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Abstract

Existing multi-label learning (MLL) approaches
mainly assume all the labels are observed and con-
struct classification models with a fixed set of target
labels (known labels). However, in some real appli-
cations, multiple latent labels may exist outside this
set and hidden in the data, especially for large-scale
data sets. Discovering and exploring the latent la-
bels hidden in the data may not only find interest-
ing knowledge but also help us to build a more ro-
bust learning model. In this paper, a novel approach
named DLcL (i.e., Discovering Latent Class Labels
for MLL) is proposed which can not only discover
the latent labels in the training data but also predict
new instances with the latent and known labels si-
multaneously. Extensive experiments show a com-
petitive performance of DLcL against other state-of-
the-art MLL approaches.

1 Introduction

MLL [Zhang and Zhou, 2014; Gibaja and Ventura, 2015]
deals with data examples with multiple class labels simul-
taneously. Many well-known approaches have been pro-
posed to solve different problems of MLL, such as par-
tial MLL [Wang er al., 2019; Xu et al., 2019], extreme
MLL [Wei et al., 2019; Jain et al., 2019; Chen et al.,
2019], missing labels [Yu er al., 2014; Yang et al., 2016;
Tan et al., 2018], and multi-view MLL [Xing et al., 2018;
Wu et al., 2019]. Tt is noted that existing approaches main-
ly assume that all the class labels are observed in advance.
However, in some applications, some latent labels might be
completely unobserved and hidden in the data, and below is a
summary of two possible reasons:

1. Labeling Cost. In the big data era, it is difficult to pro-
vide a complete label set for a data, especially a large-
scale data with an extreme number of labels. Labelling
efforts usually focus on the given set of target labels,
while labels outside this set will not be considered.

2. Limitation of knowledge. For example, in medical di-
agnosis, possible diseases will be predicted according to
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the patient’s symptoms by the model constructed on the
history data [Zhang et al., 2018]. However, complicated
diseases may definitely exist but have not been discov-
ered due to the limitation of human’s knowledge.

Discovering and exploring the class labels hidden in the
data may not only find interesting knowledge but also im-
prove the performance on known labels [Pham et al., 2015;
Zhu et al., 2017al. Therefore, it is important to construct a
robust model for MLL which can not only discover the latent
labels but also could predict new data examples with both the
known and latent labels simultaneously.

Approaches have been proposed to solve data classifica-
tion with an unfixed label set, such as online learning for
single-label learning (SLL) [Kuzborskij et al., 2013; Nguyen
et al., 2016; Zhu et al., 2017b] and MLL [Hua and Qi, 2008;
Xioufis et al., 2011; Zhu et al., 2018; Zhang et al., 2020],
However, in the settings of online learning, novel labels are
only induced by new instances, and they will not be discov-
ered if they are hidden in the existing training data. MIMLNC
[Pham et al., 2015] and DML [Zhu et al., 2017a] are two
highly related studies on discovering new label(s) for multi-
instance multi-label learning (MIMLL). MIMLNC is a proba-
bilistic model to identify novel instances for MIMLL, but it
assumes that all novel instances belong to a single new label.
DwmnL tries to discover multiple novel labels for MIMLL. It
assumes that there are k novel labels, and the problem is for-
mulated as a non-negative orthogonal constrained optimiza-
tion problem which has a bag-dependent loss term and a bag-
independent clustering regularization term. However, these
two approaches cannot be applied to general single-instance
MLL problems directly.

In this paper, a novel approach named DLcL is proposed
for MLL which can not only discover the latent labels in the
training data but also predict new instances with both the la-
tent and known labels. On the one hand, we try to improve
the performance of known labels by exploring the informa-
tion provided by the discovered latent labels. On the other
hand, we exploit the knowledge of known labels to guide the
discovery of latent labels.

2 Proposed Method

Let X €R be the feature space, and J)=)UY be the label set,
where Y={y1,...,y,} and Y={yq11,..., Yq+r } indicate the



observed and latent labels respectively. XcR™* indicates
the data matrix, and Y=[Y, Y]€{0,1}"*! represents the la-
bel matrix, where I=¢+k. Y€{0,1}"*9 and Y€{0, 1}**
indicates the observed and latent label matrices respectively.
If x; belongs to y;, then y;;=1; otherwise y;;=0.

