. Thermo-Elastodynamics

The objective of this section is to present the variational formulation that will be used in order
to develop an EM time integration scheme in Section 5.

4.1. Continuum formulation

In order to derive a suitable EM time integrator, we first study the conservation properties
of a thermo-elastic continuum controlled by the governing equations (4) and (6). For this, we
present the following three weak form equations:

Wv =

∫
B0

(
v − φ̇

)
· ρ0wv dV = 0;

Wφ =

∫
B0
ρ0v̇ ·wφ dV +

∫
B0
S :

1

2
DC[wφ] dV −

∫
B0
f 0 ·wφ dV −

∫
∂tB0

t0 ·wφ dA = 0;

Wθ =

∫
B0

d

dt
(θη)wθ dV −

∫
B0
θ̇ηwθ dV −

∫
B0
Q ·∇0wθ dV −

∫
B0
Rθwθ dV −

∫
∂QB0

Qθwθ dA = 0,

(38)
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where {v,φ, θ} ∈ Vφ × Vφ × Vθ and {wv,wφ, wθ} ∈ Vφ0 × Vφ0 × Vθ
0

6, with

Vφ =
{
φ : B0 → R3; (φ)i ∈ H

1 (B0)
}

; Vθ =
{
θ : B0 → R; θ ∈ H1 (B0)

}
;

Vφ0 =
{
∀φ ∈ Vφ; φ = 0 on ∂φB0

}
; Vθ

0 =
{
∀θ ∈ Vθ; θ = 0 on ∂θB0

}
.

(39)

4.2. Balance laws and integrals in thermo-elastodynamics

Starting with the stationary conditions (38) the following sections derive the global conserva-
tion laws that govern the motion of the thermo-elastic continuum.

4.2.1. Global form for conservation of linear momentum

For a displacement field wφ = ξ, with R3 3 ξ = const., the stationary condition in (38)b leads
to the global form of the conservation of linear momentum, namely

L̇− F ext = 0; L =

∫
B0
ρ0v dV ; F ext =

∫
∂tB0

t0 dA+

∫
B0
f 0 dV, (40)

where L represents the total linear momentum and F ext, the total external force. From (40) it
is possible to conclude that L is a constant of motion for the case of vanishing external forces
F ext. Nonetheless, notice that a translational field is potentially incompatible with the presence
of Dirichlet boundary conditions. This entails that above result is only valid for the case where
Dirichlet boundary conditions are not applied. Otherwise, the global balance in equation (40)
must account for the reaction forces induced in the boundary ∂φB0 as a result of the application of
the Dirichlet boundary conditions. However, for the sake of simplicity and brevity of exposition,
we will not include the effect of mechanical or thermal boundary conditions in the forthcoming
balance laws.

4.2.2. Global form for conservation of angular momentum

For a rotational field wφ = ξ × φ, with R3 3 ξ = const., the stationary condition in (38)b
leads to the global form of the conservation of angular momentum, namely

J̇ −M ext = 0; J =

∫
B0
φ× ρ0v dV ; M ext =

∫
∂tB0

φ× t0 dA+

∫
B0
φ× f 0 dV, (41)

where J represents the total angular momentum and M ext, the total external torque. From (41),
it is clear that J is a constant of motion for vanishing external torques M ext.

4.2.3. Global form for conservation of power

Let us replace the test functions {wv,wφ} in (38) with {v̇, φ̇} ∈ {Vφ0 × Vφ0 } and let us take
wθ = 1. This yields∫

B0

(
v − φ̇

)
· ρ0v̇ dV = 0;∫

B0
ρ0v̇ · φ̇ dV +

∫
B0
S :

1

2
Ċ dV −

∫
B0
f 0 · φ̇ dV −

∫
∂tB0

t0 · φ̇ dA = 0;∫
B0

d

dt
(θη) dV −

∫
B0
θ̇η dV −

∫
B0
Rθ dV −

∫
∂QB0

Qθ dA = 0.

(42)

6Notice in that φ must satisfy in addition the condition J > 0 a.e.
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Addition of the three equations in (42) leads, in the case of time independent forces f 0 and
t0 to

K̇ +

∫
B0

(
S :

1

2
Ċ − θ̇η

)
dV +

∫
B0

d

dt
(θη) dV − Π̇ext (φ)− Q̇ext = 0, (43)

where K̇, Π̇ext and Q̇ext represent the kinetic power, the external mechanical power and the
external heat power, defined as

K̇ =

∫
B0
ρ0v·v̇ dV ; Π̇ext =

∫
B0
f 0·φ̇ dV +

∫
∂tB0

t0·φ̇ dA; Q̇ext =

∫
B0
Rθ dV +

∫
∂QB0

Qθ dA. (44)

Making use of (15) and (17) in (43) yields

K̇ +

∫
B0

˙̃
W (C,G, C, θ) dV +

∫
B0

d

dt
(θη) dV − Π̇ext (φ)− Q̇ext = 0. (45)

Making use of the Legendre transformation in (28) it is possible to re-express (45) as

K̇ +

∫
B0

˙̃
U (C,G, C, η) dV − Π̇ext (φ)− Q̇ext = 0. (46)

Therefore, for vanishing external mechanical and thermal power, the following condition holds,

Ḣ = 0; H = K +

∫
B0
Ũ(C,G, C, η) dV, (47)

and accordingly, the Hamiltonian H or total energy is conserved throughout the motion of the
continuum.

5. Energy-Momentum integration scheme for thermo-elastodynamics

Following the work of Simo [31], Gonzalez [18], Romero [28] and Betsch [7, 6] in the context
of nonlinear elasticity and Franke et al. [17] in the context of thermoelasticity, the objective of
this section is to propose an EM preserving time discretisation scheme for the weak forms in (38).

5.1. Design of the EM scheme

Let us consider a sequence of time steps {t1, t2, ..., tn, tn+1}, where tn+1 denotes the current
time step. From the weak forms in (38), the following implicit one-step time integrator is proposed

(Wv)algo =

∫
B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0wv dV = 0;

(Wφ)algo =

∫
B0
ρ0

∆v

∆t
·wφ dV +

∫
B0

(S :
1

2
DC[wφ])algo dV −

∫
B0
f 0n+1/2

·wφ dV

−
∫
∂tB0

t0n+1/2
·wφ dA = 0;

(Wθ)algo =

∫
B0

∆ (θη)

∆t
wθ dV −

∫
B0

∆θ

∆t
ηalgowθ dV −

∫
B0
Qn+1/2 ·∇0wθ dV

−
∫
B0
Rθn+1/2wθ dV −

∫
∂QB0

Qθn+1/2wθ dA = 0.

(48)

Note that (Wv)algo, (Wφ)algoand (Wθ)algo in (48) represent the algorithmic or time discrete

versions of the stationary conditions in (38) and (•)n+1/2 = 1
2

(
(•)n+1 + (•)n

)
and ∆ (•) = (•)n+1−

10



(•)n. Following the work of Betsch. et. al [7, 17, 27], we draw a parallelism between the terms

{(S : 1
2
DC[wφ])algo, ηalgo} and the expressions for {DW̃ [δφ], η} in (15)a and (17)b and hence, we

advocate for an analogous expression of the algorithmic terms as

(S :
1

2
DC[wφ])algo = DCW̃ : (DC[wφ])algo +DGW̃ : (DG[wφ])algo +DCW̃ (DC[wφ])algo ;

ηalgo = −DθW̃ ,
(49)

with the algorithmic directional derivatives {(DC[wφ])algo , (DG[wφ])algo , (DC[wφ])algo} defined
as in Reference [27], i.e.

(DC[wφ])algo =
(

(∇0wφ)T F n+1/2 + F T
n+1/2∇0wφ

)
;

(DG[wφ])algo = Calgo (DC[wφ])algo ; Calgo = Cn+1/2;

(DC[wφ])algo = Galgo : (DC[wφ])algo ; Galgo =
1

3

(
Cn+1/2 Cn+1/2 +Gn+1/2

)
.

