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Dielectric-Insensitive Phased Array with Improved Characteristics
for 5G Mobile Handsets
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Abstract—In this manuscript, a dielectric-insensitive beam-steerable phased array antenna with
improved performance is introduced for fifth-generation (5G) mobile handsets. The configuration of the
design is arranged by employing eight dielectric-insensitive L-ring/slot-loop radiators in a linear form
on the top edge of the handset mainboard. The beam-steerable array design exhibits high radiation
performances even though it is implemented on a lossy FR-4 material. The proposed design exhibits an
impedance bandwidth of 18–20 GHz with the center frequency of 19 GHz. It provides satisfactory
characteristics such as wide beam-steering, high gain, and efficiency characteristics indicating its
promising potential for beam-steerable 5G smartphones. The characteristics of the antenna array are
insensitive for different types of dielectrics. Furthermore, the designed antenna array offers quite good
radiation behavior in the presence of hand phantom.

1. INTRODUCTION

The fifth-generation (5G) wireless network has received a lot of attention from both academia and
industry with many reported efforts [1–5]. It is expected to have significant improvements in terms of
transmission rate, mobility,latency, and so on [6–8]. Compacted with 3G/4G communications, one of
the main challenges in 5G networks is to shift to the higher frequencies(beyond 10 GHz) where it is
easier to obtain wider impedance bandwidths and higher data rates [9–12]. 5G is predicted to provide
an aggregate data rate, 1,000 times faster than 4G networks with better reliability. Different trials
of 5G demo systems are carried out with multiple mobile technology corporations involved [13]. 5G
systems will employ phased array antennas in the user equipment (UE) and the base station (BS) [14–
20]. So many challenges have been reported for using high frequencies in antenna components of 5G
wireless devices. One of the challenges is to implement antenna phased arrays with improved radiation
performances [21–25]. Phased array antennas with high performances are very desirable for 5G cellular
networks since they can improve the connectivity and the efficiency of the 5G systems [26–29].

In this paper, a new phased array with high performance and dielectric-insensitive function for 5G
smartphone applications is proposed. This is achieved by arranging eight dielectric-insensitive radiators
in a linear form on the top edge of the handset mainboard. A dielectric-insensitive radiator can be
obtained by employing a metal-ring radiator inside an air-filled dielectric. Since the main dielectric of
the antenna elements is the air, they exhibit high characteristics in terms of antenna gain and efficiency.
Moreover, the antenna is insensitive for various values of loss tangent characteristics and permittivity,
which make it flexible to be designed in different dielectric types. Characteristics of the single-element
resonator and suitable the phased array design are investigated in the following.
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2. CHARACTERISTICS OF THE SINGLE-ELEMENT ANTENNA

Figures 1(a)and (b) plot the side and front views of the air-filled L-ring antenna. It is designed
on a low-cost FR-4 dielectric with characteristics of hsub = 0.8 mm, loss tangent (δ) = 0.025, and
dielectric constant (permittivity = εr) of 4.3. It should be noted that FR4 is too lossy for millimeter-
wave/centimeter-wave antenna designs with traditional structures such as printed patch antenna, where
the efficiency of the antenna would be deteriorated. However, the proposed design technique could
eliminate the effect of high-loss substrate and improve the antenna performance.As shown, a discrete-
feeding port is used across the center of the L-ring radiator to feed the proposed antenna. The
CST Microwave software is used to study the characteristics of the designed antenna [30]. The S11

characteristic of the simulated L-ring slot-loop antenna is illustrated in Fig. 1(b). As can be observed, the
designed antenna works at the frequency range from 18 to 20 GHz (with 2 GHz impedance bandwidth).
The values of the antenna design parameters are specified in Table 1.

(a) (b)

Figure 1. (a) Configuration (b) S11 result of the air-filled slot-loop element.

Table 1. The dimensions of the designed parameters for the 5G antenna and its array.