2.1 Discovering Latent Class Labels

Problem Definition (Discovering Latent Class Labels for
MLL). Given an MLL data set with q known labels, the prob-
lem of discovering latent class labels for MLL is to detect
previously unknown labels (e.g., k latent labels) for each in-
stance in the training set, and build a model which can predict
unseen data examples with both the known and latent labels.

The aim is to construct a MLL model h : X — 2Y, but Y
is unknown at first. Motivated by previous work on cluster-
ing based matrix factorization [Hu and Chen, 2019], we try
to learn an approximate representation U € {0, 1}/ for the
completed label matrix Y=[Y,Y]. Since Y is known in ad-
vance, and thus the results of the first ¢ columns of U should
be consistent with that of known class labels. Therefore, the
optimization problem can be defined as

. )\1 )\2
min SHX ~ UV[; + ZIUP - Y[ )

s.t. U € {0,1}™*!

where V € R!*4 is the coefficient, and P € R!*? is a pro-
jection matrix which is composed of the first ¢ columns of an
I x [ identity matrix. Once U is obtained, we can initialize
Y according to U, i.e., U, (441).)- Then, we can construct a
MLL model with a squared loss as

. 1 12 )\1 2
Jn, 5 [XW =Y + X - UV|7+ @

A2 A3 o

?HUP ~ Y| + > Zrijcijd?j + AWy
1)

s.t.U e [0,1)]"%!

where W=[wy,....,w;] € R%*! is the coefficient matrix,
and ¢;-norm regularization is used to learn sparse label-
specific features [Zhang and Wu, 2015; Huang et al., 2016;
Huang et al., 2018; Wei et al, 2019; Wu et al., 2019;
Huang et al., 2019]. For the simplicity of optimization, the
discrete constraint on the values of matrix U is relaxed to
continuous, i.e., V u;; € [0, 1].

It is worth noting that the latent labels may have correla-
tions with known labels more or less, and thus it was expect-
ed that the performance on known labels and latent labels will
be both boosted by exploiting the correlations between them.
Thus, let C be the label correlation matrix. Each element c;;
indicates the value of correlation between the i-th and j-th
labels, and is estimated by calculating the cosine similarity
between Y;,i and Y’;J. Since Y is unknown, the calculated
correlations between known and latent labels may not be re-
liable enough. Thus, we introduce an extra matrix R € RixE
and each element r;; indicates the confidence of ¢;; as

)1 ifl<ij<q
Tij _{ a , otherwise; a € [0,1] 3)

Then, we try to exploit the pairwise label correlation by
modeling the Euclidean distance between any pair of model
coefficient vectors. Specifically, if y; and y; have a strong
correlation, their corresponding coefficients w; and w; will
be similar, and thus the distance (i.e., d;;=||w; — w;||2) will
be small. Otherwise, the distance will be large. The fourth
term of (2) was utilized to model pairwise label correlation.

3 Optimization
An alternating optimization strategy is adopted to solve prob-
lem (2), and L represents the objective function of it.

3.1 Update W
With U and V fixed, problem (2) reduces to

1 - A
win o[ XW — Y[ + De(WLW) + WL 4)

where L is graph Laplacian of the weighted correlation ma-
trix C ® R. Thus, the gradient w.r.t W can be calculated as

Vwi = XTXW — XTY + \sWL (5)

The ¢1-norm regularization w.r.t W can be solved by the
element-wise soft-threshold operator. According to the prox-
imal gradient descend algorithm [Beck and Teboulle, 20091,
‘W can be updated by

1
Wip1 = prox,, (W — —VwL(P, W, U))  (6)
Lf f

where W) = W + 2=1=L(W, — W,_,). Ly is the Lip-
schitz constant, and an upper bound of it is shown in Theo-
rem 1. For a sequence «, it should satisfy the condition of
a? —a; < a? |, and prox,(a) is the element-wise operator
which is defined as

prox (a) = sign(a) max(|a|] — €,0) (7)

Theorem 1 (Lipschitz Continuous Gradient). Given two ar-
bitrary distinct parameters W1 and W o, we have