(50)

In (49), {DCW̃ ,DGW̃ ,DCW̃ ,DθW̃} represent the discrete derivatives (cf. [18, 17]) of the

Helmholtz energy W̃ with respect to {C,G, C, θ}, respectively, which are the algorithmic or time

discrete counterparts of {∂CW̃ , ∂GW̃ , ∂CW̃ , ∂θW̃}, respectively. Finally, introduction of (50) into
(49) permits to conveniently re-write (49) as

(S :
1

2
DC[wφ])algo = Salgo :

1

2
(DC[wφ])algo; Salgo = 2DCW̃ + 2DGW̃ Calgo + 2DCW̃Galgo.

(51)

Remark 1. It is important to emphasise that the derivation of the EM time integrator in (48),
associated with the set of weak forms in (38), is based on the following four steps, which are
common for the design of any EM time integrator, namely:

1. Substitution of time rates (•̇) with ∆(•)
∆t

, where ∆(•) = (•)n+1 − (•)n.
2. Midpoint evaluation of terms, namely (•)n+1/2 = 1

2
((•)n+1 + (•)n).

3. Substitution of the derivatives of the Helmholtz energy functional {∂CW̃ , ∂GW̃ , ∂CW̃ , ∂θW̃}
with their discrete counterparts {DCW̃ ,DGW̃ ,DCW̃ ,DθW̃}.

4. Replacement of the directional derivatives of the symmetric strain measures {C,G, C},
namely {DC[wφ], DG[wφ], DC[wφ]}, with their carefully selected algorithmic counter-
parts, namely {(DC[wφ])algo , (DG[wφ])algo , (DC[wφ])algo}.

Remark 2. Notice that both the exact and algorithmic entropy variables, namely η and ηalgo,
respectively, feature in equation (48). The first (i.e. η, on the first term on the right hand side of
(48)) is obtained according to equation (17) whereas the second, (i.e. ηalgo, on the second term
on the right hand side of (48)) is obtained according to equation (49)b.

Remark 3. Comparison of the EM scheme proposed in equation (48) against the EM scheme in
Reference [17] (and succinctly summarised in Appendix C) illustrates the simplicity of the new
formulation with respect to the latter.

Remark 4. Notice that, as for any EM time integrator, discretisation and linearisation of the time
integrator in (48) leads to an unsymmetric system of equations, in contrast to the midpoint rule.
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5.1.1. Discretive derivatives of the internal energy

We follow in this work a definition of the discrete derivatives {DCW̃ ,DGW̃ ,DCW̃ ,DθW̃}
of the Helmholtz free energy functional based on the derivation presented in [17] for energies
depending upon several arguments. These generic expressions, presented in Appendix B, satisfy
two crucial properties for the design of EM time integrators, namely:

- They fulfil the so called directionality property [17, 18],

DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DθW̃∆θ = ∆W̃ . (52)

- They are well defined in the limit as ||∆C|| → 0, ||∆G|| → 0, ||∆C|| → 0 and ∆θ → 0.

The first property is critical for the algorithm in (48) to preserve the balance of power in (46)
in the discrete setting. The second condition ensures that for sufficiently regular solutions

DCW̃ = ∂CW̃
(
Ṽn+1/2

)
+O

(
∆t2
)

; DGW̃ = ∂GW̃
(
Ṽn+1/2

)
+O

(
∆t2
)

;

DCW̃ = ∂CW̃
(
Ṽn+1/2

)
+O

(
∆t2
)

; DθW̃ = ∂θW̃
(
Ṽn+1/2

)
+O

(
∆t2
)
,

(53)

with Ṽ = {C,G, C, θ}, guaranteeing that the proposed EM time integrator is second order
accurate. For the specific constitutive model in equations (21), (22) and (26), each of the discrete
derivatives adopt the following extremely simple expressions

DCW̃ =
µ1

2
I;

DGW̃ =
µ2

2
I;

DCW̃ =
W̃mC (Cn+1)− W̃mC (Cn)

∆C

+
1

2

W̃c(Cn+1, θn)− W̃c(Cn, θn)

∆C
+

1

2

W̃c(Cn+1, θn+1)− W̃c(Cn, θn+1)

∆C
;

DθW̃ =
W̃θ(θn+1)− W̃θ(θn)

∆θ

+
1

2

W̃c(Cn, θn+1)− W̃c(Cn, θn)

∆θ
+

1

2

W̃c(Cn+1, θn+1)− W̃c(Cn+1, θn)

∆θ
.

(54)

Notice the simplicity of the expressions of the multiple discretive derivatives with respect to
those that would be obtained in the classical approach, whereby two very complex directional
derivatives are needed, namely {DCΨ̃, DθΨ̃} (cf. [17, 25]).

Remark 5. Most authors (see Reference [21]) make use of ηalgo = ηn+1/2 in (48) instead of
our definition in (49)b involving the discrete derivative DθW . In addition, they use DθW =
−η(Cn+1/2, θn+1/2) in the directionality property (52), which yields the alternative directionality
property

DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C = ∆W̃ + η(Cn+1/2, θn+1/2)∆θ, (55)

where η(Cn+1/2, θn+1/2) is evaluated according to (17)b, i.e.

η(Cn+1/2, θn+1/2) = −∂θW̃ (C, θ)
∣∣∣
C=Cn+1/2,θ=θn+1/2

. (56)

Notice that the directionality property (55) differs from that in (52) in two aspects: (a)
the additional term ηn+1/2∆θ, necessary to guarantee consistency (energy conservation); (b) the

12



absence of the discrete derivative with respect to temperature (DθW̃ ), in contrast to expression
(52). The two contrasting aspects mentioned must have necessarily an impact on the definition of

the discrete derivatives {DCW̃ ,DGW̃ ,DCW̃}. In particular, for the model described in equations
(21), (22) and (26) (where the entropy depends upon the volumetric term C), making use of
Appendix B and considering the extra term on the right hand side of (55) yields expressions

for the discrete derivatives DCW̃ , DGW̃ and DCW̃ , differing with respect to those in (54) in the
addition of three consistency restoring terms, namely

DCW̃ = µ1I + αC
η(Cn+1/2, θn+1/2)∆θ

||∆C||2
∆C︸ ︷︷ ︸

Consistency restoring term

;

DCW̃ = µ2I + αG
η(Cn+1/2, θn+1/2)∆θ

||∆G||2
∆G︸ ︷︷ ︸

Consistency restoring term

;

DCW̃ =
W̃mC (Cn+1)− W̃mC (Cn)

∆C

+
1

2

W̃c(Cn+1, θn)− W̃c(Cn, θn)

∆C
+

1

2

W̃c(Cn+1, θn+1)− W̃c(Cn, θn+1)

∆C

+ αC
η(Cn+1/2, θn+1/2)∆θ

∆C︸ ︷︷ ︸
Consistency restoring term

,

(57)

where αC , αG, αC ∈ R must satisfy the relationship αC + αG + αC = 1 in order to guarantee
(55). Obviously, for the model considered in the paper, where the coupling between the thermal
and mechanical part is dictated exclusively by the volumetric term C, a judicious choice of
{αC , αG, αC} yielding a simple expression for the discrete derivatives (57) would be

αC = 0; αG = 0; αC = 1. (58)

However, for thermomechanical models where the coupling depends upon the tensor C (and
not its determinant), such as in the case of modified entropic elasticity, a better choice of param-
eters could be

αC = 1; αG = 0; αC = 0. (59)

Since the EM scheme presented in Section 5.1 does not need to incorporate consistency restor-
ing terms in none of its four discrete derivatives, it is easy to be systematised and generalised
regardless of the constitutive model used, and even extended to more complex multi-physics sce-
narios, such as that of thermo-electro-elasticity, without taking extra considerations regarding
the suitability of the values for {αC , αG, αC}. Notice that the paper in Reference [17] succeded in
the derivation of a EM scheme devoid from consistency restoring terms in the context of thermo-
mechanics. However, we believe that the rearrangement of the conservation of energy equation in
(6), in conjunction with the introduction of the algorithmic entropy ηalgo on the second term on
the right hand side of (48) has resulted in a considerably simpler scheme than that in [17] (see
Appendix C for a comparison between the EM scheme proposed and that in Reference [17]).

