
Abstract
Existing multi-label learning (MLL) approaches
mainly assume all the labels are observed and con-
struct classification models with a fixed set of target
labels (known labels). However, in some real appli-
cations, multiple latent labels may exist outside this
set and hidden in the data, especially for large-scale
data sets. Discovering and exploring the latent la-
bels hidden in the data may not only find interest-
ing knowledge but also help us to build a more ro-
bust learning model. In this paper, a novel approach
named DLCL (i.e., Discovering Latent Class Labels
for MLL) is proposed which can not only discover
the latent labels in the training data but also predict
new instances with the latent and known labels si-
multaneously. Extensive experiments show a com-
petitive performance of DLCL against other state-of-
the-art MLL approaches.

1 Introduction
MLL [Zhang and Zhou, 2014; Gibaja and Ventura, 2015]
deals with data examples with multiple class labels simul-
taneously. Many well-known approaches have been pro-
posed to solve different problems of MLL, such as par-
tial MLL [Wang et al., 2019; Xu et al., 2019], extreme
MLL [Wei et al., 2019; Jain et al., 2019; Chen et al.,
2019], missing labels [Yu et al., 2014; Yang et al., 2016;
Tan et al., 2018], and multi-view MLL [Xing et al., 2018;
Wu et al., 2019]. It is noted that existing approaches main-
ly assume that all the class labels are observed in advance.
However, in some applications, some latent labels might be
completely unobserved and hidden in the data, and below is a
summary of two possible reasons:

1. Labeling Cost. In the big data era, it is difficult to pro-
vide a complete label set for a data, especially a large-
scale data with an extreme number of labels. Labelling
efforts usually focus on the given set of target labels,
while labels outside this set will not be considered.

2. Limitation of knowledge. For example, in medical di-
agnosis, possible diseases will be predicted according to
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the patient’s symptoms by the model constructed on the
history data [Zhang et al., 2018]. However, complicated
diseases may definitely exist but have not been discov-
ered due to the limitation of human’s knowledge.

Discovering and exploring the class labels hidden in the
data may not only find interesting knowledge but also im-
prove the performance on known labels [Pham et al., 2015;
Zhu et al., 2017a]. Therefore, it is important to construct a
robust model for MLL which can not only discover the latent
labels but also could predict new data examples with both the
known and latent labels simultaneously.

Approaches have been proposed to solve data classifica-
tion with an unfixed label set, such as online learning for
single-label learning (SLL) [Kuzborskij et al., 2013; Nguyen
et al., 2016; Zhu et al., 2017b] and MLL [Hua and Qi, 2008;
Xioufis et al., 2011; Zhu et al., 2018; Zhang et al., 2020],
However, in the settings of online learning, novel labels are
only induced by new instances, and they will not be discov-
ered if they are hidden in the existing training data. MIMLNC
[Pham et al., 2015] and DMNL [Zhu et al., 2017a] are two
highly related studies on discovering new label(s) for multi-
instance multi-label learning (MIMLL). MIMLNC is a proba-
bilistic model to identify novel instances for MIMLL, but it
assumes that all novel instances belong to a single new label.
DMNL tries to discover multiple novel labels for MIMLL. It
assumes that there are k novel labels, and the problem is for-
mulated as a non-negative orthogonal constrained optimiza-
tion problem which has a bag-dependent loss term and a bag-
independent clustering regularization term. However, these
two approaches cannot be applied to general single-instance
MLL problems directly.

In this paper, a novel approach named DLCL is proposed
for MLL which can not only discover the latent labels in the
training data but also predict new instances with both the la-
tent and known labels. On the one hand, we try to improve
the performance of known labels by exploring the informa-
tion provided by the discovered latent labels. On the other
hand, we exploit the knowledge of known labels to guide the
discovery of latent labels.

2 Proposed Method
LetX∈Rd be the feature space, and Ŷ=Y∪Ȳ be the label set,
where Y={y1, ..., yq} and Ȳ={yq+1, ..., yq+k} indicate the
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observed and latent labels respectively. X∈Rn×d indicates
the data matrix, and Ŷ=[Y, Ȳ]∈{0, 1}n×l represents the la-
bel matrix, where l=q+k. Y∈{0, 1}n×q and Ȳ∈{0, 1}n×k
indicates the observed and latent label matrices respectively.
If xi belongs to yj , then yij=1; otherwise yij=0.