IVwL(W1) = VwL(Wa)[ < | AW][Z

where v = 2| XTX||3+2||A\3L||2 and AW=W — W, and
an approximate Lipschitz constant can be calculated by,

Ly = /2 XTX3 +2[ L3 ®)

Proof. Given W and W, according to Eq. (5), we have
[VwL(W1) = VwL(Wa)|

= |XTXW; + \3W,L - XTXW, — \3W,L||%

= |XTX(W1 — Wa) + A3(W1 — W2)L[[3

= | XTXAW + \3AWL||%
2|X"XAW |3 + 2| AsAWL|%
2| XTXI3| AW][3 + 2[IAs L[| AW
2IXTX|3 + 2 AsLI3) AW 7
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Algorithm 1 Training of DLcL

Input: Training data: X € R™*4 label matrix Y € R™*4;
Parameter: The non-negative weighting parameters \q, Ao,
A3, and A4, the number of latent class labels k, and «;
Output: W, U,and V
L = 1.
Initialize W, U, and V with random value.
Y = U g+
while stop criterion not reached do
Calculate C based on Y.
Let C = C ® R, and then calculate L.
calculate L ¢ according to Eq. (8).
update W according to Eq. (6).
update U according to Eq. (10).
10:  update V according to Eq. (13).
11:  search 3* according to (14).
12:  update Y according to Eq. (15).

14++/4a2+1

13: Q41 5
14: end while
15: return W, U, and V
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3.2 Update U
With W and V fixed, problem (2) becomes

min X - UV + 2P - Y[ o)
Thus, the gradient w.r.t U can be calculated as
Vol =M (UVVT - XV + ) (UPPT - YPT)
Therefore, we can obtain a closed-form solution for U as
U=\XVT+ % YPH (N VVT £ L, PPT)"L (10)

Then, ¥V u;; € [0, 1] can be achieved by U = max(U, 0) and
the min-max normalization over each column of U.

3.3 Update V
With U and W fixed, problem (2) is simplified as

n{;n%l\X—UVH% (1)

Consequently, the gradient w.r.t V can be calculated by
VvL=X\UTUV -\ UTX (12)

Then, a closed-form solution for V can be obtained as
vV = (UTu)"'uTx (13)

3.4 Update Y

In (2), Y=[Y, Y] is the full label matrix, and Y indicates the
latent label matrix and is unknown in advance. Therefore, we
need to update Y after each iteration of the optimization. As
aforementioned, U is an approximate representation of Y.
Besides, we can also obtain a result from the classifier, i.e.,
XW, and it is expected that the useful information (i.e., label
correlation) induced from the known label can lead to a good

Data set #Instance #Feature #Label Card Domain
arts 5000 462 26 1.64 text
bibtex 7395 1836 159 2.40 text
corel16k001 13766 500 153 2.86 image
corel16k002 13761 500 164 2.88 image
corel5k 5000 499 374 3.52 image
education 5000 438 30 1.59 text
medical 978 1449 45 1.245 text
rcv1v2(subsetl) 6000 944 101 2.88 text
stackex-chemistry 6961 540 175 2.11 text
stackex-cooking 10491 577 400 2.23 text
stackex-cs 9270 635 274 2.56 text
stackex-philosophy 3971 842 233 2.27 text

Table 1: Description of data sets. (Card indicates the average num-
ber of labels per instance.)

prediction on the latent labels. Therefore, we plan to update
Y according to both of U and XW with a balance weight
B € (0,1). Since Y is known, we can search a proper value
for § from {0.05, 0.1, ...,0.95} according to (14).