5.2. Discrete form of the balance laws and integrals in thermo-elastodynamics

A similar procedure to that in Section 4.2.1 will be followed in order to verify that the proposed
time integration scheme presented (48) possesses the conservation properties as presented in
Sections 4.2.1 to 4.2.3.
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5.2.1. Discrete form of the global form for conservation of linear momentum

Following a similar procedure to that in Section 4.2.1, taking wφ = ξ, with R3 3 ξ = const.
in Wφ in (48)b yields

∆L

∆t
− F ext

n+1/2 = 0; F ext
n+1/2 =

∫
∂tB0

t0n+1/2
dA+

∫
B0
f 0n+1/2

dV, (60)

From equation (60) and for vanishing external forces F ext
n+1/2, it can be seen that the total

linear momentum L remains constant.

5.2.2. Discrete form of the global form for conservation of angular momentum

Taking wφ = ξ × φn+1/2, with R3 3 ξ = const. in Wφ in (48)b yields

∆J

∆t
−M ext

n+1/2 = 0; M ext
n+1/2 =

∫
∂tB0

φn+1/2 × t0n+1/2
dA+

∫
B0
φn+1/2 × f 0n+1/2

dV. (61)

From equation (61) and for vanishing external torques M ext
n+1/2, it can be seen that the total

angular momentum J remains constant.

5.2.3. Discrete form of the global form for the balance of power

In this section, a similar analysis to that in Section (4.2.3) will be presented for the semi-
discrete weak forms in (48). For this purpose, we replace in (48) the test functions {wv,wφ}
with {∆v/∆t,∆φ/∆t} ∈ Vφ0 × Vφ0 and wθ = 1. This yields∫
B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0

∆v

∆t
dV = 0;∫

B0
ρ0

∆v

∆t
· ∆φ

∆t
dV +

∫
B0

1

∆t
Salgo :

1

2
(DC[wφ])algo dV −

∫
B0
f 0 ·

∆φ

∆t
dV −

∫
∂tB0

t0 ·
∆φ

∆t
dA = 0;∫

B0

∆ (θη)

∆t
dV −

∫
B0

∆θ

∆t
ηalgo dV −

∫
B0
Rθn+1/2 dV −

∫
∂QB0

Qθn+1/2 dA = 0,

(62)
where use of (51) has been made of on the second term of the left hand side of (62)b. Consideration
of time independent forces f 0 and t0 and after addition of the three equations in (62), we obtain

∆K

∆t
+

∫
B0

1

∆t

(
Salgo :

1

2
(DC[wφ])algo −∆θηalgo

)
dV +

∫
B0

∆(θη)

∆t
dV − ∆Πext (φ)

∆t
− Q̇ext = 0,

(63)
From equation (50) and (51) it is possible to re-express the term within the bracket in the

second term on the left hand side of (63) as

Salgo :
1

2
(DC[wφ])algo −∆θηalgo = DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DθW̃∆θ. (64)

Introduction of (64) into (63) enables to obtain the following result

∆K

∆t
+

∫
B0

1

∆t

(
DCW̃ : ∆C +DGW̃ : ∆G+DCW̃∆C +DθW̃∆θ

)
dV

+

∫
B0

∆ (θη)

∆t
dV − ∆Πext (φ)

∆t
− Q̇ext = 0,

(65)

with

Q̇ext =

∫
B0
Rθn+1/2 dV −

∫
∂QB0

Qθn+1/2 dA. (66)
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When the discrete derivatives {DCW̃ ,DGW̃ ,DCW̃ ,DθW̃} comply with the directionality
property in (52), above equation (65) can be written as

∆K

∆t
+

∫
B0

∆(W̃ + θη)

∆t
dV − ∆Πext (φ)

∆t
− Q̇ext = 0. (67)

Finally, making use of the Legendre transformation in (28) in (67) enables to obtain the
discrete counterpart of the balance of power in (45) as

∆K

∆t
+

∫
B0

∆Ũ

∆t
dV − ∆Πext (φ)

∆t
−Qext =

∆H
∆t
− ∆Πext (φ)

∆t
− Q̇ext = 0. (68)

Therefore, for vanishing external mechanical and thermal power, the Hamiltonian H (47) is
preserved throughout the motion of the continuum in the discrete setting. Three points have been
crucial in order to endow the EM time integrator in (48) with the conservation properties shown
throughout Section 5.2, namely: (i) the equivalent re-expression (in the continuum level) of the
local form of the balance of energy as in equation (6); (ii) the consideration of the algorithmic direc-
tional derivatives in equation (50), already introduced in References [17, 27]; (iii) the consideration

of the generic definition of the discrete derivatives expressions for {DCW̃ ,DGW̃ ,DCW̃ ,DθW̃}
proposed in Reference [17] and shown in Appendix B for completeness, necessary to guarantee
that the discrete derivatives comply with the directionality property in equation (52).

Remark 6. Although not pursued in the example section of this paper, it is possible to define
an entropy-based EM time integrator, being a counterpart of that presented in (48). This is
presented in Appendix A.

6. Finite Element implementation

As standard in finite elements, the domain B0 described in Section 2.1 and representing a
thermo-elastic continuum is sub-divided into a finite set of non-overlapping elements e ∈ E such
that

B0 ≈ Bh0 =
⋃
e∈E

Be0. (69)

The unknown fields {v,φ, θ} in the semi-discrete weak forms Wv, Wφ and Wθ in (48) are

discretised employing the following functional spaces Vφh × Vφh × Vθh defined as

Vφh = {φ ∈ Vφ; φh
∣∣
Be0

=

nφnode∑
a=1

Nφ
a φa}; Vθh = {θ ∈ Vθ; θh

∣∣
Be0

=

nθnode∑
a=1

N θ
aθa}, (70)

where for any field Y ∈ {φ, θ}, nY
node denotes the number of nodes per element of the discretisation

associated with the field Y and NY
a : Be0 → R, the ath shape function used for the interpolation

of Y . In addition, Ya represents the value of the field Y at the ath node of a given finite element.
Similarly, following a Bubnov-Galerkin approach, the functional spaces for the test functions

{wv, wθ} ∈ Vφ
h

0 × Vθh

0 are defined as

Vφ
h

0 =
{
∀φ ∈ Vφh ; φ = 0 on ∂φB0

}
; Vθh

0 =
{
∀θ ∈ Vθh ; θ = 0 on ∂θB0

}
. (71)
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Even though the relation between the time derivative of φ and the velocity field v is imposed
in a weak sense (refer to the weak formWv in (48)a), the consideration of equal functional spaces
for both fields, namely φ ∈ Vφ and v ∈ Vφ enables to conclude that (48)a holds strongly, namely

∆φ

∆t
= vn+1/2. (72)

Consideration of the functional spaces for {v,φ, θ} and {wv,wφ, wθ} in (70) and (71) en-
ables {(Wφ)algo, (Wθ)algo} in (48) to be written in terms of their associated elemental residual
contributions, namely

Wφ =
N∑
e=1

wφa ·R
φ
a,e; Wθ =

N∑
e=1

wθaR
θ
a,e, (73)

where N denotes the number of elements for the underlying discretisation. The residual contri-
butions Rφ

a,e and Rθ
a,e can be expressed as7

Rφ
a,e =

∫
Be0
ρ0N

a
φ

(
2

∆φ

∆t2
− 2

vn
∆t

)
dV +

∫
Be0

(
F n+1/2Salgo

)
∇0N

φ
a dV +

∫
Be0
Nφ
a f 0n+1/2

dV ;

Rθ
a,e =

∫
B0

∆ (θη)

∆t
N θ
a dV −

∫
B0

∆θ

∆t
ηalgoN

θ
a dV −

∫
B0
Qn+1/2 ·∇0N

θ
a dV −

∫
B0
Rθn+1/2N

θ
a dV.

(74)
where use of equation (72) has been made of in the inertial term of the residual Rφ

a,e in (74)a. A
consistent linearisation of the nonlinear residual contributions (74) has been used in this work.

7. Numerical examples

The objective of this section is to study the performance of the newly proposed EM time
integration scheme presented in equation (48) in a variety of challenging examples, with the
aim of comparing the long-term stability of the new time integrator against that of the classical
midpoint rule.

7.1. Numerical Example 1

The objectives of this example are:

• O1 To carry out a thorough analysis of the stability and robustness of the proposed EM
time integrator comparing it against of the mid-point rule time integrator as a function of
the Courant-Friedrich-Lewy number for the case of Finite Element h-refinement.