Param. Wsub Lsub hsub WS LS W L W1 L1

(mm) 55 110 0.8 12 13.5 1.5 9.5 0.5 8
Param. W2 L2 W3 L3 W4 L4 W5 La Wa

(mm) 5 4.5 3 6 1.5 0.5 0.5 10.5 51.5

The current density for the L-ring slot resonator at its resonance frequency (19 GHz) is plotted in
Fig. 2(a). As seen, the employed metal-ring radiator has high current densities and emerges very active
at the target frequency [31–35]. The 3D radiation pattern of the metal-ring design is shown in Fig. 2(b).
It is seen that the presented dielectric-insensitive antenna has quite good radiation, supporting both
the top and bottom sides of the FR-4 dielectric. In addition, it provides a high realized gain of 5 dB.
Fig. 3(a) shows the maximum gain and efficiencies of the antenna over its operating frequency. As shown,
radiation and total efficiencies of the design are almost equal with the value of −0.25 dB (95%) at 19 GHz.
Besides, the maximum gain of the antenna is almost constant with 5 dBi level at 19 GHz. In order to
demonstrate the advantage and high-efficiency function of the presented antenna design compared with
other antennas, the characteristics of a 19 GHz patch antenna with the same dimension of the substrate,
operation frequency, and properties of the dielectric is investigated and compared. Fig. 3(b) shows and
compares the radiation and total efficiencies of the antennas (conventional 19 GHz patch antenna and
the air-filled slot design) over their frequency bands. It is clearly shown that by employing the proposed
design method, the efficiencies of an antenna radiator can be significantly improved. Besides, the design
configuration and reflection coefficient (S11) of the conventional 19 GHz patch antenna are shown in
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(a) (b)

Figure 2. (a) The current distribution and (b) 3D radiation at 19 GHz.

(a) (b)

Figure 3. (a) Radiation properties over the operation band and (b) comparison between efficiencies of
the antenna and the conventional patch antenna.

(a) (b)

Figure 4. (a) Configuration and (b) S11 results of the investigated 19 GHz patch antenna.

Figs. 4(a) and (b), respectively. The circular radiation patch has a compact size with a diameter of
3.9 mm and it is fed by a coaxial cable [36, 37]. As mentioned above, the properties of the proposed
air-filled slot antenna design are insensitive to different dielectric characteristics.

To further understand this function, the reflection coefficient (S11) and total efficiencies of the
antenna element for different dielectrics including FR-4 (δ = 0.025 & εr = 4.3), Arlon Ad-320
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(a) (b)

Figure 5. (a) Reflection coefficient (S11) and (b) total efficiency of the antenna for different types of
dielectrics.

(δ = 0.0038 & εr = 3.2), and Rogers-5880 (δ = 0.0009 & εr = 2.2) are studied. It is shown in Fig. 5(a)
that unlike the conventional antennas, the proposed air-filled loop array exhibits similar results and its
reflection coefficient does not change for different types of substrate dielectrics [38]. The total efficiencies
of the antenna design for different types of dielectrics are illustrated in Fig. 5(b). It should be noted
the studied dielectrics have different values of loss tangent δ which could affect the efficiency of an
antenna [39, 40]. However, as plotted in Fig. 5(b), the antenna provides a similar behavior with high
efficiencies for different types of dielectrics.

3. CHARACTERISTICS OF THE 5G SMARTPHONE PHASED ARRAY

As illustrated in Fig. 6(a), eight identical dielectric-insensitive antenna elements are arranged a linear
array antenna. The designed linear array has a low profile with the dimension of Wa×La = 8.5×43 mm2.
Fig. 6(b) illustrates and compares the gain characteristic of the antenna element and the array design
over the operation band of 18–20 GHz. As can be observed the antenna element can provide 3 ∼ 5 dBi
maximum gains while the linear antenna array exhibits high gain levels (more than 1 dBi), over the
antenna operation band.

(a) (b)

Figure 6. (a) Linear antenna array and (b) comparison of the gain levels for the single-element and
the designed array.

The schematic of the proposed smartphone antenna array is represented in Fig. 7(a). It is seen that
the designed linear array has been embedded at the top edge of the handset mainboard with an overall
size of Wsub×Lsub = 55×110 mm2. Fig. 7(b) illustrates the S-parameters (S11 ∼ S81) of the phased array
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(a) (b)

Figure 7. (a) Configuration and (b) S-parameters of the antenna array.

