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Abstract

Background: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease
(PD), but most studies to date have been conducted in highly controlled laboratory environments.

Objective: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely
monitor motor fluctuations in PD.

Methods: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers
to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched
controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video.
Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication
intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement
and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations.
The power spectral density of each segment and device was estimated using Welch’s method, from which the total power in the
0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and
after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested
cross-validation.

Results: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait
segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether
the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs)
varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92)
across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93).
Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating
between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI
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0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the
power spectral density of both the wrist and pants pocket sensor.

Conclusions: We present a new video-referenced data set that includes unscripted activities in and around the participants’
homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations
with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders.

(J Med Internet Res 2020;22(10):e19068) doi: 10.2196/19068
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Introduction

Background
The core treatment of patients with Parkinson disease (PD) is
symptomatic and consists of dopamine replacement therapy.
Although motor symptoms such as bradykinesia and rigidity
can be well controlled in early disease stages, most patients
experience motor fluctuations in symptom severity after a few
years of treatment with levodopa [1]. The pattern of these motor
fluctuations varies between patients and may include wearing
off, unpredictable off phases, peak-dose dyskinesias, and
diphasic dyskinesias. Therefore, optimal management of motor
fluctuations requires a highly personalized approach. The current
evaluation of motor fluctuations involves paper diaries, such as
the Hauser diary, which are burdensome to complete and which
demonstrate reduced compliance when used for more than three
days [2]. Moreover, patients are not always able to accurately
recognize their own symptoms (eg, dyskinesia is often confused
with tremor and vice versa). A more objective and unobtrusive
way to assess motor fluctuations over longer periods of time in
daily life could shed light on the real-world presentation of PD
and benefit both individual patient care and follow-up in clinical
trials.

Wearable movement sensors could potentially address this need.
It is important to distinguish between active monitoring (ie, the
analysis of specific tasks, such as the timed up and go [TUG]
test [3]) and passive monitoring (ie, the analysis of natural
behavior of daily living). Although active monitoring has
received by far the most attention [4,5], this approach is
susceptible to attrition in patient compliance [6]. By contrast,
excellent long-term compliance can be achieved when patients
are only asked to wear an unobtrusive sensor, such as a
smartwatch, as they go about their daily activities [7]. Passive
monitoring can also provide more continuous insights into
symptom fluctuations throughout the day. However, these
benefits come at a cost: it is challenging to develop algorithms
that can cope with the large variation in signals encountered in
daily life, of which only a small proportion may be explained
by PD-related impairments. Since obtaining accurate labels in
daily life environments is difficult and costly, most of the
currently available reference data sets have been collected in
the lab and involved patients performing a standardized set of
tasks and activities. Algorithms trained on these data sets are
unlikely to perform well in real-life settings [8]. Some studies
have simulated a home environment in the lab and included
unscripted behavior [9,10]. Although this is more realistic, all

data are still collected in the same environment, so the expected
variation in activities and symptom severity is much reduced
compared with real life. Consequently, the real-life performance
of new sensor-based methods to assess motor fluctuations
remains largely unknown.

Another challenge is finding the best strategy to derive
meaningful and interpretable outcome measures from daily life
sensor data. One approach is to detect and quantify a specific
behavior that probes the presence of PD symptoms. Gait is a
promising candidate in this regard for three reasons. First, gait
is highly stereotypic, allowing for accurate detection in daily
life signals. Second, gait becomes abnormal even in very early
stages of the disease, likely already in the prodromal phase [11],
and gait impairments worsen as the disease progresses [12,13].
Recording and analyzing gait is therefore useful across a wide
spectrum of disease severities. Third, even among patients with
PD without freezing of gait, the gait pattern changes in response
to dopaminergic medication. Specifically, the step length and
arm swing are reduced in the off state, which is known as
bradykinetic gait [14,15]. However, these findings are based on
data collected during standardized tasks (typically the TUG
test) in highly controlled laboratory environments. It is not
self-evident that these effects directly translate to daily life [16].
Various behavioral and environmental factors may influence
gait in daily life. In addition, patients with PD show different
gait patterns when they are aware that they are being evaluated
(partially a Hawthorne effect and partially the phenomenon of
kinesia paradoxa, the sudden transient ability of patients with
PD to perform a task due to increased alertness or arousal)
[17,18]. Indeed, gait patterns as measured in the lab and in real
life (using accelerometry) are only weakly correlated [19,20].

Empirical evidence that underlines the value of analyzing
real-life gait in PD is emerging. This approach may discriminate
better than lab-based gait analysis between patients with PD
and controls [19]. Similarly, real-life gait variability, derived
from an accelerometer worn on the lower back, may predict the
time to first fall better than various in-lab measurements,
including gait speed in the off state [21]. In addition, a pilot
study showed that at-home gait speed, measured using a radio
wave–based monitor, correlates with PD severity [22]. However,
studies that have examined how on-off changes are reflected in
real-life gait patterns are scarce. Moore et al [23] suggested that
step length derived from an ankle sensor could be used to
monitor on-off changes in real life but illustrated this in only
one patient. Sama et al [24] proposed that the energy in the 0-
to 10-Hz frequency band during gait, obtained using a
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waist-worn sensor, could predict the patient’s motor state. When
tested in daily life, the algorithm’s predictions demonstrated
high agreement with on-off diaries completed by the patients
[25]. We conclude that analyzing real-life gait to monitor motor
fluctuations has thus far shown promising results, but
developments remain in the early stages. This is reflected by
the lack of consensus on the best sensor location [26]. The field
would benefit from an objective comparison of commonly used
sensor locations on labelled data collected in the patients’home
environments.