• O2 For a given level of spatial discretisation refinement and time step, to compare the
thermodynamical consistency of the proposed time integrator to that of the mid-point time
integrator.

The geometry for the problem is displayed in Figure 2. The L-shaped solid is subjected to an
external torque induced by a pair of forces F 1(t) and F 2(t) acting on two of the boundary faces
(refer to Figure 2), defined as

F 2(t) = −F 1(t); F 1(t) =

256/9
512/9
768/9

 f(t); f(t) =


t 0 ≤ t < 2.5 s,

5− t 2.5 s ≤ t < 5 s

0 t ≥ 5 s.

(75)

7For simplicity, the external contributions on the boundary of the continuum and associated with t0 and Qθ
have not been included in (74).
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In addition, initial distribution of temperature on the solid is

θ(X)|t=0 =


T1 Z = LZ ,

T2 X = LX

θR elsewhere.

; T1 = 300K; T2 = 250K. (76)

Figure 2: Numerical example 1. Geometry and general setting.

In order to establish a quantitative comparison with the results provided in Reference [17], we
use in this example the constitutive model considered therein. This can be expressed in terms of
the following additive decomposition,

W̃ (C,G, C, θ) = W̃m (C,G, C) + W̃θ (θ)− (θ − θR)η̃R (C), (77)

where each of the contributions in (77) is defined as

W̃m (C,G, C) =
µ1

2
trC +

µ2

2
trG− (µ1 + 2µ2) lnC1/2 +

λ

2

(
C1/2 − 1

)2
;

W̃θ(θ) = cv

(
θ − θR − θ ln

θ

θR

)
; η̃R(C) = −3β

(
a(C1/2 − 1)− bC−1/2

)
.

(78)

The thermal conductivity tensor is particularised for the case of isotropy, whereby it can be
expressed in terms of the scalar conductivity field k, i.e. k = kI. The value of all the relevant
material and geometrical parameters in this example can be found in Table 1.

Four different levels of h-refinement will be considered in this example. These can be observed
in Figure 3. A course, medium, fine and ulta fine finite element meshes (denoted as Mesh1,
Mesh2, Mesh3 and Mesh4, respectively) have been considered. With regards to objective O1,
we recall that the Courant-Friedrichs-Lewy number (denoted hereby as αCFL) is defined as

αCFL = cp
∆t

h
; cp =

√
λR + 2µR

ρ0

, (79)

where ∆t denotes the time step used in the simulations and h the characteristic size of the finite
element mesh, and cp the longitudinal wave speed in the reference configuartion (∇0φ = I, θ =
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Table 1: Numerical example 1. Geometrical parameters (see Figure 2) and material parameters (see (78)).

Geometrical parameters LX 6 m
LY 3 m
LZ 10 m

Material parameters µ1 1646,7 Pa
µ2 332,5 Pa
λ 0 Pa
cv 100 JK−1m−3 (Specific heat capacity)
θR 293.15 K (Reference temperature)
β 2, 233× 10−4 K−1

a µ1 + 2µ2 Pa
b 0 Pa
k 10 WK−1m−1 (Thermal conductivity)
ρ0 100 kg/m3 (Material density)

Figure 3: Numerical example 1. h-refinement used in the study. Q1-Q1 finite element discretisation for both spatial
geometry φ and temperature θ. From left to right: Mesh1 (with {672, 224} dofs for {φ, θ}); Mesh2 (refinement
of ×2 in every direction with respect to Mesh1, yielding {3822, 1274} dofs for {φ, θ}); Mesh3 (refinement of ×3
in every direction with respect to Mesh1, yielding {12000, 4000} dofs for {φ, θ}); Mesh4 (refinement of ×4 in
every direction with respect to Mesh1, yielding {25350, 8450} dofs for {φ, θ}).

18



θR). For hexahedral meshes, we consider h to be related to the volume of the element e in the
mesh (i.e. Ve) and to the order of the Finite Element interpolation q (i.e. q = 1 for Q1 elements,
q = 2 for Q2 elements, etc.) as

h =

(
min
e
Ve

q3

)1/3

; 1 ≤ e ≤ N, (80)

where N denotes the number of elements for the underlying discretisation. Figure 4a shows the
final time instant Tfinal for which the proposed EM time integrator fails, that is, the time step
for which the convergence of the iterative Netwon-Raphson algorithm is not achieved [22, 23], for
different values of the αCFL number and for the four levels of h-refinement displayed in Figure 3.
Clearly, for large values of the αCFL number, the new EM time integrator becomes unstable at
smaller values of Tfinal, as expected.

Figure 4b sheds light with regards to the relative stability of the proposed EM time integrator
with respect to that of the classical mid-point time integrator. Specifically, this figure shows
the difference between the final time instant for which the proposed EM time integrator and the
mid-point rule become unstable. This has been denoted in that figure as ∆Tfinal. Contrary to the
EM time integrator, for the mid-point integrator, the lack of convergence of the Newton-Raphson
is always preceded by an uncontrollable growth of the Hamiltonian over the previous time steps.
Positive values of ∆Tfinal imply that the proposed time integrator becomes unstable at later
time instants, and viceversa. It is worth noticing that beyond αCFL ≥ 5 − 10, ∆Tfinal adopts
negative values. This indicates that the size of the time step ∆t cannot be chosen arbitrarily
large, expecting an improved robustness and stability of the EM time integrator with respect to
the classical mid-point rule. In fact our numerical study suggests that ∆t must be chosen such
that αCFL ≤ 5 in order to guarantee a higher stability and robustness in the long term.

Figure 4: Numerical example 1. Left: final time instant (Tfinal) for which the EM time integrator becomes
unstable. Rigth: Difference between the final time instant (∆Tfinal) at which the EM time integrator and the
mid-point rule become unstable. Results shown for various values of αCFL and for the discretisations in Figure 3.

With regards to objective O2, we use in this study the computational domain defined by
Mesh2 (see Figure 3) and a value of αCFL of αCFL = 2.2955. It can be seen that for both the new
EM time integrator and the mid-point rule the angular momentum J remains constant beyond
t ≥ 5 s, when the external applied pair of forces vanishes. In addition, the linear momentum L
is zero for the entire simulation. Another interesting variable of interest is the global entropy
(η̃ =

∫
B0 η dV ), which increases over time for the entire simulation for both time integrators.

Furthermore, the Hamiltonian H is displayed. The zoomed detail perfectly shows the sudden
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Figure 5: Numerical example 1. Evolution of: (a) angular momentum J , (b) linear momentum L, (c) global
entropy η̃ =

∫
B0
η dV , (d) Hamiltonian H in (47), (e) increment of Hamiltonian ∆H for both the Mid-Point and

the new EM time integrator. Finally, (f), zoomed detail of the increment of the Hamiltonian ∆H for the new EM
time integrator. Results obtained for Mesh2 with αCFL = 2.2955 (∆t = 0.2 s).
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increase in the Hamiltonian H prior to the instability when using the mid-point rule. The increase
of the Hamiltonian ∆H = Hn+1 −Hn (normalised with respect to the maximum historic value of
H in absolute value) is also displayed. It can be seen that the new EM time integrator preserves
H (beyond t ≥ 5 s) as it has been designed specifically with that purpose, whereas the mid-point
rule does not.

Finally, the temperature contour plot is displayed over time in Figure 6. The results have been
obtained by means of the new EM time integrator using a different mesh from the four depicted
in Figure 3. This mesh has been generated refining by a factor of ×6 in the three directions the
computational domain defined by Mesh1.

Figure 6: Numerical example 1. Contour plot distribution of absolute temperature T (K) for t =
{2.5, 5, 8, 11, 15, 19, 21, 25, 33, 35, 40, 43} s (from left to right and top to bottom). Q1-Q1 discretisation for both
spatial geometry φ and temperature θ. Number of dofs in the mesh: {85557, 28519} for {φ, θ}. Results obtained
by means of the new EM time integrator for αCFL = 3.44 (∆t = 0.1 s).
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7.2. Numerical Example 2

The objective of this example is

• O1 Study the stability and robustness in a problem where the deformation is exclusively
induced by thermal effects.