2.1 Discovering Latent Class Labels
Problem Definition (Discovering Latent Class Labels for
MLL). Given an MLL data set with q known labels, the prob-
lem of discovering latent class labels for MLL is to detect
previously unknown labels (e.g., k latent labels) for each in-
stance in the training set, and build a model which can predict
unseen data examples with both the known and latent labels.

The aim is to construct a MLL model h : X → 2Ŷ , but Ȳ
is unknown at first. Motivated by previous work on cluster-
ing based matrix factorization [Hu and Chen, 2019], we try
to learn an approximate representation U ∈ {0, 1}n×l for the
completed label matrix Ŷ=[Y, Ȳ]. Since Y is known in ad-
vance, and thus the results of the first q columns of U should
be consistent with that of known class labels. Therefore, the
optimization problem can be defined as

min
U,V

λ1
2
‖X−UV‖2F +

λ2
2
‖UP−Y‖2F (1)

s.t.U ∈ {0, 1}n×l

where V ∈ Rl×d is the coefficient, and P ∈ Rl×q is a pro-
jection matrix which is composed of the first q columns of an
l × l identity matrix. Once U is obtained, we can initialize
Ȳ according to U, i.e., U(:,(q+1):l). Then, we can construct a
MLL model with a squared loss as

min
W,U,V

1

2
‖XW − Ŷ‖2F +

λ1
2
‖X−UV‖2F+ (2)

λ2
2
‖UP−Y‖2F +

λ3
2

q∑
i,j

rijcijd
2
ij + λ4‖W‖1

s.t.U ∈ [0, 1]n×l

where W=[w1, ...,wl] ∈ Rd×l is the coefficient matrix,
and `1-norm regularization is used to learn sparse label-
specific features [Zhang and Wu, 2015; Huang et al., 2016;
Huang et al., 2018; Wei et al., 2019; Wu et al., 2019;
Huang et al., 2019]. For the simplicity of optimization, the
discrete constraint on the values of matrix U is relaxed to
continuous, i.e., ∀ uij ∈ [0, 1].

It is worth noting that the latent labels may have correla-
tions with known labels more or less, and thus it was expect-
ed that the performance on known labels and latent labels will
be both boosted by exploiting the correlations between them.
Thus, let C be the label correlation matrix. Each element cij
indicates the value of correlation between the i-th and j-th
labels, and is estimated by calculating the cosine similarity
between Ŷ:,i and Ŷ:,j . Since Ȳ is unknown, the calculated
correlations between known and latent labels may not be re-
liable enough. Thus, we introduce an extra matrix R ∈ Rl×l,
and each element rij indicates the confidence of cij as

rij =

{
1 , if 1 ≤ i, j ≤ q
α , otherwise; α ∈ [0, 1]

(3)

Then, we try to exploit the pairwise label correlation by
modeling the Euclidean distance between any pair of model
coefficient vectors. Specifically, if yi and yj have a strong
correlation, their corresponding coefficients wi and wj will
be similar, and thus the distance (i.e., dij=‖wi −wj‖2) will
be small. Otherwise, the distance will be large. The fourth
term of (2) was utilized to model pairwise label correlation.

3 Optimization
An alternating optimization strategy is adopted to solve prob-
lem (2), and L represents the objective function of it.

3.1 Update W
With U and V fixed, problem (2) reduces to

min
W

1

2
‖XW − Ŷ‖2F +

λ3
2

tr(WLWT ) + λ4‖W‖1 (4)

where L is graph Laplacian of the weighted correlation ma-
trix C �R. Thus, the gradient w.r.t W can be calculated as

∇WL = XTXW −XT Ŷ + λ3WL (5)
The `1-norm regularization w.r.t W can be solved by the

element-wise soft-threshold operator. According to the prox-
imal gradient descend algorithm [Beck and Teboulle, 2009],
W can be updated by

Wt+1 = prox λ4
Lf

(W(t) − 1

Lf
∇WL(P,W(t),U)) (6)

where W(t) = Wt + αt−1−1
αt

(Wt −Wt−1). Lf is the Lip-
schitz constant, and an upper bound of it is shown in Theo-
rem 1. For a sequence αt, it should satisfy the condition of
α2
t − αt ≤ α2

t−1, and proxε(a) is the element-wise operator
which is defined as

proxε(a) = sign(a) max(|a| − ε, 0) (7)

Theorem 1 (Lipschitz Continuous Gradient). Given two ar-
bitrary distinct parameters W1 and W2, we have