Study Objective
In the Parkinson@Home validation study, we collected data
from multiple wearable sensors during unscripted activities in
and around the participants’ homes and recorded the activities
on video. The objective of this publication is twofold. First, we
aim to describe this new reference data set, which will be made
available to the research community in collaboration with the
Michael J Fox Foundation. Second, using this data set, we aim
to assess whether real-life gait analysis can be used to obtain a
digital biomarker for motor fluctuations in PD. Specifically, we
will assess how well various sensor locations can discriminate
between gait performance before and after intake of
dopaminergic medication and explore which factors complicate
gait analysis in daily life.

Methods

Study Sample
We included a group of 25 patients with PD and 25 age-matched
participants without PD (controls). Patients were recruited using
various strategies, including advertisements in the Dutch
Parkinson Patient Association’s magazine and on social media,
visits to support groups, and through physiotherapists specialized
in the treatment of PD. Controls were recruited from partners
and acquaintances of the participating patients and by
advertisements on social media. The inclusion criteria were (1)
aged ≥30 years, (2) in possession of a smartphone running on
Android 4.4 or higher, and (3) living within travelling distance
from the study center. Additional inclusion criteria for the PD
group were (1) Parkinson disease diagnosed by a neurologist,
(2) currently using levodopa and/or a dopamine agonist, (3)
experiencing at least slight motor fluctuations (Movement
Disorders Society Unified Parkinson’s Disease Rating Scale
[MDS-UPDRS] part IV item 4.3 ≥1), and (4) experiencing at
least some Parkinson-related gait impairments (MDS-UPDRS
part II item 2.12 ≥1 and/or item 2.13 ≥1). The exclusion criteria
were (1) any type of advanced treatment (deep brain stimulation
or intestinal levodopa or apomorphine infusion) and (2)
psychiatric or cognitive impairments that may hinder successful
completion of the study protocol (based on judgement of the
assessor running the recruitment). We did not exclude patients
with PD or controls who used assistive devices or reported other
medical problems affecting their movements. We refer to

Multimedia Appendix 1 for a flow diagram of the inclusion
procedure.

Data Collection Procedure
Data were collected during single visits to the participants’
homes from July 2017 to July 2018. A visit consisted of 2 parts:
an unscripted free-living part and a standardized clinical
assessment. In the PD group, both parts were conducted twice
during the same visit, once in the morning after overnight
withdrawal of dopaminergic medication (premedication) and
once after intake of the patient’s prescribed dopaminergic
medication (postmedication).

During the free-living part, the assessors encouraged the
participants to perform habitual activities in and around their
house for at least one hour. In order to capture natural behavior,
there was no script for this part of the visit. Instead, the assessors
used a checklist to ensure that essential behaviors were captured,
such as doing normal morning routines, preparing and having
breakfast, walking indoors, walking in the neighborhood,
walking up and down the stairs, sitting down, standing up, and
doing some household chores. It should be noted that the
participants’ normal routines were leading; for example, if
participants hardly did any household chores themselves, we
did not ask them to do so during the visit.

The clinical assessments were also conducted in the participants’
homes and included the TUG test, the Abnormal Involuntary
Movement Scale, and the complete MDS-UPDRS, except for
the self-reported items of part I and II, which were completed
through an online survey after the visit. In the PD group, the
clinical assessments were performed before and after medication
intake, except for part I (assessor-rated items) and part IV of
the MDS-UPDRS, which were only performed after medication
intake. In addition, both the patient and the assessor scored the
disease state (as off, on without dyskinesia, or on with
dyskinesia) for every 30-minute epoch after medication intake.
All assessments were conducted by a single assessor who had
received appropriate prior training. Multimedia Appendix 1
provides an overview of the events during the home visits.

During the full duration of the visit, participants wore
lightweight sensors on both wrists, both ankles, the lower back,
and in the front pants pocket, containing movement, contextual,
and physiological sensors (Table 1). Except for the smartphone,
all devices were attached using adjustable straps. In addition,
the entire visits were recorded on video using a handheld
high-definition video recorder by one of the assessors following
the participant. To put the patient at ease and make the setting
more naturalistic, the other assessor helped to comfort the patient
and shift the focus from being recorded to performing habitual
activities together. To allow for time synchronization between
all sensors and the video recordings, all devices were triggered
(hit simultaneously against the table 10 times) in front of the
camera at the beginning and end of the recordings.
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Table 1. Overview of the wearable sensors used during the study visits.

Collected sensor dataLocationsDevice

Accelerometer, gyroscope, magnetometer, barometerBoth ankles, both wrists, lower back (strap around waist)Gait Up Physilog 4a

Accelerometer, gyroscope, barometer, lightWrist (PDc group: self-reported most affected side; control
group: most comfortable side)

Android Wear smartwatchb

Accelerometer, magnetometer, light, proximity, GPS, Wi-
Fi, and cellular networks

Pants pocket (same side as Android Wear smartwatch)Android smartphoned

GSRf, PPGg, skin temperature, accelerometerWrist (opposite wrist to Android Wear smartwatch)Empatica E4e

aGait Up SA.
bMotorola Moto 360 Sport (Motorola Inc) with custom application collecting raw sensor data.
cPD: Parkinson disease.
dVarious models with the HopkinsPD app collecting raw sensor data.
eEmpatica Inc.
fGSR: galvanic skin response.
gPPG: photoplethysmogram.

After the home visits, all participants continued to use a subset
of the sensors (smartphone and smartwatch) for 2 weeks and
completed symptom diaries as reference. As this part of the data
set is not used in the current analyses, we refer to Multimedia
Appendix 1 for a detailed description of the corresponding
protocol.