The geometry for this example is displayed in Figure 7. The object in Figure 7 is subjected
to a heat flux at the bottom surface (minimum coordinate Z), characterised by the following
mathematical expression

Qθ(t) = Qmax sin
2π

T
t; T = 1 s; Qmax = 3000 W/m2. (81)

Figure 7: Numerical example 2. Left: geometry and general setting for the bi-material thermo-mechanical actu-
ator. Right: computational domain considered for the analysis of O1, based on a Q2 discretisation for {x, T},
({1215, 405} dofs). Every Q2 finite element has been divided into 2× 2× 2 elements for visualisation purposes.

The constitutive model used in this example is that presented in Section 3.1.1 through equa-
tions (18), (26), (21) and (22). The value of the material parameters in that model can be found
in Table 2.

With regards to objective O1, we use in this study the computational domain defined in Figure
7 and several values of αCFL. From Figure 8(a)-(b) it can be observed that the range of stability of
the new EM time integrator is larger than that of the mid-point rule for approximately αCFL ≤ 10
(close to zero and even negative values of ∆Tfinal are obtained in the range αCFL ≥ 10). For a
fixed value of αCFL = 5.6 (∆t = 4× 10−4 s), Figure 8(c) shows the evolution of the Hamiltonian
in equation (47) for both the new EM time integrator and the mid-point rule. In this case, the
non-vanishing heat flux Qθ (81) prevents the Hamiltonian from being preserved. Nonetheless,
from equations (46), (47) and (68), it is clear that the quantity of interest defined as

H̃ = H− Πext −Qext (82)

must be preserved by the new EM time integrator. This in fact confirmed in Figure 8(d), where

H̃ is perfectly preserved throughout the entire simulation by the new proposed time integrator.
On the contrary, H̃ increases over time when using the mid-point time integrator until it finally
becomes unstable. Finally, Figure 10 shows the pressure contour plot over various snapshots
computed by means of the new EM time integrator using the computational domain defined in
Figure 9.
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Table 2: Numerical example 2. Geometrical parameters (see Figure 7) and material parameters (see (78)).

Geometrical parameters L 0,12 m
b 0,06 m
H 0,001 m
R 0,01 m

Material parameters A µ1 41.67 kPa
µA2 0 Pa
λA 27.78 Pa
cAv 2000 JK−1m−3 (Specific heat capacity)
θAR 293,15 K (Reference temperature)
ΓA0 0
qA 1
kA 10 WK−1m−1 (Thermal conductivity)
ρA0 1000 kg/m3 (Material density)

Material parameters B µB1 250 kPa
µB2 0 Pa
λB 166 Pa
cBv 2000 JK−1m−3 (Specific heat capacity)
θBR 293,15 K (Reference temperature)
ΓB0 0.01
qB 1
kB 10 WK−1m−1 (Thermal conductivity)
ρB0 1000 kg/m3 (Material density)
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Figure 8: Numerical example 2. (a) Final time instant (Tfinal) for which the EM time integrator becomes unstable.
(b) Difference between the final time instant (∆Tfinal) at which the EM time integrator and the mid-point rule
become unstable. Results shown for various values of αCFL = {5.6, 11.21, 22.42} (∆t = {4, 8, 16}× 10−4 s) and for
the computational domain displayed. (c) Evolution of the Hamiltonian H (47) when using the mid-point rule and

the new EM time integrator for αCFL = 5.6. (d) Evolution of the quantity of interest H̃ in (82) for both mid-point
rule and the new EM time integrator for αCFL = 5.6.

Figure 9: Numerical example 2. Computational domain discretised with Q2 elements for both geometry φ and
temperature θ. Discretisation of {164430, 54810} dofs for {φ, θ}. In the figure every Q2 finite element has been
divided into 2× 2× 2 elements for visualisation purposes.
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Figure 10: Numerical example 2. Rendering of deformed configuration and contour plot distribution of hydro-
static pressure p for snapshots corresponding to: t = {0.41, 1.01, 1.81, 2.61, 3.41, 3.81, 4.41, 5.01} s (from top to
bottom and left to right). Results obtained with new EM time integrator and with αCFL = 6.4 (∆t = 10−4 s).
Computational domain in Figure 9.
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7.3. Numerical Example 3

The objective of this example is

• O1 Confirmation of the results provided in the previous examples, in terms of stability and
robustness, in a challenging numerical example.

The geometry for this example is displayed in Figure 11. The squared object in Figure 11 is
subjected to an initial velocity profile given by the following equation

v|t=0 =

√
2

π

(
exp

(
−(X − 5)2

10

)
+ exp

(
−(Y − 5)2

10

))0
0
1

 (m/s). (83)

In addition, the object in Figure (11) is initially subjected to a uniform temperature distribu-
tion of θ|t=0 = θR, and a heat flux Qθ defined as

Qθ(t) =


104

4πR2
(W/m2) 0 ≤ t < 2 s,

0 t ≥ 2 s.
(84)

Figure 11: Numerical example 3. Left: geometry with {L,LZ , R} = {10, 0.1, 1.5} (m). Centre: computational
domain considered for the analysis of O1, based on a Q2 discretisation for {φ, θ}. Symmetric boundary conditions
have been applied, hence only a quarter of the domain displayed has been simulated, yielding {1215, 405} dofs.
Right: Computational domain considered for simulations in Figures 13-16, discretised with Q2 elements for both
geometry φ and temperature θ. Symmetric boundary conditions have been applied, hence only a quarter of the
domain displayed has been simulated, yielding {219615, 73205} dofs for {φ, θ}. In the figure every Q2 finite element
has been divided into 2× 2× 2 elements for visualisation purposes.

The constitutive model used in this example is that presented in Section 3.1.1 through equa-
tions (18), (26), (21) and (22). The value of the material parameters in that model can be found
in Table 3.

With regards to objective O1, we use in this study the computational domain defined in
Figure 11b and a value of αCFL of αCFL = 1.72 (∆t = 0.02 s). From Figure 12, it can be
seen the variation of angular momentum ∆J , linear momentum ∆L, global entropy (η̃) and
Hamiltonian H, for both the new EM time integrator and the mid-point rule. Furthermore,
the Hamiltonian H is displayed. The zoomed detail perfectly shows the sudden increase in
the Hamiltonian H prior to the instability when using the mid-point rule. The increase of the
Hamiltonian ∆H = Hn+1 −Hn is also displayed. It can be seen that the new EM time integrator
preservesH (beyond t ≥ 2 s), whereas the mid-point rule does not. It is interesting to observe that
since only a quarter of the domain has been simulated, the introduction of symmetric boundary
conditions introduces a reaction force which prevents the global linear and angular momentum
(L and J) to be preserved. Only the Z component of L and J is preserved throughout the
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Figure 12: Numerical example 3. Evolution of: (a) angular momentum J , (b) linear momentum L, (c) global
entropy η̃ =

∫
B0
η dV , (d) Hamiltonian H in (47), (e) increment of Hamiltonian ∆H for both the Mid-Point and

the new EM time integrator. Finally, (f), zoomed detail of the increment of the Hamiltonian ∆H for the new EM
time integrator. Results obtained for mesh in Figure 11 with αCFL = 1.72 (∆t = 0.02 s).
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Table 3: Numerical example 3. Geometrical parameters (see Figure 11) and material parameters (see (78)).

Geometrical parameters L 10 m
LZ 0.1 m
R 1.5 m

Material parameters µ1 19,42 kPa
µ2 0 Pa
λ 29,13 Pa
cv 1 JK−1m−3 (Specific heat capacity)
θR 308,15 K (Reference temperature)
Γ0 6, 7× 10−4

q 1
k 10 WK−1m−1 (Thermal conductivity)
ρ0 1000 kg/m3 (Material density)

simulation (for both time integrators), as the symmetric boundary conditions only affect the X
and Y directions.

Finally, we consider the computational domain defined in Figure 11c. Figure 13 displays the
pressure contour plot distribution for various time snapshots. Furthermore, Figure 14 shows the
wrinkling pattern that forms over the surface of the plate over time. The wrinkles can be better
appreciated in Figure 15. Finally, Figure 16 shows the evolution of the Z components of the
displacement of the centroid of the plate over time, induced by the initial velocity profile in (83).
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Figure 13: Numerical example 3. Contour plot of hydrostatic pressure p = 1
3JS : C at time steps t =

{1.98, 3.58, 3.98, 4.18, 4.38, 4.98, 5.98, 9.36, 23.62, 26.60, 28.52, 29.28} s (from left to right and top to bottom). Re-
sults of obtained by means of the new EM time integrator for αCFL = 4.7 (∆t = 0.02 s). Computational domain
in Figure 11c. The results do not show the vertical (Z direction) elevation of the plate (refer to Figure 16).
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Figure 14: Numerical example 3. Rendering of results for deformed configuration at various time steps (from top
to bottom and from left to right). Results obtained by means of the new EM time integrator for αCFL = 4.7 (∆t =
0.02 s). Computational domain in Figure 11c.