‖∇WL(W1)−∇WL(W2)‖2F ≤ γ‖∆W‖2F
where γ = 2‖XTX‖22+2‖λ3L‖22 and ∆W=W1−W2, and
an approximate Lipschitz constant can be calculated by,

Lf =
√

2‖XTX‖22 + 2‖λ3L‖22 (8)

Proof. Given W1 and W2, according to Eq. (5), we have

‖∇WL(W1)−∇WL(W2)‖2F
= ‖XTXW1 + λ3W1L−XTXW2 − λ3W2L‖2F
= ‖XTX(W1 −W2) + λ3(W1 −W2)L‖2F
= ‖XTX∆W + λ3∆WL‖2F
≤ 2‖XTX∆W‖2F + 2‖λ3∆WL‖2F
≤ 2‖XTX‖22‖∆W‖2F + 2‖λ3L‖22‖∆W‖2F
= (2‖XTX‖22 + 2‖λ3L‖22)‖∆W‖2F



Algorithm 1 Training of DLCL

Input: Training data: X ∈ Rn×d, label matrix Y ∈ Rn×q;
Parameter: The non-negative weighting parameters λ1, λ2,
λ3, and λ4, the number of latent class labels k, and α;
Output: W, U, and V

1: α1 = 1.
2: Initialize W, U, and V with random value.
3: Ȳ = U(:,(q+1):l).
4: while stop criterion not reached do
5: Calculate C based on Ŷ.
6: Let C = C�R, and then calculate L.
7: calculate Lf according to Eq. (8).
8: update W according to Eq. (6).
9: update U according to Eq. (10).

10: update V according to Eq. (13).
11: search β∗ according to (14).
12: update Ȳ according to Eq. (15).

13: αt+1 ←
1+
√

4α2
t+1

2
14: end while
15: return W, U, and V

3.2 Update U
With W and V fixed, problem (2) becomes

min
U

λ1
2
‖X−UV‖2F +

λ2
2
‖UP−Y‖2F (9)

Thus, the gradient w.r.t U can be calculated as

∇UL = λ1(UVVT −XVT ) + λ2(UPPT −YPT )

Therefore, we can obtain a closed-form solution for U as

U = (λ1XVT + λ2YPT )(λ1VVT + λ2PPT )−1 (10)

Then, ∀ uij ∈ [0, 1] can be achieved by U = max(U,0) and
the min-max normalization over each column of U.

3.3 Update V
With U and W fixed, problem (2) is simplified as

min
V

λ1
2
‖X−UV‖2F (11)

Consequently, the gradient w.r.t V can be calculated by

∇VL = λ1U
TUV − λ1UTX (12)

Then, a closed-form solution for V can be obtained as

V = (UTU)−1UTX (13)

3.4 Update Ŷ
In (2), Ŷ=[Y, Ȳ] is the full label matrix, and Ȳ indicates the
latent label matrix and is unknown in advance. Therefore, we
need to update Ȳ after each iteration of the optimization. As
aforementioned, U is an approximate representation of Ŷ.
Besides, we can also obtain a result from the classifier, i.e.,
XW, and it is expected that the useful information (i.e., label
correlation) induced from the known label can lead to a good

Data set #Instance #Feature #Label Card Domain
arts 5000 462 26 1.64 text
bibtex 7395 1836 159 2.40 text
corel16k001 13766 500 153 2.86 image
corel16k002 13761 500 164 2.88 image
corel5k 5000 499 374 3.52 image
education 5000 438 30 1.59 text
medical 978 1449 45 1.245 text
rcv1v2(subset1) 6000 944 101 2.88 text
stackex-chemistry 6961 540 175 2.11 text
stackex-cooking 10491 577 400 2.23 text
stackex-cs 9270 635 274 2.56 text
stackex-philosophy 3971 842 233 2.27 text

Table 1: Description of data sets. (Card indicates the average num-
ber of labels per instance.)

prediction on the latent labels. Therefore, we plan to update
Ȳ according to both of U and XW with a balance weight
β ∈ (0, 1). Since Y is known, we can search a proper value
for β from {0.05, 0.1, ..., 0.95} according to (14).