The study protocol was approved by the local medical ethics
committee (Commissie Mensgebonden Onderzoek, region
Arnhem-Nijmegen, file number 2016-1776). All participants
received verbal and written information about the study protocol
and signed a consent form prior to participation, in line with
the Declaration of Helsinki.

Data Availability
The full data set as described in the “Methods” section, with
the exception of the raw video recordings and absolute GPS
coordinates, will be made available to the worldwide research
community in collaboration with the Michael J Fox Foundation.
To protect participant privacy, manual annotations are available
from the video recordings, and the GPS data will be deidentified
before sharing. A subset of the data is being used in the
international Biomarker and Endpoint Assessment to Track
Parkinson’s Disease (BEAT-PD) Challenge [27]. The full
curated and deidentified data set will be released when this data
challenge is completed. The specific data and analysis scripts
that support the findings of this study are available from the
corresponding author upon reasonable request.

Data Processing

Video Annotations
To provide ground truth labels for algorithm development and
validation, the video recordings were annotated by trained
research assistants for (1) the protocol structure (ie, when the
clinical assessments and free-living parts were performed), (2)
the occurrence of general behaviors during the free-living parts
(such as standing, walking, and sitting), and (3) the presence
and severity of tremor and the presence and manifestations of
freezing of gait during the free-living parts. Annotations from
the last category were checked by a physician with experience

in movement disorders. In addition, those items of the
MDS-UPDRS part III that can be evaluated from video were
assessed by a second, independent rater (physician with
experience in movement disorders). The annotations were
created using ELAN (The Language Archive), an open source
program for creating annotations in video recordings [28]. For
a detailed description of the video annotation protocol, we refer
to Multimedia Appendix 1.

Sensor Data Preprocessing
In the current analysis, we used the triaxial accelerometer data

(in m/s2) from all Physilog devices and the smartphone worn
in the pants pocket. First, data were interpolated to a uniform
sample rate of 120 Hz using piecewise cubic interpolation. Next,
the effects of gravity were removed by applying an ℓ1 trend
filter to each of the 3 axes separately (MATLAB implementation
by Kim et al [29]). For each device, we used the 3 resulting
dynamic acceleration signals, ax, ay, and az, to compute the

magnitude of dynamic acceleration (ie, the square root of [ax
2

+ ay
2 + az

2]).

Frequency Analysis of Gait Segments
Various approaches have been used to quantify the gait pattern
in patients with PD using accelerometer data. Some studies rely
on the detection of the initial and final contact of the feet, from
which temporal gait features such as the step and swing time
can be derived [30]. Based on the exact sensor positioning and
some assumptions derived from the biomechanics of gait,
location-specific algorithms can be used to estimate spatial gait
features. For example, having identified the initial and final
contact, one can use the inverted pendulum model to estimate
the step length using a sensor on the lower back [31]. Although
this approach produces outcome measures that directly relate
to the way gait is evaluated by clinicians, its location
dependency complicates the comparison of different sensor
locations. Additionally, detecting the initial and final contact is
more challenging in real-life circumstances [32]. Other studies
analyze the periodicity of the accelerometer signal during gait
based on the power spectral density (PSD) or autocorrelation
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[21,33]. Since it does not rely on location-specific assumptions,
we used this approach in our analysis.

The video annotations were used to locate periods of gait
(defined as five or more consecutive steps) during the free-living
parts. From these, we extracted nonoverlapping gait segments
of equal length (3000 samples, corresponding to 25 seconds).
This length was selected because prior research showed that
using shorter free-living gait segments discriminated less well
between patients with PD and controls [19] and in order to
achieve sufficient resolution in the frequency domain. To be
included in the analyses, participants needed to have at least 10
gait segments of 25 seconds. In addition, patients were required
to have at least 5 segments before and 5 segments after
medication intake. The PSD of each gait segment and sensor
location was estimated using Welch’s method [34] (with, per
segment, Hamming windows of 1024 samples with
approximately 50% overlap). From each of the 6 sensor
locations, we extracted 4 different signal properties, resulting
in 24 features. We computed the total power in the 0.5- to 10-Hz
interval, which captures practically all contributions from human
gait [35]. In addition, we extracted the frequency, height, and
width (at half the height) of the dominant peak in the PSD. The
frequency of the dominant peak was used to derive the
participants’ cadence (the method is described in Multimedia
Appendix 1).

Evaluation
For the main objective of this study, we compared real-life gait
segments before and after medication intake. Since we expected
that the relative differences within subjects are most relevant
in this context, we normalized each feature using z scores based
on each patient’s mean and standard deviation. In addition, we
compared gait segments between patients with PD and controls.
For these analyses, we rescaled each feature using its
between-subject standard deviation in order to aid the
comparison of effect sizes between features and to obtain a
common scale for regularization (see “Classification”).

Individual Features
First, we examined the effect of medication intake on the
individual features. To deal with the varying number of gait
segments between participants, we used linear mixed effect
models with the normalized features as dependent variables.
For each feature, we estimated a fixed effect of the timing of
the gait segment (premedication/postmedication) and random
intercepts and slopes per patient. We used separate linear mixed
effect models to estimate fixed effects of the group (patients
with PD premedication, postmedication, or controls) and random
intercepts per participant. Because we aim to show the
magnitude and spread of the individual fixed effects rather than
testing overarching hypotheses based on multiple comparisons,
we report the unadjusted 95% confidence intervals of the
estimated effects, as recommended by Gelman et al [36].