Figure 15: Numerical example 3. Rendering of wrinkling pattern over the surface of the thin plate at time
t = 23.62 s. Results obtained with the new EM time integrator for αCFL = 4.7 (∆t = 0.02 s). Computational
domain in Figure 11c.
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Figure 16: Numerical example 3. Evolution of the displacement in Z direction of the centroid of the thin plate in
Figure 11 with respect to time (t). Deformed configuration at selected snapshots.
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8. Conclusions

A new one-step implicit and thermodynamically consistent Energy-Momentum (EM) pre-
serving time integration scheme has been presented for the simulation of structural components
undergoing large deformations and temperature fields, for which well-posed constitutive models
are used for the entire range of deformations and temperature. The use of polyconvexity inspired
constitutive models and the new tensor cross product algebra pioneered by de Boer [15] and
re-discovered by Bonet et al. [10] in the context of nonlinear solid mechanics, are key for the
development of the discrete derivatives, fundamental for the construction of the EM algorithmic
derived variables, namely the second Piola-Kirchoff stress tensor and the entropy (or the absolute
temperature). The proposed scheme inherits the advantages of the EM scheme recently published
by Franke et al. [17] (i.e. consistency, stability, conservation) whilst resulting in dramatically far
simpler algorithmic expressions, thus circumventing a bottleneck and paving the way for the in-
corporation of further physics into the model. A series of numerical examples have been presented
in order to demonstrate the robustness and applicability of the new EM scheme. These examples
make use of a temperature-based version of the EM scheme (using the Hemlholtz’s free energy
as the thermodynamical potential and the temperature as the thermodynamical state variable).
Appendix A includes an entropy-based analogue EM scheme (using the internal energy as the
thermodynamical potential and the entropy as the thermodynamical state variable).
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Appendix A. Entropy-based EM scheme

Although not pursued in this work, it is possible to define an entropy-based EM time integra-
tor, counterpart of that in (48). For that we introduce first the entropy-based counterpart of the
weak forms in (A.1), i.e.

Wv =

∫
B0

(
v − φ̇

)
· ρ0wv dV = 0;

Wφ =

∫
B0
ρ0v̇ ·wφ dV +

∫
B0
S :

1

2
DC[wφ] dV −

∫
B0
f 0 ·wφ dV −

∫
∂tB0

t0 ·wφ dA = 0;

Wη =

∫
B0
θη̇wη dV −

∫
B0
Q ·∇0wη dV −

∫
B0
Rθwη dV −

∫
∂QB0

Qθwη dA = 0,

(A.1)

where {v,φ, η} ∈ Vφ × Vφ × Vθ and {wv,wφ, wη} ∈ Vφ0 × Vφ0 × Vθ
0} in (39). Notice that in

order to obtain (A.1)c, the classical local form in (5) needs to be used, rather than its equivalent
couterpart in (6). In order to design the entropy-based EM momentum from (A.1), we strictly
follow the steps enumerated in Remark 1, yielding

(Wv)algo =

∫
B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0wv dV = 0;

(Wφ)algo =

∫
B0
ρ0

∆v

∆t
·wφ dV +

∫
B0
Salgo :

1

2
(DC[wφ])algo dV −

∫
B0
f 0n+1/2

·wφ dV

−
∫
∂tB0

t0n+1/2
·wφ dA = 0;

(Wη)algo =

∫
B0
θalgo

∆η

∆t
wη dV −

∫
B0
Qn+1/2 ·∇0wη dV −

∫
B0
Rθn+1/2wη dV −

∫
∂QB0

Qθn+1/2wη dA = 0,

(A.2)
where the algorithmic expressions {Salgo, θalgo} are defined as

Salgo = 2DCŨ + 2DGŨ Calgo + 2DCŨGalgo; θalgo = DηŨ , (A.3)

and with Calgo andGalgo in (50). Following a similar procedure to that in Sections 5.2.1 and 5.2.2,
it is possible to prove that the EM time integrator in (A.2) preserves both linear and angular
momentum for vanishing external forces. With regards to its energy conservation properties, we
replace in (A.2) {wv,wφ} with {∆v/∆t,∆φ/∆t} ∈ Vφ0 × Vφ0 and wη = 1, yielding

∆K

∆t
+

∫
B0

1

∆t

(
DCŨ : ∆C +DGŨ : ∆G+DCŨ∆C +DηŨ∆η

)
dV − ∆Πext (φ)

∆t
−Qext = 0.

(A.4)
Therefore, from (A.4), the directionality property for the entropy-based formulation must be8

DCŨ : ∆C +DGŨ : ∆G+DCŨ∆C +DηŨ∆η = ∆Ũ . (A.5)

A definition of the discrete derivatives {DCŨ ,DGŨ ,DCŨ ,DθŨ} based on the derivation pre-
sented in [17] for energies depending upon several arguments ensures the satisfaction of (A.5) (see

also Appendix B, where W̃ and θ need to be simply replaced with Ũ and η, respectively). Based
on this definition of the discrete derivatives equation (A.4) can be finally written as

∆K

∆t
+

∫
B0

∆Ũ

∆t
dV − ∆Πext (φ)

∆t
−Qext = 0, (A.6)

8see its temperature-based counterpart in (52)
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which is completely equivalent to the result obtained for the temperature-based counterpart in
(68). Equation (A.6) ensures the consistency of the entropy-based EM time integrator (A.2). It
is convenient to recall that the main drawback of entropy-based formulations is that in general,
it might not be possible to find en explicit representation of the internal energy functional (and
of its derivatives). However, for the Helmholtz functional presented in Section 3.1.1 we have been
able to obtain a simple explicit expression for its associated internal energy (see (31) and (32)).
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Appendix B. Discrete derivatives of the internal energy

Appendix B.1. Definition of the discrete derivatives

Let us introduce the following notation, {V1,V2,V3,V4} = {C,G, C, θ}. This will facilitate

the definition of the discrete derivatives DṼ1W̃ = DCW̃ , DṼ2W̃ = DGW̃ and DṼ3W̃ = DCW̃ in

(49) and DṼ4W̃ = DθW̃ in (48)d.

DṼiW̃ =
1

2

(
DṼin+1,n

W̃ +DṼin,n+1
W̃
)

; i ∈ Y = {1, 2, 3, 4} ;

DṼin+1,n
W̃ = DṼiW̃

(
Ṽin+1 , Ṽin

)∣∣∣
Ṽjn+1

,Ṽkn
; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i;

DṼin,n+1
W̃ = DṼiW̃

(
Ṽin , Ṽin+1

)∣∣∣
Ṽjn ,Ṽkn+1

; ∀j ∈ Y : j < i; ∀k ∈ Y : k > i,

(B.1)

where the discrete operators DṼiW̃
∣∣∣
Ṽjn+1

,Ṽkn
and DṼiW̃

∣∣∣
Ṽjn ,Ṽkn+1

are defined as

DṼiW̃
∣∣∣
Ṽjn+1

,Ṽkn
= ∂ṼiW̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn+1

,Ṽkn
− W̃

(
Ṽn
)∣∣∣
Ṽjn+1

,Ṽkn
− ∂ṼiW̃

(
Ṽn+1/2

)∣∣∣
Ṽjn+1

,Ṽkn
: ∆Ṽi

||∆Ṽi||2
∆Ṽi;

DṼiW̃
∣∣∣
Ṽjn ,Ṽkn+1

= ∂ṼiW̃
(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

+

W̃
(
Ṽn+1

)∣∣∣
Ṽjn ,Ṽkn+1

− W̃
(
Ṽn
)∣∣∣
Ṽjn ,Ṽkn+1

− ∂ṼiW̃
(
Ṽn+1/2

)∣∣∣
Ṽjn ,Ṽkn+1

: ∆Ṽi

||∆Ṽi||2
∆Ṽi.