β∗ = arg min
β
‖Y − (βUP + (1− β)XWP)‖1 (14)

Then, Ȳ can be updated by

Ȳ = β∗U(:,(q+1):l) + (1− β∗)XW(:,(q+1):l) (15)

4 Experiment
4.1 Experimental Setting
By surveying previous work on MLL, we noted that there
is no previous work doing the same topic like us. MIMLNC
[Pham et al., 2015] and DMNL [Zhu et al., 2017a] are the
only two highly related studies on discovering novel labels,
but these two approaches are tailored for MIMLL, and cannot
be applied to general single-instance MLL directly. In order
to verify the effectiveness of our proposed method, we com-
pare DLCL with four state-of-the-art approaches in terms of
their performance on known labels. Detailed configurations
of them are summarized as: 1) BR [Boutell et al., 2004]: Bi-
nary Relevance. It learns a binary classifier (one-vs-rest) for
each label independently, and Linear Regression is utilized as
the base binary learner for it, and the regularization parameter
is tuned in {10i|i = −2, ..., 2}. 2) MLkNN [Zhang and Zhou,
2007]1: A lazy learning approach to MLL, the number of n-
earest neighbors k is searched in{7, ..., 17}. 3) LLSF [Huang
et al., 2016]2: Learning label-specific features for MLL, the
regularization parameters are tuned in {2i|i = −10, ..., 10}.
4) KRAM [Jia and Zhang, 2019]3: Multi-dimensional classifi-
cation via knn feature augmentation. The number of nearest
neighbors k is searched in{7, ..., 17}. 5) DLCL: The proposed
approach in this paper. Parameters λ1 and λ2 are tuned in
{10i|i = 2, ..., 6}, λ3 is tuned in {2i|i = −2, ..., 4}, λ4 is
tuned in {10i|i = −2, ..., 1}, and α is tuned in {0.4, 0.5, 0.6}.
Parameter tuning for each of them is based on a 5-fold cross
validation over the training data of each data set.

Table 1 shows a summarization of the twelve experimental
data sets. We adopt six common evaluation metrics [Zhang

1code: http://palm.seu.edu.cn/zhangml/files/ML-kNN.rar
2code: http://www.escience.cn/people/huangjun/index.html
3code: http://palm.seu.edu.cn/zhangml/files/KRAM.rar

http://palm.seu.edu.cn/zhangml/files/ML-kNN.rar
http://www.escience.cn/people/huangjun/index.html
http://palm.seu.edu.cn/zhangml/files/KRAM.rar


Data sets BR MLkNN LLSF KRAM DLCL BR MLkNN LLSF KRAM DLCL BR MLkNN LLSF KRAM DLCL
Hamming Loss ↓ (q = 70%l, k = 30%l) Hamming Loss ↓ (q = 80%l, k = 20%l) Hamming Loss ↓ (q = 90%l, k = 10%l)