Classification
Next, we evaluated whether combinations of features could be
used to predict whether a gait segment occurred before or after
medication intake. For this, we used logistic LASSO (least
absolute shrinkage and selection operator) regression with

uniform prior class probabilities. To account for the varying
number of gait segments per patient, we weighted each gait
segment by the inverse of the number of gait segments per
patient. We evaluated the performance using
leave-one-subject-out nested cross-validation (CV), with the
LASSO regularization hyperparameter being selected in the
inner CV loops. The main performance measure was the mean
area under the receiver operator curve (AUC). In addition, we
evaluated the performance of logistic LASSO regression to
predict whether a gait segment was from a patient with PD
(premedication) or control. We used nested cross-validation for
this as well, leaving 1 patient and 1 control out in each fold. To
avoid information leakage, normalization was performed
separately for each fold using only training data.

For both problems, we trained one classifier for each sensor
location and one for all sensor locations combined. To prevent
the patient with PD or control classifiers from learning the
differences between the dominant and nondominant side, we
ensured that the proportion of participants with measurements
from the dominant side was always equal in the PD and control
group. We tested whether the AUCs of the individual sensor
locations were lower than the AUC of all sensor locations
combined using the Wilcoxon matched pairs signed rank test
(P<.05 considered statistically significant). The results of the
individual comparisons were then used to test the overarching
null hypothesis that using all sensor locations combined is
superior to using any of the single sensor locations (we rejected
this hypothesis if three or more individual comparisons were
nonsignificant, which corresponds to a significance level α of
approximately .01; for the calculation, see Multimedia Appendix
1).

Using the trained classifiers of the sensor location with the
highest AUC, we constructed continuous scores that could serve
as digital biomarkers for the response to medication intake
(premedication/postmedication classifier) and PD gait
impairment severity (PD/control classifier). For this, we used
the classifiers’ decision values (linear combinations of feature
values), which, in the case of logistic regression, correspond to
the logarithm of the odds (logit) of the posterior class
probabilities. We then examined their correlation with relevant
clinical measures (Spearman ρ). Specifically, using the “best”
classifier for predicting premedication and postmedication in
the PD group, the patients’ mean changes in decision values
after medication intake (corresponding to the patients’ mean
log odds ratio) were correlated to the changes in the TUG score
and the subtotal of the items related to mobility of the
MDS-UPDRS part III (items 3.9, 3.10, 3.11, 3.12, and 3.13).
Using the same sensor location’s classifier for predicting patient
with PD or control, the patients’ mean decision values were
correlated to the absolute TUG score, time since diagnosis, and
the subtotal of the MDS-UPDRS part III mobility items. All
analyses were performed in MATLAB 2018a (MathWorks).

Qualitative Evaluation
To explore which factors unrelated to PD may disturb gait
analysis in real-world settings, we inspected individual patients
and sensor locations in which the classifier performed worse
than random classification in predicting premedication and
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postmedication (AUC <0.5). This was done by visually
identifying change points in the PSDs and evaluating the
corresponding video recordings for potential explanations. If
an identified factor was also present in the video recordings of
another patient, we evaluated whether it had a similar impact
on the PSD (regardless of the patient’s AUC).

Results

Participant Characteristics
A minimum of 10 gait segments of 25 seconds were available
in 18 patients with PD (median 46.5 segments, range 14-95)
and 24 controls (median 31 segments, range 11-61). These
participants’ demographic and clinical characteristics are
presented in Table 2. Reasons for collecting an insufficient
number of gait segments included rainy weather (n=4), a desire
not to be filmed in the neighborhood (n=1), use of a wheelchair

for longer distances (n=1), fatigue (n=1), and technical problems
with the video recordings (n=1). The included patients did not
differ substantially from the excluded patients in terms of disease
severity (Multimedia Appendix 1). In 9 participants, there were
technical problems with the sensor worn on the lower back.
Therefore, we excluded this sensor location from the analyses
combining multiple sensor locations (we refer to the Multimedia
Appendix 1 for the results of the 33 patients for whom the lower
back sensor data were available). In addition, technical problems
caused data loss for 1 ankle sensor in 1 participant; this
participant (control) was excluded from the analyses combining
multiple sensor locations. The distribution of the length of the
analyzed gait segments was similar among patients with PD
(premedication and postmedication) and controls (Multimedia
Appendix 1). The experiences of participants during the home
visit collected by the online exit survey are included in
Multimedia Appendix 1.
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Table 2. Demographics and clinical characteristics of patients included in the analyses.

Controls (n=24)Patients with PDa (n=18)Characteristic

67.5 (55.0-70.0)65.0 (60.5-69.0)Age (years), median (IQR)

13 (54)11 (61)Gender (men), n (%)

Most affected sideb and hand dominance, n (%)

N/Ac8 (44)Most affected=dominant

N/A8 (44)Most affected=nondominant

N/A2 (11)Mixed handedness

N/A6.5 (4.8-10.3)Time since diagnosis of PD (years), median (IQR)

Use of dopaminergic medication, n (%)

N/A6 (33)Levodopa only

N/A10 (55)Levodopa and dopamine agonist

N/A1 (6)Levodopa and MAO-Bd inhibitor

N/A1 (6)Levodopa, dopamine agonist, and MAO-B inhibitor

Hoehn & Yahr stage, n (%)

N/A1 (6)Stage 1

N/A13 (72)Stage 2

N/A4 (22)Stage 3

MDS-UPDRSe (scores on subscales), median (IQR)

3.0 (0.3-4.0)9.5 (7.8-15.0)Part I (scale range: 0 to 52)

0.0 (0.0-0.0)f11.0 (8.5-15.3)Part II (scale range: 0 to 52)

6.5 (4.3-11.0)41.5 (31.5-57.8)Part III (off state) (scale range: 0 to 132)

N/A28.0 (18.5-38.0)Part III (on state) (scale range: 0 to 132)

N/A6.0 (4.5-9.3)Part IVg (scale range: 0 to 24)