(B.2)

Let us introduce the following set ṼC = Ṽ \ {C}, i.e. VC = {G, C, θ}. From above equations

(B.1) and (B.2) , the directional derivative DCW̃ can be computed as

DCW̃ =
1

2

(
∂CW̃

(
Cn+1/2, Ṽ1n+1

)
+ ∂CW̃

(
Cn+1/2, ṼCn

))
+

1

2

W̃
(
Cn+1, Ṽ1n+1

)
− W̃

(
Cn, Ṽ1n+1

)
||∆C||2

∆C +
1

2

W̃
(
Cn+1, ṼCn

)
− W̃

(
Cn, ṼCn

)
||∆C||2

∆C

− 1

2

∂CW̃
(
Cn+1/2, Ṽ1n+1

)
: ∆C

||∆C||2
∆C − 1

2

∂CW̃
(
Cn+1/2, ṼCn

)
: ∆C

||∆C||2
∆C.

(B.3)

From the previous equation, the discrete derivatives with respect to C when ṼCn+1 and ṼCn
are kept fixed are defined as

DCW̃ (•, ṼCn+1) := ∂CW̃
(
Cn+1/2, ṼCn+1

)
+
W̃
(
Cn+1, ṼCn+1

)
− W̃

(
Cn, ṼCn+1

)
− ∂CW̃

(
Cn+1/2, ṼCn+1

)
: ∆C

||∆C||2
∆C;

DCW̃ (•, ṼCn) := ∂CW̃
(
Cn+1/2, ṼCn

)
+
W̃
(
Cn+1, ṼCn

)
− W̃

(
Cn, ṼCn

)
− ∂CW̃

(
Cn+1/2, ṼCn

)
: ∆C

||∆C||2
∆C.

(B.4)
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Therefore, equation (B.3) can be conveniently written in a compact manner as

DCW̃ =
1

2

(
DCW̃ (•, ṼCn+1) +DCW̃ (•, ṼCn)

)
. (B.5)

Similarly, defining the following sets ṼG = Ṽ \ {G}, ṼC = Ṽ \ {C} and Ṽθ = Ṽ \ {θ}, it is

possible to express the directional derivatives DGW̃ , DCW̃ and DθW̃ as

DGW̃ =
1

2

(
DGW̃ (•,VGn+1) +DGW̃ (•,VGn)

)
;

DCW̃ =
1

2

(
DCW̃ (•,VCn+1) +DCW̃ (•,VCn)

)
;

DθW̃ =
1

2

(
DθW̃ (•,Vθn+1) +DθW̃ (•,Vθn)

)
.

(B.6)

In the particular case of the last to directional derivatives (with respect to C and θ), the

terms DCW̃ (•,VCn+1) (and DCW̃ (•,VCn)) and DθW̃ (•,Vθn+1) (and similarly DθW̃ (•,Vθn)) are
extremely simplified since C and θ are scalar fields, i.e.

DCW̃ (•,VCn+1) =
W̃ (Cn+1,VCn+1)− W̃ (Cn,VCn+1)

∆C
;

DθW̃ (•,Vθn+1) =
W̃ (θn+1,Vθn+1)− W̃ (θn,Vθn+1)

∆θ
;

(B.7)

In particular, for the Mooney-Rivlin model in equation (19) and (26), the tensor discrete

derivatives {DCW̃ ,DGW̃} adopt the following extremely simple expressions

DCW̃ =
µ1

2
I; DGW̃ =

µ2

2
I. (B.8)

Appendix B.2. Proof of directionality property

The objective of this section is to prove that the definition of the discrete derivatives of the
internal energy W̃ (C,G, C, θ) in (B.1) and (B.2) satisfy the directionality property in equation
(52). For that, let us denote the expression on the left-hand side of the directionality property in
(52) as T , namely

T = DCW : ∆C +DGW : ∆G+DCW∆C +DθW ·∆θ. (B.9)

Substitution of the expressions for DCW̃ (B.3), DGW̃ (B.6), DCW̃ (B.6) and DθW̃ (B.6) into
(B.9) leads to

T =
1

2
W̃ (Cn+1,Gn+1, Cn+1, θn+1)− 1

2
W̃ (Cn,Gn+1, Cn+1, θn+1)

+
1

2
W̃ (Cn+1,Gn, Cn, θn)− 1

2
W̃ (Cn,Gn, Cn, θn)

+
1

2
W̃ (Cn,Gn+1, Cn+1, θn+1)− 1

2
W̃ (Cn,Gn, Cn+1, θn+1)

+
1

2
W̃ (Cn+1,Gn+1, Cn, θn)− 1

2
W̃ (Cn+1,Gn, Cn, θn)

+
1

2
W̃ (Cn,Gn, Cn+1, θn+1)− 1

2
W̃ (Cn,Gn, Cn, θn+1)

+
1

2
W̃ (Cn+1,Gn+1, Cn+1, θn)− 1

2
W̃ (Cn+1,Gn+1, Cn, θn)

+
1

2
W̃ (Cn,Gn, Cn, θn+1)− 1

2
W̃ (Cn,Gn, Cn, θn)

+
1

2
W̃ (Cn+1,Gn+1, Cn+1, θn+1)− 1

2
W̃ (Cn+1,Gn+1, Cn+1, θn)

= ∆W̃ ,

(B.10)
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which proves that the definition of the discrete derivatives satisfy the directionality property.

Appendix B.3. Definition of the discrete derivatives in the limit

The objective of this section is to prove that the defition of the directional derivatives in
equations (B.1) and (B.2) satisfies the second condition stated in Section 5.1.1, namely that they
are well defined in the limit ||∆C|| → 0, ||∆G|| → 0, ||∆C|| → 0 and ||∆θ|| → 0. In particular,
it will be proved in this Section that based on the definition of the discrete derivatives, these can
be equivalently written as

DṼiW̃ = ∂ṼiW̃
(
Ṽn+1/2

)
+

4∑
i=1

O
(
||∆Ṽi||2

)
+

4∑
j=1,j 6=i

4∑
k=j+1,k 6=1

O
(
||∆Ṽj||||∆Ṽk||

)
, (B.11)

which would prove that they are well defined in the limit. For that, let us carry out a Taylor
series expansion of the four different evaluations of the internal energy W̃ in equation (B.3) around
Cn+1/2. This enables to express them as

W̃
(
Cn+1, ṼCn+1

)
= W̃

(
Cn+1/2, ṼCn+1

)
+ ∂CW̃

(
Cn+1/2, ṼCn+1

)
:

(
1

2
∆C

)
+

(
1

2
∆C

)
: ∂2
CCW̃

(
Cn+1/2, ṼCn+1

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃
(
Cn, ṼCn+1

)
= W̃

(
Cn+1/2, ṼCn+1

)
− ∂CW̃

(
Cn+1/2, ṼCn+1

)
:

(
1

2
∆C

)
+

(
1

2
∆C

)
: ∂2
CCW̃

(
Cn+1/2, ṼCn+1

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃
(
Cn+1, ṼCn

)
= W̃

(
Cn+1/2, ṼCn

)
+ ∂CW̃

(
Cn+1/2, ṼCn

)
:

(
1

2
∆C

)
+

(
1

2
∆C

)
: ∂2
CCW̃

(
Cn+1/2, ṼCn

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
;

W̃
(
Cn, ṼCn

)
= W̃

(
Cn+1/2, ṼCn

)
− ∂CW̃

(
Cn+1/2, ṼCn

)
:

(
1

2
∆C

)
+

(
1

2
∆C

)
: ∂2
CCW̃

(
Cn+1/2, ṼCn

)
:

(
1

2
∆C

)
+O

(
||∆C||3

)
.

(B.12)

Introduction of above equation (B.12) into the last four terms on the right-hand side of
equation (B.3) yields

1

2

W̃
(
Cn+1, ṼCn+1

)
− W̃

(
Cn, ṼCn+1

)
||∆C||2

∆C +
1

2

W̃
(
Cn+1, ṼCn

)
− W̃

(
Cn, ṼCn

)
||∆C||2

∆C

− 1

2

∂CW̃
(
Cn+1/2, ṼCn+1

)
: ∆C

||∆C||2
∆C − 1

2

∂CW̃
(
Cn+1/2, ṼCn

)
: ∆C

||∆C||2
∆C = O

(
||∆C||2

)
.