arts .079 .086 .075 .073 .075 .071 .078 .070 .066 .069 .067 .074 .065 .063 .067
bibtex .017 .018 .017 .020 .017 .014 .018 .016 .020 .016 .015 .016 .016 .018 .015
corel16k1 .030 .028 .033 .030 .029 .029 .028 .030 .031 .027 .027 .030 .030 .030 .024
corel16k2 .029 .029 .028 .028 .027 .027 .023 .027 .032 .024 .029 .027 .028 .030 .026
corel5k .021 .018 .019 .022 .018 .019 .017 .020 .020 .018 .018 .016 .017 .019 .020
education .063 .063 .062 .058 .058 .059 .058 .059 .053 .054 .052 .051 .052 .046 .048
medical .015 .015 .008 .008 .009 .010 .015 .011 .010 .011 .010 .016 .011 .011 .011
rcv1v2s1 .034 .030 .032 .030 .034 .031 .032 .031 .029 .031 .030 .031 .031 .028 .030
chemistry .019 .020 .019 .017 .017 .018 .021 .018 .017 .017 .017 .018 .017 .015 .017
cs .006 .007 .006 .006 .006 .006 .006 .006 .006 .006 .006 .007 .006 .007 .006
cooking .011 .011 .012 .012 .011 .011 .012 .013 .011 .011 .011 .011 .012 .011 .010
philosophy .014 .013 .013 .013 .013 .013 .013 .013 .012 .012 .013 .013 .013 .012 .012
Data sets Average Precision ↑ (q = 70%l, k = 30%l) Average Precision ↑ (q = 80%l, k = 20%l) Average Precision ↑ (q = 90%l, k = 10%l)
arts .451 .435 .460 .472 .476 .452 .434 .455 .469 .473 .579 .541 .583 .595 .600
bibtex .486 .449 .502 .461 .525 .539 .481 .543 .484 .566 .600 .546 .609 .549 .622
corel16k1 .305 .294 .303 .272 .318 .299 .276 .296 .264 .307 .323 .295 .323 .278 .329
corel16k2 .307 .284 .302 .272 .318 .326 .287 .325 .287 .330 .329 .310 .330 .291 .331
corel5k .315 .327 .315 .291 .339 .305 .316 .311 .281 .332 .298 .306 .293 .267 .314
education .631 .621 .627 .655 .651 .626 .616 .621 .648 .646 .626 .618 .622 .649 .649
medical .623 .619 .648 .634 .647 .754 .708 .757 .741 .758 .818 .750 .819 .791 .821
rcv1v2s1 .442 .460 .455 .463 .471 .442 .457 .441 .448 .458 .427 .443 .430 .430 .443
chemistry .434 .405 .464 .413 .476 .458 .393 .465 .402 .474 .454 .396 .461 .394 .470
cs .484 .416 .485 .378 .490 .495 .425 .497 .369 .502 .508 .415 .511 .375 .516
cooking .538 .470 .527 .475 .545 .539 .465 .531 .466 .548 .531 .461 .538 .442 .540
philosophy .486 .445 .518 .436 .533 .489 .437 .521 .420 .526 .478 .430 .511 .407 .525
Data sets One Error ↓ (q = 70%l, k = 30%l) One Error ↓ (q = 80%l, k = 20%l) One Error ↓ (q = 90%l, k = 10%l)
arts .626 .669 .615 .615 .612 .617 .661 .612 .607 .607 .500 .575 .495 .491 .494
bibtex .528 .582 .517 .556 .512 .471 .547 .471 .527 .461 .359 .424 .355 .416 .350
corel16k1 .744 .764 .748 .775 .740 .745 .774 .749 .778 .749 .688 .727 .690 .732 .687
corel16k2 .737 .770 .743 .770 .737 .693 .747 .694 .729 .697 .670 .705 .667 .708 .676
corel5k .648 .655 .646 .683 .633 .651 .657 .649 .684 .626 .644 .659 .648 .694 .652
education .478 .501 .477 .454 .470 .473 .498 .475 .455 .469 .471 .495 .472 .456 .461
medical .395 .407 .369 .380 .369 .284 .355 .279 .294 .282 .223 .316 .218 .241 .219
rcv1v2s1 .592 .589 .573 .572 .581 .579 .571 .576 .567 .581 .577 .569 .575 .569 .580
chemistry .607 .637 .576 .619 .573 .566 .638 .565 .616 .563 .563 .627 .561 .610 .559
cs .497 .551 .499 .589 .499 .472 .522 .471 .587 .471 .438 .502 .438 .556 .436
cooking .473 .513 .483 .537 .476 .457 .522 .464 .499 .456 .455 .522 .452 .504 .451
philosophy .501 .564 .480 .548 .468 .481 .555 .458 .554 .526 .480 .549 .456 .552 .448