AIMSh (scale range: 0 to 40), n (%)

20 (83)13 (72)0

3 (13)2 (11)1-3

1 (4)i3 (17)>3

TUGj (median of 4 trials, in seconds), median (IQR)

10.0 (9.3-10.8)12.0 (11.3-13.7)Off state

N/A11.4 (9.7-12.4)On state

Falls in last 12 months, n (%)

20 (83)10 (56)0

4 (17)8 (44)1-2

Freezing episodes in last month, n (%)

N/A13 (72)0

N/A5 (28)1 or more

aPD: Parksinson disease.
bMost affected side: side where the PD symptoms are most severe, as reported by the patients.
cN/A: not applicable.
dMAO-B: monamine oxidase B.
eMDS-UPDRS: Movement Disorders Society Unified Parkinson’s Disease Rating Scale.
f1 missing value.
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gSpecific to PD: side effects of dopaminergic medication.
hAIMS: Abnormal Involuntary Movement Scale.
iThis participant demonstrated facial synkinesis during the assessment.
jTUG: timed up and go test.

Comparison of Before and After Medication Intake
Figure 1 shows all individual changes in the signal properties
after medication intake. For illustration, Figure 2 displays the
power spectral density of one of the patients who demonstrated
a clear response to medication intake (PD_14). At the group
level, the total power and height of the dominant peak increased
in all sensor locations after medication intake, whereas the width

of the dominant peak did not change significantly in any sensor
location (Figure 3). Cadence increased in some patients but
markedly decreased in others, resulting in a nonsignificant
change at the group level for all sensor locations (Figure 3).
Because of the high correlation between changes in the height
of the dominant peak and total power (mean Pearson r of 0.80)
and the clearer response of the latter across the sensor locations,
the height was not included in subsequent analyses.

Figure 1. Changes in the 4 signal properties after medication intake, expressed in z scores (color bar). The x-axis displays the various sensor locations;
the y-axis shows all individual patients (sorted on the values of the ankle sensor of the most affected side). The figure highlights that the total power
and height of the dominant peak increase after medication intake in most patients (with considerable variation between sensor locations), the cadence
increases in some but decreases in others (with high agreement between sensor locations), and the width of the dominant peak does not change
considerably. Grey areas indicate missing data. la: least affected; ma: most affected; PD: Parkinson disease.
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Figure 2. Visualization of the PSD of one of the patients who shows a clear response after medication intake (PD_14). x-axis: nth gait segment of 25

seconds (the white line indicates intake of dopaminergic medication). y-axis: frequency (Hertz). Color bar: PSD in (m/s2)2/Hz. PD: Parkinson disease;
PSD: power spectral density.

Figure 4 displays the receiver operator curves (ROCs) of the
logistic classifiers trained using the various sensor locations
and signal properties. The mean AUC for all sensor locations
and signal properties combined was 0.84 (95% CI 0.75-0.93).
The mean AUCs of the ankle of the most affected side (0.82,
95% CI 0.72-0.92), the wrist of the most affected side (0.76,
95% CI 0.66-0.87), and the wrist of the least affected side (0.79,
95% CI 0.69-0.88) were not significantly worse than using all
sensor locations combined. Based on this, we reject the
overarching hypothesis that using all sensor locations combined
is superior to using any of the single sensor locations. Of the
signal properties, the total power was most informative to
discriminate between before and after medication intake, with
a mean AUC of 0.80 (95% CI 0.69-0.91). The mean AUC of
the width of the dominant peak (0.51, 95% CI 0.45-0.58) and
cadence (0.55, 95% CI 0.43-0.66) were by themselves not
significantly different from 0.5 (random classifier), although
the width of the dominant peak resulted in a modest (but
statistically significant) improvement in AUC when combined
with the total power (Figure 4). The AUC and balanced accuracy

(based on an equal class prior) of all locations and signal
properties are presented in Table 3. Multimedia Appendix 1
includes a sensitivity analysis on the effects of the choice of
per-subject normalization.

Both the TUG (–1.51, 95% CI –2.29 to –0.73) and the subtotal
of the MDS-UPDRS part III mobility items (–1.31, 95% CI
–2.13 to –0.48) decreased after medication intake. However,
the patients’ mean changes in decision values, obtained from
the classifier based on the ankle sensor of the most affected
side, did not correlate with changes in the TUG (ρ=–0.02, 95%
CI –0.49 to 0.45), nor with changes in the subtotal of the
MDS-UPDRS part III mobility items (ρ=0.11, 95% CI –0.38
to 0.45).

Based on the video recordings, freezing of gait (FOG) was
observed in 2 patients (PD_1 and PD_4). However, no FOG
episodes occurred during any of the gait segments of at least
25 seconds, so FOG is not expected to have influenced the
observed changes.
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Figure 3. Top: changes after medication intake on a group level (mean and 95% CI). Middle: differences between patients with PD (premedication)
and controls (mean and 95% CI, positive means higher in patients). Bottom: differences between patients with PD (postmedication) and controls (mean
and 95% CI, positive means higher in patients). All estimates are based on linear mixed effects models for each sensor location and signal property.
PD: Parkinson disease.
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Figure 4. Receiver operating characteristic curves of the logistic classifiers, averaged over the cross-validation folds. Top half: premedication and
postmedication classification. Bottom half: patients and controls classification. Left half: comparison between different sensor locations. Right half:
comparison between different signal properties, based on all sensor locations combined.
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Table 3. Performance of the logistic classifiers (mean, SE 1.96 over the cross-validation folds). Accuracies are based on the optimal classifier for each
fold with equal misclassification costs and equal class prior (also referred to as balanced accuracy).