" =argmin |[Y — (FUP + (1 - 5XWP)|  (14)

Then, Y can be updated by
Y = U (ge1y0) + (1 = B)XW( (g11)) (15)

4 Experiment

4.1 Experimental Setting

By surveying previous work on MLL, we noted that there
is no previous work doing the same topic like us. MIMLNC
[Pham et al., 2015] and DmNL [Zhu et al., 2017a] are the
only two highly related studies on discovering novel labels,
but these two approaches are tailored for MIMLL, and cannot
be applied to general single-instance MLL directly. In order
to verify the effectiveness of our proposed method, we com-
pare DLcL with four state-of-the-art approaches in terms of
their performance on known labels. Detailed configurations
of them are summarized as: 1) Br [Boutell e al., 2004]: Bi-
nary Relevance. It learns a binary classifier (one-vs-rest) for
each label independently, and Linear Regression is utilized as
the base binary learner for it, and the regularization parameter
is tuned in {10%|i = —2,...,2}. 2) MLkNN [Zhang and Zhou,
20071': A lazy learning approach to MLL, the number of n-
earest neighbors k is searched in{7, ..., 17}. 3) LLsF [Huang
et al., 2016]3: Learning label-specific features for MLL, the
regularization parameters are tuned in {2¢|i = —10,...,10}.
4) KraM [Jia and Zhang, 2019]*: Multi-dimensional classifi-
cation via knn feature augmentation. The number of nearest
neighbors k is searched in{7, ..., 17}. 5) DLcL: The proposed
approach in this paper. Parameters A; and A\, are tuned in
{10%i = 2,...,6}, Az is tuned in {2¢]i = —2,...,4}, Ay is
tuned in {10%|i = —2,...,1}, and ais tuned in {0.4,0.5,0.6}.
Parameter tuning for each of them is based on a 5-fold cross
validation over the training data of each data set.

Table 1 shows a summarization of the twelve experimental
data sets. We adopt six common evaluation metrics [Zhang