Data sets Ranking Loss ↓ (q = 70%l, k = 30%l) Ranking Loss ↓ (q = 80%l, k = 20%l) Ranking Loss ↓ (q = 90%l, k = 10%l)
arts .119 .097 .116 .084 .086 .117 .096 .117 .084 .087 .129 .110 .129 .095 .096
bibtex .097 .087 .084 .082 .056 .092 .091 .085 .088 .060 .095 .093 .084 .092 .074
corel16k1 .181 .158 .182 .167 .147 .189 .169 .188 .172 .147 .184 .169 .182 .172 .145
corel16k2 .175 .151 .175 .156 .139 .176 .163 .173 .157 .134 .175 .151 .172 .158 .135
corel5k .200 .115 .174 .124 .125 .201 .119 .173 .127 .131 .202 .118 .179 .126 .123
education .116 .084 .124 .075 .078 .119 .085 .129 .078 .080 .114 .076 .124 .070 .075
medical .025 .022 .011 .021 .011 .019 .027 .023 .026 .016 .018 .032 .024 .030 .019
rcv1v2s1 .061 .039 .055 .042 .035 .057 .045 .056 .045 .036 .058 .046 .057 .047 .037
chemistry .109 .101 .096 .097 .072 .111 .107 .100 .105 .076 .115 .114 .104 .111 .082
cs .087 .117 .083 .106 .064 .089 .115 .084 .124 .067 .092 .133 .083 .130 .069
cooking .068 .086 .085 .084 .052 .071 .093 .084 .092 .055 .074 .099 .061 .093 .057
philosophy .123 .095 .091 .108 .070 .129 .104 .098 .118 .071 .138 .109 .099 .126 .083
Data sets Coverage ↓ (q = 70%l, k = 30%l) Coverage ↓ (q = 80%l, k = 20%l) Coverage ↓ (q = 90%l, k = 10%l)
arts .142 .109 .137 .097 .102 .151 .119 .148 .108 .113 .184 .150 .182 .136 .140
bibtex .146 .128 .126 .119 .088 .151 .139 .136 .136 .099 .174 .159 .149 .153 .136
corel16k1 .267 .234 .260 .246 .217 .287 .260 .277 .262 .223 .313 .290 .301 .295 .248
corel16k2 .259 .231 .254 .236 .208 .286 .270 .273 .259 .218 .317 .275 .302 .288 .244
corel5k .428 .258 .356 .273 .281 .442 .272 .349 .286 .299 .451 .273 .376 .288 .287
education .154 .104 .163 .096 .103 .165 .112 .177 .105 .112 .162 .101 .172 .096 .106
medical .017 .016 .002 .014 .003 .021 .032 .024 .030 .017 .024 .041 .030 .039 .024
rcv1v2s1 .134 .091 .118 .099 .083 .130 .106 .124 .107 .087 .137 .113 .131 .114 .093
chemistry .174 .157 .149 .149 .117 .187 .176 .163 .171 .131 .201 .189 .176 .192 .147
cs .141 .169 .130 .180 .103 .151 .192 .138 .201 .116 .170 .231 .147 .229 .128
cooking .122 .148 .141 .145 .094 .138 .172 .152 .168 .108 .151 .178 .116 .187 .117
philosophy .206 .163 .151 .181 .123 .227 .188 .170 .209 .132 .253 .206 .182 .231 .161
Data sets Macro AUC ↑ (q = 70%l, k = 30%l) Macro AUC ↑ (q = 80%l, k = 20%l) Macro AUC ↑ (q = 90%l, k = 10%l)
arts .576 .603 .580 .614 .609 .580 .606 .581 .616 .610 .743 .773 .744 .785 .780
bibtex .745 .753 .759 .761 .785 .818 .820 .829 .823 .852 .883 .886 .898 .891 .906
corel16k1 .742 .761 .743 .752 .776 .751 .766 .754 .764 .793 .794 .805 .797 .801 .832
corel16k2 .747 .763 .747 .760 .782 .787 .794 .793 .801 .829 .813 .834 .818 .827 .853
corel5k .790 .876 .819 .867 .867 .795 .878 .820 .870 .867 .798 .881 .822 .873 .878
education .827 .869 .817 .877 .871 .836 .879 .825 .887 .880 .846 .895 .837 .901 .892
medical .652 .653 .667 .655 .666 .810 .800 .808 .801 .814 .884 .869 .879 .871 .884
rcv1v2s1 .664 .675 .672 .683 .692 .671 .682 .673 .682 .693 .673 .684 .675 .683 .695
chemistry .783 .793 .800 .798 .823 .824 .828 .838 .831 .860 .846 .846 .860 .850 .879
cs .792 .771 .798 .762 .816 .828 .800 .835 .789 .850 .866 .827 .878 .825 .891
cooking .856 .837 .842 .840 .873 .891 .870 .881 .871 .908 .902 .884 .918 .877 .920
philosophy .791 .818 .828 .805 .848 .811 .832 .847 .818 .871 .820 .845 .863 .829 .878