Patients with PDa (premedication) versus controls,
mean (95% CI)

Premedication/postmedication, mean (95% CI)Feature set

AccuracyAUCAccuracyAUCb

0.72 (0.61-0.83)0.76 (0.62-0.90)0.79 (0.71-0.87)0.84 (0.75-0.93)All

Sensor locations

0.63 (0.51-0.74)0.62 (0.46-0.78)0.75 (0.67-0.83)0.78 (0.67-0.89)Pants pocket

0.66 (0.54-0.79)0.74 (0.58-0.90)0.77 (0.71-0.84)0.82 (0.72-0.92)Ankle (most affected)

0.57 (0.50-0.65)0.75 (0.62-0.88)0.72 (0.64-0.81)0.76 (0.66-0.87)Wrist (most affected)

0.62 (0.50-0.74)0.70 (0.53-0.86)0.68 (0.60-0.76)0.70 (0.60-0.81)Ankle (least affected)

0.48 (0.40-0.55)0.49 (0.38-0.61)0.74 (0.67-0.81)0.79 (0.69-0.88)Wrist (least affected)

Signal properties

0.72 (0.61-0.82)0.74 (0.60-0.89)0.77 (0.70-0.85)0.80 (0.69-0.91)Total power in 0.5-10 Hz

0.45 (0.38-0.52)0.41 (0.32-0.50)0.52 (0.44-0.60)0.55 (0.43-0.66)Cadence

0.66 (0.60-0.73)0.71 (0.63-0.78)0.50 (0.45-0.55)0.51 (0.45-0.58)Width of dominant peak

0.72 (0.61-0.82)0.76 (0.62-0.90)0.78 (0.71-0.85)0.83 (0.73-0.93)Total power and width

aPD: Parkinson disease.
bAUC: area under the receiver operator curve.

Comparison of Patients and Controls
The width of the dominant peak differed between patients and
controls in most sensor locations, both premedication and
postmedication (Figure 3). Interestingly, the PD patients’width
was elevated in the ankle, pants, and lower back sensors but
lowered in the wrist of the most affected side. The estimated
cadence did not differ between patients (pre- and
postmedication) and controls, regardless of the sensor location
used. The total power and height of the dominant peak were
lower in patients with PD (premedication) compared with
controls in most sensor locations, but this difference was not
present after medication intake, with the exception of the wrist
of the least affected side, which showed elevated values after
medication intake and no differences before medication intake.
The ROCs for the various sensor locations and signal properties
(Figure 4) show that it was generally more difficult to
discriminate between the gait of patients with PD and controls
than between before and after medication intake within patients
with PD. The AUC and balanced accuracy of all locations and
signal properties are presented in Table 3.

The patients’ decision values obtained by the classifier based
on the ankle of the most affected side demonstrated low to
moderate correlations with the time since diagnosis (ρ=0.55,
95% CI 0.11 to 0.78), the absolute subtotal of the MDS-UPDRS
part III mobility items (ρ=0.41, 95% CI –0.07 to 0.81), and the
absolute TUG score (ρ=0.33, 95% CI –0.16 to 0.69).

Impact of Real-world Factors
We observed considerable variation in the premedication and
postmedication classification performance (AUC) between

individual patients (Multimedia Appendix 1). This may be partly
explained by variation in the strength of the response to
dopaminergic medication. In addition, real-world factors
unrelated to PD may negatively impact the classification
performance in uncontrolled settings. By inspecting the video
recordings and PSDs, we identified various factors that may
have influenced the PSD of devices worn on the wrist and in
the pants pocket.

Wrist-Worn Devices
For the wrist-worn devices, the positioning of the hands (eg, in
or out of the pocket of the pants or jacket) appeared to have a
significant impact on the PSD during gait. To explore this, we
evaluated the video recordings and PSDs of all patients (n=5)
who changed the position of their hands within either the
premedication or postmedication free-living part (to be able to
rule out that the observed difference was caused by the effects
of medication). In all 5 patients, we found an association in time
between changes in the position of the hands and changes in
the PSD (examples are shown in Figure 5). One patient (PD_9)
changed the position of his hands from the pants pocket to the
pocket of his jacket, which was associated with changes in the
PSD. In the other 4 patients, the nature of the changes in the
PSD was associated with the amplitude of the arm swing; in
one patient with a pronounced arm swing (based on the video
recordings), the total power clearly increased when removing
the hand from the pocket (PD_10). In 3 patients with a reduced
arm swing, the contribution from the harmonic frequency
components changed without an increase or even with a decrease
in the total power (PD_3, PD_11, and PD_18).
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Figure 5. Visualization of the PSD of the devices worn on the wrist (most affected side) and in the pants pocket of 6 illustrative patients. x-axis: nth

gait segment of 25 seconds (the white line indicates intake of dopaminergic medication). y-axis: frequency (hertz). Color bar: PSD in (m/s2)2/Hz. PD_9:
blue line with arrow indicates when patient moved his hand from his pants pocket to the pocket of his jacket (during the premedication part, his hand
was in his pants pocket). PD_10: blue line with arrow indicates when patient removed her hand from the pocket of her jacket (during the premedication
part, her hand was outside the pocket). PD_18: blue line with arrow indicates when patient put his hand in his pants pocket (during the premedication
part, his hand was outside the pocket). PD_4: after medication intake, the patient presented with choreic dyskinesias in both arms and legs, which were
most severe on his most affected side. PD_8: before medication intake, the arm swing on his most affected side was practically absent. After medication
intake, he showed an arm swing with a small amplitude and started to make occasional gestures. PD_3: before medication intake, the arm swing on his
most affected side was practically absent (hand was outside the pocket). After medication intake, first he had his hand in the pocket of his jacket. Blue
line with arrow: patient removed his hand from the pocket and demonstrated an arm swing with a small amplitude, and he started to make occasional
gestures.
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The effect of an (almost) absent arm swing in patients with PD
may closely resemble the effect of putting the hand in the pants
pocket. This is illustrated by patients PD_3 and PD_8 (Figure
5). Before medication intake, their arm swing was practically
absent, while after medication intake, these patients showed an
arm swing with a small amplitude and started to make occasional
gestures (eg, point at things). Similar to the patients who
removed their hands from their pockets and demonstrated a
modest arm swing, the contribution from the harmonic frequency
components changed without an increase in the total power
(Figure 5).