!code: http://palm.seu.edu.cn/zhangml/files/ML-kNN.rar
2code: http://www.escience.cn/people/huangjun/index.html
3code: http:/palm.seu.edu.cn/zhangml/files/KR AM.rar
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Data sets BR MLANN LLSF KRAM DLCL BR MLANN LLSF KRAM DLCL BR MLANN LLSF KRAM DLCL
Hamming Loss | (¢ = 70%[, k = 30%l) Hamming Loss | (¢ = 80%!, k = 20%l) Hamming Loss | (¢ = 90%[, k = 10%1)
arts .079 .086 075 073 075 071 .078 .070 066 .069 .067 074 .065 063 067
bibtex 017 .018 017 .020 017 014 .018 .016 .020 .016 015 016 .016 018 015
corel16k1 .030 .028 .033 .030 .029 .029 .028 .030 .031 027 .027 .030 .030 .030 024
corel16k2 .029 .029 .028 .028 027 .027 .023 .027 .032 024 .029 .027 .028 .030 .026
corelSk .021 018 019 .022 018 .019 017 .020 .020 .018 .018 016 .017 019 .020
education .063 .063 .062 058 058 .059 .058 .059 053 .054 .052 .051 .052 046 .048
medical .015 .015 .008 .008 .009 010 .015 011 010 011 010 .016 .011 011 011
revlv2sl .034 .030 .032 .030 .034 .031 .032 .031 029 .031 .030 .031 .031 .028 .030
chemistry .019 .020 .019 017 017 018 021 .018 017 017 .017 018 .017 015 .017
cs .006 .007 .006 .006 .006 .006 .006 .006 .006 .006 .006 .007 .006 .007 .006
cooking 011 011 .012 012 011 011 .012 .013 011 011 .011 011 .012 011 010
philosophy 014 013 013 013 013 013 .013 .013 012 012 .013 .013 .013 012 012
Data sets Average Precision 1 (¢ = 70%!, k = 30%!) Average Precision 1 (¢ = 80%!, k = 20%l) Average Precision 1 (¢ = 90%!, k = 10%l)
arts 451 435 460 472 476 452 434 455 469 473 579 541 .583 595 600
bibtex 486 449 502 461 525 539 481 .543 484 566 .600 546 .609 549 .622
corel16k1 305 294 303 272 318 299 276 296 264 307 323 295 323 278 329
corel16k2 307 284 302 272 318 326 287 325 287 330 329 310 .330 291 331
corel5k 315 327 315 291 339 .305 316 311 281 332 298 .306 293 267 314
education 631 .621 627 655 .651 .626 616 .621 .648 646 626 618 622 649 649
medical .623 .619 .648 .634 .647 754 708 157 741 758 818 750 819 791 821
revlv2sl 442 460 455 463 471 442 457 441 448 458 427 443 430 430 443
chemistry 434 405 464 413 476 458 393 465 402 474 454 396 461 394 470
cs 484 416 485 378 490 495 425 497 369 502 .508 415 S11 375 516
cooking 538 470 527 475 545 .539 465 531 466 548 531 461 538 442 540
philosophy 486 445 518 436 533 489 437 521 420 526 478 430 Sl 407 525
Data sets One Error | (¢ = 70%l, k = 30%1) One Error | (¢ = 80%l, k = 20%l) One Error | (¢ = 90%l, k = 10%l)
arts 626 .669 615 615 612 617 .661 612 607 607 .500 575 495 491 494
bibtex 528 582 517 .556 512 471 547 471 527 461 359 424 355 416 350
corel16k1 744 764 748 175 740 745 174 7149 178 749 .688 127 .690 732 .687
corel16k2 737 770 743 770 737 .693 747 .694 729 .697 .670 705 667 708 .676
corel5k 648 .655 646 .683 .633 .651 657 .649 .684 626 644 .659 .648 .694 652
education 478 501 477 454 470 473 498 475 455 469 471 495 472 456 461
medical 395 407 369 .380 369 284 355 279 294 282 223 316 218 241 219
revlv2sl 592 .589 573 572 581 579 571 .576 567 581 577 569 575 569 580
chemistry .607 .637 576 619 573 .566 .638 .565 616 563 .563 627 .561 610 559
cs 497 551 499 .589 499 472 522 471 587 471 438 502 438 556 436
cooking 473 513 483 537 476 457 522 464 499 456 455 522 452 504 451
philosophy 501 564 480 .548 468 481 555 458 554 526 480 549 456 552 448
Data sets Ranking Loss | (¢ = 70%l, k = 30%l) Ranking Loss | (¢ = 80%l, k = 20%l) Ranking Loss | (¢ = 90%l, k = 10%l)
arts 119 .097 116 084 .086 117 .096 117 084 .087 129 110 129 095 .096
bibtex .097 .087 .084 .082 056 .092 .091 .085 .088 .060 .095 .093 .084 .092 074
corel16k1 181 158 182 167 147 189 169 188 172 147 184 169 182 172 145
corel16k2 175 151 175 156 139 176 .163 173 157 134 175 151 172 158 135
corel5k 200 115 174 124 125 201 A19 173 127 131 202 118 179 126 123
education 116 .084 124 075 .078 119 .085 129 078 .080 114 .076 124 070 .075
medical .025 .022 011 .021 011 019 .027 .023 .026 016 018 .032 .024 .030 019
revlv2sl .061 .039 .055 .042 035 .057 .045 .056 .045 .036 .058 .046 .057 .047 .037
chemistry 109 101 .096 .097 072 111 107 .100 105 076 115 114 104 11 .082
cs .087 117 .083 .106 064 .089 115 .084 124 067 .092 133 .083 130 069
cooking .068 .086 .085 .084 052 071 .093 .084 .092 055 074 .099 .061 .093 057
philosophy 123 .095 .091 .108 070 129 104 .098 118 071 138 109 .099 126 .083
Data sets Coverage | (¢ = 70%l, k = 30%l) Coverage | (¢ = 80%l, k = 20%l) Coverage | (¢ = 90%l, k = 10%l)
arts 142 .109 137 097 102 151 119 .148 108 113 184 150 182 136 140
bibtex 146 128 126 119 .088 151 139 136 136 .099 174 159 149 153 136
corel16k1 267 234 260 246 217 287 260 277 262 223 313 290 301 295 .248
corel16k2 259 231 254 236 208 .286 270 273 259 218 317 275 302 288 244
corelSk 428 258 356 273 281 442 272 .349 286 299 451 273 376 288 287
education 154 104 .163 .096 103 165 112 177 105 112 162 101 172 .096 .106
medical .017 .016 .002 014 .003 021 .032 .024 .030 017 024 041 .030 .039 024
revlv2sl 134 .091 118 .099 .083 130 .106 124 107 .087 137 113 131 114 .093
chemistry 174 157 149 .149 117 187 176 163 171 131 201 .189 176 192 147
cs 141 .169 130 180 .103 151 192 138 201 116 170 231 147 229 128
cooking 122 148 141 145 094 138 172 152 .168 108 151 178 116 187 117
philosophy 206 163 151 181 123 227 188 170 209 132 253 206 182 231 161
Data sets Macro AUC 1 (¢ = 70%l, k = 30%!) Macro AUC 1 (¢ = 80%l, k = 20%!) Macro AUC 1 (¢ = 90%l, k = 10%!)
arts 576 .603 580 614 .609 580 .606 581 616 610 743 173 144 785 780
bibtex 745 153 759 761 785 818 .820 .829 .823 852 .883 .886 .898 891 906
corel16k1 742 761 743 152 776 751 766 154 764 793 794 .805 197 .801 832
corel16k2 147 763 147 760 782 187 794 793 .801 829 813 834 818 827 853
corelSk 790 876 819 .867 .867 795 878 .820 .870 867 798 .881 822 873 878
education 827 .869 817 877 871 836 879 .825 887 .880 846 .895 837 901 .892
medical 652 .653 .667 .655 .666 810 .800 .808 .801 814 .884 869 879 871 884
revlv2sl .664 .675 672 .683 .692 671 .682 .673 .682 .693 .673 .684 .675 .683 .695
chemistry 783 793 .800 798 823 .824 .828 .838 831 860 .846 846 .860 850 879
cs 792 71 798 7162 816 .828 .800 .835 789 850 .866 827 878 825 .891
cooking 856 837 842 .840 873 .891 870 .881 871 908 902 884 918 877 920
philosophy 791 818 .828 .805 .848 811 832 .847 818 871 .820 .845 .863 .829 878