(B.13)

Introduction of the result in (B.13) into the expression for the directional derivative DCW̃ in
(16) leads to

DCW̃ =
1

2

(
∂CW̃

(
Cn+1/2, ṼCn+1

)
+ ∂CW̃

(
Cn+1/2, ṼCn

))
+O

(
||∆C||2

)
. (B.14)
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A Taylor series expansion on the two first terms on the right-hand side of above equation
(B.14) enables these to be expressed as

∂CW̃
(
Cn+1/2, ṼCn+1

)
= ∂CW̃

(
Cn+1/2, ṼCn+1/2

)
+ ∂2

CGW̃
(
Cn+1/2, ṼCn+1/2

)
:

(
1

2
∆G

)
+ ∂2

CCW̃
(
Cn+1/2, ṼCn+1/2

)(1

2
∆C

)
+ ∂2

CθW̃
(
Cn+1/2, ṼCn+1/2

)
:

(
1

2
∆θ

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆G||∆C) +O (||∆G||||∆θ||) +O (∆C||∆θ||) ;

∂CW̃
(
Cn+1/2, ṼCn

)
= ∂CW̃

(
Cn+1/2, ṼCn+1/2

)
− ∂2

CGW̃
(
Cn+1/2, ṼCn+1/2

)
:

(
1

2
∆G

)
− ∂2

CCW̃
(
Cn+1/2, ṼCn+1/2

)(1

2
∆C

)
− ∂2

CθW̃
(
Cn+1/2, ṼCn+1/2

)
:

(
1

2
∆θ

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆G||∆C) +O (||∆G||||∆θ||) +O (∆C||∆θ||) .

(B.15)

Introduction of (B.15) into (B.14) leads to the final expression for DCW̃ (B.3) as

DCW̃ = ∂CW̃
(
Cn+1/2, ṼCn+1/2

)
+O

(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆G||∆C) +O (||∆G||||∆θ||) +O (∆C||∆θ||) ,

(B.16)

which proves condition (B.11). Proceeding similarly, it would be possible to generalise above

result (B.16) to the discrete derivatives DGW̃ , DCW̃ and DθW̃ (all of them in (B.6)), namely

DGW̃ = ∂GW̃
(
Cn+1/2, ṼCn+1/2

)
+O

(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆C||∆C) +O (||∆C||||∆θ||) +O (∆C||∆θ||) ;

DCW̃ = ∂CW̃
(
Cn+1/2, ṼCn+1/2

)
+O

(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆C||||∆G||) +O (||∆C||||∆θ||) +O (||∆G||||∆θ||) ;

DθW̃ = ∂θW̃
(
Cn+1/2, ṼCn+1/2

)
+O

(
||∆C||2

)
+O

(
||∆G||2

)
+O

(
∆C2

)
+O

(
||∆θ||2

)
+O (||∆C||||∆G||) +O (||∆C||∆C) +O (||∆G||∆C) .

(B.17)
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Appendix C. EM scheme in Reference [17]

Appendix C.1. EM scheme
It is instructive to highlight the differences of the EM scheme in (48) and that previously

developed in Reference [17]. The latter comprises the following algorithmic weak forms

(Wv)algo =

∫
B0

(
vn+1/2 −

∆φ

∆t

)
· ρ0wv dV = 0;

(Wφ)algo =

∫
B0
ρ0

∆v

∆t
·wφ dV +

∫
B0
Salgo :

1

2
(DC[wφ])algo dV −

∫
B0
f 0n+1/2

·wφ dV

−
∫
∂tB0

t0n+1/2
·wφ dA = 0;

(Wθ)algo =

∫
B0

∆θ

∆t
wθ dV +

∫
B0

(
∆C

∆t
: Gn+1/2

)
(Dθη)−1(∂Cηn+1/2)wθ dV

−
∫
B0
Qn+1/2 ·∇0((DθÛ)−1wθ) dV −

∫
B0

(DθÛ)−1Rθn+1/2wθ dV

−
∫
∂QB0

(DθÛ)−1Qθn+1/2wθ dA = 0.

(C.1)

In above equation (C.1), Salgo is defined as

Salgo = 2
(
DCÛ +DGÛ Calgo +DCÛGalgo − θalgo∂Cηn+1/2Gn+1/2

)
; θalgo = DθÛ(Dθη)−1,

(C.2)
with Calgo and Galgo in (50) and where the internal energy energy functional Û is defined as in
equation (28), i.e.

Û(C,G, C, θ) = Ũ(C,G, C, η(C, θ)) = θη(C, θ) + W̃ (C,G, C, θ), (C.3)

with the particularity that the entropy is re-expressed as a function θ (and of C). Apart from the
fact that this formulation relies on the internal energy functional Û(C,G, C, θ) (as opposed to the

Helmholtz free energy functional W̃ (C,G, C, θ) for the EM scheme in (48)), the main differences
between both approaches are:

1. The EM scheme in (C.1) relies on the local form (5), or more specifically on

η̇ +
1

θ
DIVQ− 1

θ
Rθ = 0, (C.4)

wheareas the proposed scheme in (48) relies on the local form in (6).
2. The algorithmic stresses Salgo in (C.2) (for the EM scheme in C.1) and in (49) (for the

proposed EM scheme in (48)) differ considerably. In particular, the expression in equation
(C.2) needs to incorporate a fourth term not present in equation (49). Notice that in the
more generic case where the entropy could possibly depend also on C and G (and not just
on C, as it has been assumed in this paper), this would entail the addition of two extra terms
in (C.2) related to both C and G, bringing cumbersome difficulties in the formulation.

3. The second term on the right hand side of equation (C.1) (which entails more complexity
for a consistent linearisation of the set of weak forms) is not present in the proposed EM
scheme in (48).

4. The term ∇0((DθÛ)−1wθ) on equation (C.1)c can potentially entail excessive complexity
when carrying out a consistent linearisation of (C.1)c. For the specific model considered in
equations (26), (21) and (22) this is not the case, as this term is constant.

5. The EM scheme in (C.1) requires the definition of the discrete derivatives of the internal en-
ergy functional Û(C,G, C, θ) and in addition, the discrete derivative of the entropy η(C, θ),
namely Dθη (see (C.1)c).
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Appendix D. Thermo-elastic constitutive model

The objective of this appendix is to briefly recall the calorimetry considerations followed in
order to derive the constitutive model presented in Section 3.1.1. For that, we start by re-
expressing the internal energy ẽ(C, η) as a function of the absolute temperature as

ê(C, θ) = ẽ(C, η(C, θ)). (D.1)

Calorimetry principles permit to experimentally measure the change of internal energy as a
function of the temperature (for a constant deformation) yielding

∂θê = cv, (D.2)

with cv denoting the heat capacity of the material. Notice that above equation (D.2) can be
equivalently written as

∂θê = ∂ηẽ ∂θη = θ∂θη = cv ⇒ ∂θη =
cv
θ
. (D.3)

Integration of (D.3) results in∫ η(C,θ)

η(C,θR)

dη =

∫ θ

θR

cv
θ
dθ ⇒ η(C, θ) = ηR(C) + cv ln

θ

θR
, (D.4)

with ηR(C) := η(C, θR). Since η = −∂θΨ̃ we can further integrate (D.4) as∫ Ψ̃(C,θ)

Ψ̃(C,θR)

dΨ̃ = −
∫ θ

θR

η(C, θ) dθ, (D.5)

yielding

Ψ̃(C, θ) = Ψ̃(C, θR)−
∫ θ

θR

(
ηR(C) + cv ln

θ

θR

)
dθ

= Ψ̃(C, θR)− (θ − θR)ηR(C) + cv

(
θ − θR − θ ln

θ

θR

)
,

(D.6)

which can be finally written as

Ψ̃(C, θ) = Ψ̃m(C)− ηR(C)(θ − θR) + Ψ̃θ(θ), (D.7)

with

Ψ̃m(C) = Ψ̃(C, θR); Ψ̃θ(θ) = cv

(
θ − θR − θ ln

θ

θR

)
. (D.8)
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