The video recordings provided no explanation for the low
performance of the wrist-worn sensor (most affected side) in
PD_7 and PD_15.

Pants Pocket
The positioning of the hands also appeared to be relevant when
using the pants pocket as a sensor location. Two patients
removed their hand from the pants pocket containing the
smartphone during one of the free-living parts (PD_9 and
PD_18). In both patients, this was not only reflected in the PSD
of the wrist-worn device, but also in the PSD of the smartphone
(Figure 5). Given the observed changes, we hypothesize that
the presence of the hands in the pants pocket reduces the total
power measured by the smartphone, which might be explained
by reduced freedom of movement of the smartphone. There
were other patients with low classification performance in the
smartphone (PD_10 and PD_15), but the video recordings
provided no explanation.

Discussion

Principal Findings
This work presents a new reference data set for the development
of wearable sensor algorithms that can passively monitor persons
with Parkinson disease in daily life. The novelty of this data set
consists of (1) the inclusion of unscripted daily activities in and
around the participants’ own homes in combination with a
simultaneous video reference that was later used to annotate
specific activities and symptoms, (2) the combination of multiple
movement sensors positioned on 6 different body locations and
8 different contextual and physiological sensors (eg, GPS, light,
photoplethysmogram), (3) objective monitoring of these
everyday activities during both a practically defined off state
and a subjective optimal on state, allowing for testing of
responsiveness, (4) the addition of a subsequent longitudinal
follow-up with a more limited set of sensors on 2 body positions
for 2 weeks, and (5) the principle of data sharing, such that this
rich and versatile data set will be made openly available to the
scientific community.

We have also explored this data set ourselves, with the main
aim of assessing whether analysis of free-living gait can be used
to obtain a digital biomarker for motor fluctuations in PD. We
demonstrated that, despite the natural variation that is inevitably
present in unscripted gait, it is feasible to measure the response
to dopaminergic medication using simple signal properties
derived from the PSD of accelerometer signals. Moreover, we
present the first simultaneous evaluation of multiple sensor

locations in this context. This is a highly relevant issue in the
field of wearable sensors, where much uncertainty exists about
the ideal sensor placement to obtain the most sensitive and
reliable markers for any specific sign of PD [26]. Our results
indicate that the effects of dopaminergic medication on gait can
be detected in all tested sensor locations (ie, both ankles, both
wrists, the lower back, and the pants pocket). Combining
multiple sensor locations did not improve classification
significantly, suggesting that 1 individual sensor is a reasonable
setup, from both an algorithmic and a usability perspective, to
monitor on-off changes in free-living gait. Based on the used
signal properties, it was generally more difficult to distinguish
between patients with PD and age-matched controls than
between premedication and postmedication among patients with
PD. This may be explained by the fact that, in addition to the
presence of PD, other factors also influence a person’s gait
pattern (eg, idiosyncrasies, age, comorbidities). When studying
within-subject changes, many of these factors remain stable and
hence do not introduce variability that is unrelated to PD.
Finally, the qualitative analysis using the video recordings and
PSDs revealed that the positioning of the hands has a significant
impact on the PSD of both the wrist and the pants pocket in
real-world settings, highlighting potential points of improvement
for future research. Note that we illustrate this approach here
for gait, but the data set lends itself well to future analyses by
other groups who may want to study the optimal composition
of sensor types and positions for a wide range of other symptoms
or unscripted daily activities.

Limitations
Before sensor-based gait analysis can be recommended to
clinicians and researchers as a tool to assess therapy responses
in real life, it is important to consider this study’s limitations.
First, we only included patients with at least some motor
fluctuations and PD-related gait impairments. Although motor
fluctuators may also be the main target group for such an
objective evaluation tool, the generalizability to fluctuators who
do not report any gait impairments remains to be evaluated.
Second, differences in gait pattern between on and off periods
might be less pronounced in daily life because most patients do
not withhold their medication for as long as they did in this
study. We purposely included a practically defined off
assessment (ie, after overnight withdrawal of all dopaminergic
medication) to assess which sensor locations and signal
properties would be most responsive. Nevertheless, our findings
remain to be confirmed on truly real-life data, where fluctuations
can be more subtle. We should also note that, for practical
reasons, we could not randomize the order of the premedication
and postmedication parts (the premedication session was always
performed first), so we cannot rule out that fatigue influenced
the measured postmedication performance (although we
minimized its effects by including a break between both parts).
Third, the presented assessment of motor fluctuations depends
on the occurrence of gait segments of at least 25 seconds. This
limits the potential target group to patients who are able to walk
during both on and off periods, excluding patients with Hoehn
& Yahr stage 5. However, most fluctuators with a lower Hoehn
& Yahr stage can still walk when the medication effects have
worn off [37]. Finally, the presented analysis depends on
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accurate localization of gait segments in time. In this study, we
used the available video annotations for this, which enabled us
to focus on how well the different sensor locations capture
on-off changes in the gait patterns without introducing additional
variability in how well the different sensor locations can detect
gait. Several methods have been proposed for the detection of
gait based on accelerometer data, with accuracies varying across
sensor locations and techniques [38,39]. We are currently
working on the implementation and evaluation of a novel
probabilistic gait segmentation framework, which localizes gait
segments in time with stationary (periodic) behavior [40].