Table 2: Experimental results (mean) of all the comparing approaches on known labels in terms of each evaluation metric.



Metric Fr Critical Value (a« = 0.05)

Hamming Loss 4.4744
Average Precision 48.8990
One Error 27.2180

4363
Ranking Loss 28.6542 2436
Coverage 27.1924
Macro AUC 28.6498

Table 3: Summary of the Friedman statistics Fr(k = 5, N = 36)
and the critical value in terms of each evaluation metric (k: # of
comparing algorithms; N: # of data sets)

and Zhou, 20141, i.e., Hamming Loss, Average Precision,
One Error, Ranking Loss, Coverage, and Macro AUC, to
evaluate the performance of the comparing algorithms on
known labels. To evaluate the performance of our method
on discovered latent labels, we adopt the following metric
proposed in [Zhu et al., 2017al,

k
1 N .
Frovel = % Zmax({]:(YHQ'H’ GiﬂH‘j)?] € {17 sy k}})
=1

where F(-) is the function of F-measure, and G indicates the
ground-truth label matrix. Fj oy measures the average perfor-
mance on detected multiple latent labels on the ground-truth
label that best matches.

4.2 Experimental Results

For each data set, 80% of it are randomly generated as the
training part and 20% for testing, which is repeated 10 times.
Following the settings in previous work on discovering new
labels for MIMLL [Pham et al., 2015; Zhu et al., 2017al, the
first 70%, 80% and 90% labels are set be to known labels
and the rest are taken as latent ones respectively. The average
results of each comparing algorithm on the known labels are
shown in Table 2. 1 (|) indicates the larger (smaller) the
value, the better the performance. Best results are highlighted
in bold face.

Results on Known Labels. Friedman test [Dem3ar, 2006]
is employed to conduct performance analysis among the com-
paring approaches, and the result of it is shown in Table 3. As
shown in Table 3, the null hypothesis that all the comparing
algorithms perform equivalently is clearly rejected in terms
of all the evaluation metrics at significance level o = 0.05,
Consequently, the Nemenyi test [Demsar, 2006] is adopted to
analyse the relative performance among them. For Nemenyi

test, the critical difference CD=¢q, 1/ k(gi;f,l):l.OlG? (k=5,

N=36) with ¢,=2.728 at significance level =0.05, where
k is the number of algorithms and N (16 x 3) is the number
of data sets. The CD diagrams of DLcL w.r.t to the comparing
algorithms on each evaluation metric are shown in Figure 1.
In each sub-figure, any comparing algorithm whose average
rank is within one CD to that of DLcL is connected. Other-
wise, any algorithm not connected with DLcL is considered to
have significant different performance between them.  Ac-
cording to these experimental results, the following observa-
tions can be made: 1) The proposed method DLcL significant-
ly outperforms the comparing algorithms in terms of ranking
loss, average precision, coverage, and AUC. Besides, DLcL s-
tatistically outperforms the comparing algorithms in terms of