(a) (b) (c)

(d) (e) (f)

Figure 8. Transparent radiation beams of the array at (a) 0◦, (b) 15◦, (c) 30◦, (d) 45◦, (e) 60◦, and
(f) 70◦.

smartphone antenna. As illustrated, the antenna resonators of the smartphone antenna provide good
Snn characteristics covering the frequency range of 18–20 GHz. Moreover, sufficient mutual coupling
(Smn < −15 dB) is observed among the antenna elements. Fig. 8 illustrates the 3D beam-steering of
the array radiation at 19 GHz for wide scanning angles. As observed, the array exhibits quite good and
well-defined beam steering over of 0–70 scanning angles. As shown, the design provides quasi end-fire
and well-defined radiation beams at 0◦, 15◦, 3◦, 45◦, 60◦, and 7◦ which could cover half-space of the
radiation coverage for the smartphone mainboard [41–45].

Fundamental properties of the design including directivity, radiation, and total efficiencies for the
steered beams of the mobile-phone array at 19 GHz design are presented in Fig. 9(a). Across the
scanning range of 0◦ to 60◦, the antenna radiation and total efficiencies are greater than 90% (−0.5 dB).
Besides, for the scanning angle ≤ ±60, the array directivity varies from 11 to 12 dB. Fig. 9(b) illustrates
the realized gains of the proposed phased array antenna. As seen, the antenna has high gain levels at
different angles. As shown, for the scanning range of 0 to 50 degrees, almost constant gains with values
more than 10 dB are obtained [46–50].

The user-hand is a body-part that most frequently touches the handheld devices and usually has
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(a) (b)

Figure 9. (a) Fundamental radiation properties and (b) beam-steering function of the array at different
scanning angles (0 to 60 degree).

(a) (b) (c)

Figure 10. Simulated 3D radiation beams in Data-Mode at, (a) 0, (b) 30, and (c) 60 degrees.

negative impacts on antenna performance [51–53]. Fig. 10 plots the 3D patterns of the smartphone
antenna radiation beams at 0◦, 30◦, and 60◦ angels. It is shown that the proposed dielectric-insensitive
phased array offers good radiation behavior with sufficient gain levels and well-defined beam-steering
characteristics. However, the gain levels of the proposed array are affected significantly owing to the

(a) (b)

Figure 11. (a) Single element, front/back views of the Fabricated prototype, (b) the reflection
coefficient results.
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absorption effect of the user’s hand. This is because some EM energy has been absorbed by the hand.
Figure 11(a) shows the configuration of the fabricated antenna. During the fabrication, the L-

shaped slots have been made in the dielectric and the L-ring metal loops are inserted into the slots.
Due to similar performances of the radiation elements, the reflection coefficient (S11) of the antenna
element is measured for the proposed array and has been compared with the simulation in Fig. 11(b).
As seen, the element exhibits sufficient measured/simulated S11 with a good agreement. It can be
seen the antenna has a good frequency response over the frequency range of 18 to 20 GHz. However,
the fabricated antenna exhibits more than 2GHz bandwidth. The measured and simulated antenna
radiation patterns (E-plane and H-plane) for a single element of the smartphone antenna array have

(a) (b)

Figure 12. Measured and simulated radiation patterns of the antenna element at 19 GHz (resonance
frequency), (a) E-plane and (b) H-plane.

Figure 13. The synthesized beam patterns for different angles.
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been illustrated in Fig. 12. The practical results show fair agreements with the simulated outcomes.
As illustrated, the element provides a quasi-omnidirectional radiation pattern in E-plane [54–58]. The
radiation’s main direction ended in H-plane, as expected for quasi end-fire mode. In addition, as
shown, the antenna is providing sufficient gain values at the centre frequency. Also, the normalized
beam patterns of the linear array have been synthesized using the radiation pattern for the antenna
element. The synthesized 2D-polar results are illustrated in Fig. 13 for a wide scanning range from 0◦
up to 70◦ [59, 60]. It is shown that good beam-steering characteristic is obtained.

4. CONCLUSION

In this manuscript, a new dielectric-insensitive antenna array is introduced for the upcoming 5G cellular
communications. The proposed array is designed on the FR-4 dielectric and working in the frequency
range of 18 to 20 GHz. Eight elements of metal-ring antenna elements were used in a linear array
configuration on the top edge of the mobile phone PCB. The designed antenna array offers good features
in terms of impedance bandwidth, efficiency, gain, and radiation beams.
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