Comparison With Other Strategies
In contrast to the analysis of a specific behavior, such as gait,
others have proposed activity-independent algorithms to monitor
motor fluctuations in daily life. These algorithms typically
assume that whenever the patient is wearing the sensor, it is
possible to estimate the disease state. For example, Hammerla
et al [8] used deep learning to predict the patient’s motor state
(ie, asleep, off, on without dyskinesias, or on with dyskinesias)
every 5 minutes based on the accelerometer signal from 2
wrist-worn devices. The resulting performance was suboptimal
(sensitivity for off detection: 0.50; for on detection: 0.52). This
suggests that it may be too ambitious to predict the patients’
motor state regardless of the activities performed.

Another consideration is the interpretability of such
activity-independent algorithms. Because it is unclear what the
algorithms’ predictions are based on, it is challenging to relate
the outcomes to clinical impairments. This might form a barrier
to use in clinical practice and makes it difficult to form
hypotheses about potential covariates and confounders in daily
life. In our approach, it is transparent that the outcomes relate
to (changes in) the gait pattern. This means that we can predict
circumstances in which the algorithm will fail (eg, when a
patient only uses a wheelchair to travel longer distances) and
that we can use our knowledge about gait to interpret the results.

Clinical Interpretation
Our results show that the total power in the 0.5- to 10-Hz
interval of the PSD during gait increases in response to
dopaminergic medication, whereas the cadence increases in
some but decreases in other patients. The width of the dominant
peak does not change. The finding related to cadence contrasts
with earlier lab-based findings showing an increase in cadence
after intake of levodopa [14]. We demonstrated that, because
of its marked variability between patients in real life, cadence
is not a useful signal property for patient-independent
algorithms. A likely explanation for this variability is that the
ability to modulate cadence is intact in persons with PD, and
some patients use this as compensation for reduced step length
[41].

Whereas the clinical meaning of cadence is clear, the clinical
meaning of the total power and width of the dominant peak are
less straightforward. Sama et al [24] refer to the total power in
the 0- to 10-Hz interval as the “fluidity of patients’ movements
during gait.” However, the most pronounced clinical changes
after medication intake are an increase in step length and arm
swing [14,15]. Since it is reasonable to assume that an increased

step length and arm swing are reflected in an increased power
of acceleration, the total power in the 0.5- to 10-Hz interval is
most likely sensitive to these changes in gait pattern. The finding
that the total power of the least affected arm is elevated in
patients with PD after medication intake in comparison with
controls may be explained by excessive movements (including
dyskinesias) caused by dopaminergic medication. The width of
the dominant peak in the PSD has been referred to as a measure
for the inconsistency or variability of gait [21,42]. Weiss et al
[21] showed that it predicts the fall risk in patients with PD.
Interestingly, although the width of the dominant peak did not
change after medication intake in this study, it was elevated in
patients with PD compared with controls for the sensors worn
on both ankles, the pants pocket, and the lower back. This might
be explained by the insensitivity of balance impairments to
levodopa [15]. The finding that the width of the dominant peak
is lowered in the wrist of the most affected side, pointing to less
variability, can possibly be attributed to reduced or absent arm
swing and gestures, resulting in a less variable PSD (which
matches with our observations, described in “Impact of
Real-world Factors”).

We observed absent or weak correlations between the
sensor-based predictions and currently used clinical assessments
(TUG and MDS-UPDRS part III mobility items). There are
multiple explanations for this. The measurement modality is
different (for the TUG, it is time versus acceleration-based
measures), and the measured construct is related but not identical
(for the TUG, postural transitions and gait versus only gait).
Perhaps the most important difference is the measurement
setting. There is growing evidence that following instructions
in a standardized track results in different gait patterns compared
with walking freely in a natural environment [16,18-20]. It can
be argued that measurements in daily life are more valid, if the
aim is to know how the patient performs in the presence of
real-life facilitators and challenges. Since free-living assessments
are inherently different from clinical assessments, alternative
methods to establish validity may be more appropriate. The
predictive power (eg, the ability to detect the effect of
dopaminergic medication) and, in the end, the clinical utility
(eg, whether the information helps clinicians to provide better
treatments) might serve as reasonable alternatives.

Future Directions
The combined inspection of the video recordings and PSDs
highlighted some factors other than PD that may impact the
(within-subject changes in the) gait pattern in real life, such as
putting the hands in the pocket and making gestures. This part
of the study was exploratory, and the effects of these factors
need to be examined quantitatively in independent experiments.
Other potential time-varying factors include voluntary changes
in the walking pace [12], the type of shoes worn, carrying
objects, the ground type, the location (eg, crowded city versus
countryside), and other factors in the physical environment [43].
This area of research has not received much attention so far,
largely due to a lack of available data sets. However, controlling
for important covariates and confounders could be a significant
step forward in the analysis of free-living gait. The inclusion
of multiple sensor types that measure context in this study (eg,
GPS, Wi-Fi, barometer) and the emergence of smart home
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sensors [22,44] provide an opportunity to further examine the
added value of a multimodal gait pattern analysis. Finally,
real-life gait analysis in patients with PD may not only be useful
to monitor motor fluctuations but could also yield much-needed
digital biomarkers to quantify disease progression in clinical
trials testing new disease-modifying therapies. Future studies

that include long-term passive monitoring with wearable sensors
(such as the Personalized Parkinson Project [45]) will reveal
whether the promising results of lab-based gait analysis in this
context [12,13] can be further improved by using highly frequent
measurements obtained in the patients’ natural environment.
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