Critical Difference=1.0167
3 4 3 1 3 4 3 2

Critical Difference=1.0167

1
| 1L
MLKNN | DLCL BR DLCL
LLSF KRAM LLSF KRAM
BR —— MLkNN

(b) Ranking Loss

(a) Hamming Loss

Critical Difference=1.0167 Critical Difference=1.0167
] 4 3 2 1 2 4 3 2 1

:
BR J H |— DLCL MLKNN J__ |— DLCL
KRAM

LLSF KRAM LLSF
MLKNN ———BR

(d) One Error

(c) Coverage

Critical Difference=1.0167 Critical Difference=1.0167
g 4 3 2 1 2 4 3 2 ]

MLKNN I-DLCL BR J —l

KRAM LLSF LLSF
BR —— MLKNN

(f) Macro AUC

(e) Average Precision

Figure 1: Comparison of DLCL against the comparing approaches
with the Nemenyi test. Groups of classifiers that are not significantly
different from DLCL (at p = 0.05) are connected.

— DLCL (k, @) RS (.3, .70)
Datsels  —qr—sny——or, 80 [ (36,70 [ m 12 73
s 333505 315E03 | 265E00 [ 155 134 %5
bibtex 093401 197401 | 21501 | 090 087 .09
corell6kl  266+.01 265401 | 251401 | 066 066 066
corell6k2  2234.01  2404.01 | 249401 | 065 080 .106
corelsk 004£.01 145601 | 144201 | 120 112 094
education 051401  .100+£.01 | .123+01 | 105 119 .18
medical 163+.02 224403 | 273103 | 148 145 145
revivasl  1824.02  2024.02 | 203402 | 094 106 .17
chemistry  1154.02 131401 | 149401 | 088 084 086
cooking 176402 203401 | 229401 | .104 080 073
cs 146401 171401 | 203+01 | 08 079 079
philosophy ~ 154+.02 16001 | .192+.01 | 135 .11 .102

Table 4: Experiment results (Fhovel 1) on latent labels. RS (.31, .71)
indicates the average results of randomly setting r; (r; = ) latent la-
bels for each instance when k£=0.3[ and g=0.71 over 50 repetitions.

hamming loss and one error. These results definitely demon-
strate the effectiveness of our method on MLL. 2) Kram and
MLinN algorithms are all constructed based on the informa-
tion of k nearest neighbors of each instance. It is worth not-
ing that these two algorithms achieve worse performance on
those data with a large number of labels (e.g., [>100) than on
those data with a small number of labels. One possible reason
might be that the k£ nearest neighbors can not provide suffi-
cient information for model construction when many labels
are hidden in the data. These results verify the importance of
discovering latent class labels for MLL.

Results on Latent Labels. Table 4 shows the results of
DrcL on discovered latent class labels according to Figver. It
is clearly indicated that DrLcL can discover the latent labels for
MLL, and DrcL significantly outperforms RS(Randomly Set-
ting) when g = 701% and k = 30(%. For some data sets, the
results of Fjove differ extremely under different ratios of la-
tent labels. The possible reason might be that the difficulties
of prediction of different labels are different. On the other
hand, we want to know what latent labels have we discov-