Table 2: Experimental results (mean) of all the comparing approaches on known labels in terms of each evaluation metric.



Metric FF Critical Value (α = 0.05)
Hamming Loss 4.4744

2.4363

Average Precision 48.8990
One Error 27.2180
Ranking Loss 28.6542
Coverage 27.1924
Macro AUC 28.6498

Table 3: Summary of the Friedman statistics FF (k = 5, N = 36)
and the critical value in terms of each evaluation metric (k: # of
comparing algorithms; N : # of data sets)

and Zhou, 2014], i.e., Hamming Loss, Average Precision,
One Error, Ranking Loss, Coverage, and Macro AUC, to
evaluate the performance of the comparing algorithms on
known labels. To evaluate the performance of our method
on discovered latent labels, we adopt the following metric
proposed in [Zhu et al., 2017a],

Fnovel =
1

k

k∑
i=1

max({F(Ŷ:,q+i,G:,q+j), j ∈ {1, ..., k}})

where F(·) is the function of F-measure, and G indicates the
ground-truth label matrix. Fnovel measures the average perfor-
mance on detected multiple latent labels on the ground-truth
label that best matches.

4.2 Experimental Results
For each data set, 80% of it are randomly generated as the
training part and 20% for testing, which is repeated 10 times.
Following the settings in previous work on discovering new
labels for MIMLL [Pham et al., 2015; Zhu et al., 2017a], the
first 70%, 80% and 90% labels are set be to known labels
and the rest are taken as latent ones respectively. The average
results of each comparing algorithm on the known labels are
shown in Table 2. ↑ (↓) indicates the larger (smaller) the
value, the better the performance. Best results are highlighted
in bold face.
Results on Known Labels. Friedman test [Demšar, 2006]
is employed to conduct performance analysis among the com-
paring approaches, and the result of it is shown in Table 3. As
shown in Table 3, the null hypothesis that all the comparing
algorithms perform equivalently is clearly rejected in terms
of all the evaluation metrics at significance level α = 0.05,
Consequently, the Nemenyi test [Demšar, 2006] is adopted to
analyse the relative performance among them. For Nemenyi

test, the critical difference CD=qα

√
k(k+1)

6N =1.0167 (k=5,
N=36) with qα=2.728 at significance level α=0.05, where
k is the number of algorithms and N (16 × 3) is the number
of data sets. The CD diagrams of DLCL w.r.t to the comparing
algorithms on each evaluation metric are shown in Figure 1.
In each sub-figure, any comparing algorithm whose average
rank is within one CD to that of DLCL is connected. Other-
wise, any algorithm not connected with DLCL is considered to
have significant different performance between them. Ac-
cording to these experimental results, the following observa-
tions can be made: 1) The proposed method DLCL significant-
ly outperforms the comparing algorithms in terms of ranking
loss, average precision, coverage, and AUC. Besides, DLCL s-
tatistically outperforms the comparing algorithms in terms of
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Figure 1: Comparison of DLCL against the comparing approaches
with the Nemenyi test. Groups of classifiers that are not significantly
different from DLCL (at p = 0.05) are connected.

Data sets DLCL (k, q) RS (.3l, .7l)
(.1l, .9l) (.2l, .8l) (.3l, .7l) r1 r2 r3

arts .235±.03 .315±.03 .265±.01 .153 .154 .155
bibtex .093±.01 .197±.01 .215±.01 .090 .087 .096
corel16k1 .266±.01 .265±.01 .251±.01 .066 .066 .066
corel16k2 .223±.01 .240±.01 .249±.01 .065 .080 .106
corel5k .094±.01 .145±.01 .144±.01 .129 .112 .094
education .051±.01 .100±.01 .123±.01 .105 .119 .118
medical .163±.02 .224±.03 .273±.03 .148 .145 .145
rcv1v2s1 .182±.02 .202±.02 .203±.02 .094 .106 .117
chemistry .115±.02 .131±.01 .149±.01 .088 .084 .086
cooking .176±.02 .203±.01 .229±.01 .104 .080 .073
cs .146±.01 .171±.01 .203±.01 .089 .079 .079
philosophy .154±.02 .160±.01 .192±.01 .135 .111 .102

Table 4: Experiment results (Fnovel ↑) on latent labels. RS (.3l, .7l)
indicates the average results of randomly setting ri(ri = i) latent la-
bels for each instance when k=0.3l and q=0.7l over 50 repetitions.

hamming loss and one error. These results definitely demon-
strate the effectiveness of our method on MLL. 2) KRAM and
MLkNN algorithms are all constructed based on the informa-
tion of k nearest neighbors of each instance. It is worth not-
ing that these two algorithms achieve worse performance on
those data with a large number of labels (e.g., l≥100) than on
those data with a small number of labels. One possible reason
might be that the k nearest neighbors can not provide suffi-
cient information for model construction when many labels
are hidden in the data. These results verify the importance of
discovering latent class labels for MLL.