Matched Label Name

Frovel

Top 20 Features (i.e., feature name (weight))

regular-languages

0.712

regular(0.898), beginalign(0.062), endalign(0.052), essenti(0.045), express(0.039), pump(0.036), confus(0.035), project(0.034), home-
work(0.034), attempt(0.034), independ(0.032), languag(0.03), let(0.027), digit(0.027), cup(0.026), 1ot(0.026), comment(0.026), identi-
£i(0.026), algebra(0.025), here(0.025)

pumping-lemma

0.635

pump(0.855), lemma(0.681), essenti(0.139), easier(0.12), identifi(0.1), formul(0.083), split(0.076), condit(0.068), geq(0.068), re-
spect(0.067), nice(0.067), forc(0.063), short(0.061), imagin(0.058), author(0.056), larger(0.054), yield(0.054), effect(0.053), pseu-
docod(0.053), insid(0.051)

reductions

0.564

reduct(0.83), beginalign(0.11), endalign(0.099), reduc(0.074), langl(0.065), notic(0.054), show(0.053), sat(0.039), suggest(0.034),
shown(0.034), nice(0.031), maxim(0.03), naiv(0.029), undecid(0.029), simpl(0.027), research(0.027), flow(0.026), wikipedia(0.024),
wrong(0.024), literatur(0.024)

turing-machines

0.465

machin(0.829), ture(0.617), tape(0.122), encod(0.041), power(0.038), occur(0.036), simul(0.034), digit(0.031), determinist(0.030),
build(0.030), group(0.029), appear(0.029), qquad(0.028), make(0.028), automaton(0.027), uniqu(0.027), troubl(0.027), play(0.026),
halt(0.026), endalign(0.026)

sorting

0.448

sort(0.849), comparison(0.136), insert(0.119), quick(0.061), compar(0.035), addit(0.031), entri(0.030), notat(0.029), origin(0.028), se-
lect(0.027), algorithm(0.027), automata(0.027), free(0.026), easi(0.026), sourc(0.026), qquad(0.026), mark(0.026), shown(0.026), dig-
it(0.025), argument(0.025)

0.615 4

—-Macro AUC 0

—F

novel

Table 5: Results of the five best matched labels

corel5k %107 stackex-cs

—-Macro AUC 25 25

0.615

0.61 0 0.61 041

Figure 3: Parameter analysis on DLCL over stackex-chemistry.

ered. We try to describe the meaning of them by the learned
labels-specific features which are indicated by the non-zero
entities of each column of W. Table 5 shows the results of
the five best matched labels over the stackex-cs data set with
q = 70l% and k = 301%. It is noted that the names of top
five matched labels are the occurred among the top 20 fea-
tures or homologous with them, and most of features have a
strong semantic correlation with the name of labels.

4.3 Parameter and Convergence Analysis

The number of Latent labels k and correlation confidence
«. For arts, the first 20 and the rest 6 labels are set as known
and latent labels respectively. Figure 2 shows the average re-
sults of DLcL over 10 repetitions with different values of k and
a. The result (i.e., Macro AUC) on known labels is improved
by discovering latent labels (i.e., & > 0), and the Fjqy de-
creases with the increasing of k. The larger the number of
latent labels, the harder it is to discover them. Therefore, we
could set k to be a relative small value and run DLcL multiple
times. It is also noted that the performance of latent labels can
be significantly improved with the help of known labels and

05 1k

0 20 40 60 80 100 [} 20 40 60 80 100
# iteration # iteration

Figure 4: Two examples of the convergence curves of DLCL.

the improvement on known labels is slightly with the help of
latent labels by exploiting their correlations (i.e., o > 0). The
known labels are observed in advance and can be considered
as a teacher to guide the prediction on latent labels.

Analysis on regularization parameters. The average re-
sults (i.e, Average Precision) of DLcL with different values of
A1, A2, Az, and Ay over stackex-chemistry are shown in Fig-
ure 3, and similar results were also obtained for the other data
sets. It is noted that the performance of DLcL is insensitive to
the parameters, and also the optimal performance is usually
achieved at some intermediate values of each parameter.

Convergence. Figure 4 demonstrates two examples of the
convergence curves of DrLcL. It is noted that the values of
the objective function are non-increasing and drop sharply
around 15 iterations on corel5k and stackex-cs data sets.

5 Conclusion

In this paper, a novel approach named DrcL is proposed for
MLL which can not only discover the latent labels in the train-
ing data but also predict new instances with these latent labels
and known labels simultaneously. The experimental results
demonstrate that the performance of latent labels can be sig-
nificantly improved with the help of known labels and the
performance of known labels can be improved with the help
of latent labels by exploiting their correlations. Extensive ex-
periments with other state-of-the-art MLL approaches have
show a competitive performance of DLcL.
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