Results on Latent Labels. Table 4 shows the results of
DLCL on discovered latent class labels according to Fnovel. It
is clearly indicated that DLCL can discover the latent labels for
MLL, and DLCL significantly outperforms RS(Randomly Set-
ting) when q = 70l% and k = 30l%. For some data sets, the
results of Fnovel differ extremely under different ratios of la-
tent labels. The possible reason might be that the difficulties
of prediction of different labels are different. On the other
hand, we want to know what latent labels have we discov-



Matched Label Name Fnovel Top 20 Features (i.e., feature name (weight))

regular-languages 0.712
regular(0.898), beginalign(0.062), endalign(0.052), essenti(0.045), express(0.039), pump(0.036), confus(0.035), project(0.034), home-
work(0.034), attempt(0.034), independ(0.032), languag(0.03), let(0.027), digit(0.027), cup(0.026), lot(0.026), comment(0.026), identi-
fi(0.026), algebra(0.025), here(0.025)

pumping-lemma 0.635
pump(0.855), lemma(0.681), essenti(0.139), easier(0.12), identifi(0.1), formul(0.083), split(0.076), condit(0.068), geq(0.068), re-
spect(0.067), nice(0.067), forc(0.063), short(0.061), imagin(0.058), author(0.056), larger(0.054), yield(0.054), effect(0.053), pseu-
docod(0.053), insid(0.051)

reductions 0.564
reduct(0.83), beginalign(0.11), endalign(0.099), reduc(0.074), langl(0.065), notic(0.054), show(0.053), sat(0.039), suggest(0.034),
shown(0.034), nice(0.031), maxim(0.03), naiv(0.029), undecid(0.029), simpl(0.027), research(0.027), flow(0.026), wikipedia(0.024),
wrong(0.024), literatur(0.024)

turing-machines 0.465
machin(0.829), ture(0.617), tape(0.122), encod(0.041), power(0.038), occur(0.036), simul(0.034), digit(0.031), determinist(0.030),
build(0.030), group(0.029), appear(0.029), qquad(0.028), make(0.028), automaton(0.027), uniqu(0.027), troubl(0.027), play(0.026),
halt(0.026), endalign(0.026)

sorting 0.448
sort(0.849), comparison(0.136), insert(0.119), quick(0.061), compar(0.035), addit(0.031), entri(0.030), notat(0.029), origin(0.028), se-
lect(0.027), algorithm(0.027), automata(0.027), free(0.026), easi(0.026), sourc(0.026), qquad(0.026), mark(0.026), shown(0.026), dig-
it(0.025), argument(0.025)

Table 5: Results of the five best matched labels
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Figure 2: Influence of k and α on DLCL over arts.
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Figure 3: Parameter analysis on DLCL over stackex-chemistry.

ered. We try to describe the meaning of them by the learned
labels-specific features which are indicated by the non-zero
entities of each column of W. Table 5 shows the results of
the five best matched labels over the stackex-cs data set with
q = 70l% and k = 30l%. It is noted that the names of top
five matched labels are the occurred among the top 20 fea-
tures or homologous with them, and most of features have a
strong semantic correlation with the name of labels.

4.3 Parameter and Convergence Analysis
The number of Latent labels k and correlation confidence
α. For arts, the first 20 and the rest 6 labels are set as known
and latent labels respectively. Figure 2 shows the average re-
sults of DLCL over 10 repetitions with different values of k and
α. The result (i.e., Macro AUC) on known labels is improved
by discovering latent labels (i.e., k > 0), and the Fnovel de-
creases with the increasing of k. The larger the number of
latent labels, the harder it is to discover them. Therefore, we
could set k to be a relative small value and run DLCL multiple
times. It is also noted that the performance of latent labels can
be significantly improved with the help of known labels and
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Figure 4: Two examples of the convergence curves of DLCL.

the improvement on known labels is slightly with the help of
latent labels by exploiting their correlations (i.e., α > 0). The
known labels are observed in advance and can be considered
as a teacher to guide the prediction on latent labels.
Analysis on regularization parameters. The average re-
sults (i.e, Average Precision) of DLCL with different values of
λ1, λ2, λ3, and λ4 over stackex-chemistry are shown in Fig-
ure 3, and similar results were also obtained for the other data
sets. It is noted that the performance of DLCL is insensitive to
the parameters, and also the optimal performance is usually
achieved at some intermediate values of each parameter.
Convergence. Figure 4 demonstrates two examples of the
convergence curves of DLCL. It is noted that the values of
the objective function are non-increasing and drop sharply
around 15 iterations on corel5k and stackex-cs data sets.

5 Conclusion
In this paper, a novel approach named DLCL is proposed for
MLL which can not only discover the latent labels in the train-
ing data but also predict new instances with these latent labels
and known labels simultaneously. The experimental results
demonstrate that the performance of latent labels can be sig-
nificantly improved with the help of known labels and the
performance of known labels can be improved with the help
of latent labels by exploiting their correlations. Extensive ex-
periments with other state-of-the-art MLL approaches have
show a competitive performance of DLCL.
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