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Abstract 26 

The 3
rd

 E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent 27 

University in Belgium from June 2-5, 2019.  It brought together an international group of 28 

scientists interested in mechanisms of colonization, host response, and vaccine development.  29 

ECMIS distinguishes itself from related meetings on these enteropathogens by providing a 30 

greater emphasis on animal health and disease, and covering a broad range of pathotypes 31 

including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and 32 

extraintestinal pathogenic E. coli.  As it is well-established that the genus Shigella represents 33 

a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also 34 

included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an 35 

example of a pathogen which uses its surface glycans for mucosal interaction. This review 36 

summarizes several highlights from the 2019 meeting and major advances to our 37 

understanding of the biology of these pathogens and their impact on the host. 38 

 39 

  40 
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Introduction  41 

 42 

The gut microbiome is a diverse community of more than 100 trillion microorganisms which 43 

influence mucosal and systemic immune functions via production of metabolites, virulence 44 

factors and through interactions with other members of the microbiota.  Most bacteria in the 45 

gut belong to one of eight phyla, with the phylum Proteobacteria accounting for ca. 2.1% of 46 

the population. Among these, the majority classify as Enterobacteriaceae, with Escherichia 47 

coli by far the most abundant species (1). A recent phylogenetic study of human-derived E. 48 

coli suggested a highly dynamic nature with turnover in the order of months to years (2). The 49 

authors suggest, based on data of Faith et al (3), that this might also be the case for the rest of 50 

the microbiome. Thus, the potential for clonal turnover to change gut function is great. 51 

Understanding how this might influence the host or how host factors affect the microbiome is 52 

challenging. 53 

The conference on E. coli and the Mucosal Immune System in 2019 (ECMIS-2019) 54 

was the 3
rd

 conference in a series of conferences of which the first one was held in 2011, 55 

exactly 100 years after the death of Theodor Escherich. The meetings are organized to bring 56 

together basic scientists and clinicians working on E. coli and the mucosal immune system in 57 

particular focusing on the interaction of these intriguing pathogens with the mucosal 58 

epithelium, and to exchange knowledge on the pathogenicity of different types of E. coli over 59 

species. Whereas the first meeting in 2011 focused on differences between infections in 60 

different species, the second meeting in 2015 rather addressed mechanisms of different E. coli 61 

pathogens independent of species. This 3
rd

 conference addressed some new insights in the 62 

interactions between host, pathogen and its environment and how these interactions steer host 63 

and/or pathogen. Furthermore, several examples were presented of how this interaction can be 64 
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exploited to control E. coli infections. More information on this last conference can also be 65 

found at www.ecmis.ugent.be  66 

 67 

 68 

The mucosal immune system and modulation of the host by E. coli 69 

The main function of the immune system is to protect the host from pathogens. The 70 

mammalian gut harbors large numbers of diverse microbes, which establish a strong 71 

relationship with the immune system, ensuring host homeostasis and consequently supporting 72 

health. The microbes have strong potential to generate immunoglobulin A (IgA), the most 73 

abundantly produced antibody isotype, which promotes maintenance of non-invasive 74 

commensal bacteria, immune tolerance, and neutralization of invasive pathogens through 75 

multiple mechanisms. Supporting evidence for physiologic relevance comes from studies in 76 

patients with selective IgA deficiency, who exhibit an increased susceptibility to autoimmune 77 

diseases (4). IgA synthesis occurs at different gut-associated lymphoid tissues (GALT), either 78 

in organized tissues such as Peyer’s patches and mesenteric lymph nodes, or by dispersed B 79 

cells in the lamina propria in isolated lymphoid follicles. Diversification of the IgA repertoire, 80 

primarily via T cell-dependent pathways, is required to maintain gut homeostasis and ensure 81 

mucosal defense. Dr. Meryem Aloulou (Center for Pathophysiology of Toulouse Purpan) 82 

began the session “Modulation of the Host”, by describing the crucial role of follicular T cells 83 

to support B cell maturation in germinal centers (GC), where positive and negative regulatory 84 

roles are classically assigned to T follicular helper (Tfh) and regulatory (Tfr) cells, 85 

respectively (5). GCs represent critical sites in which B cell responses are amplified and 86 

refined in specificity and isotype, leading to the generation of high-affinity memory B cells 87 

and long-lived plasma cells. Tfh cells regulate GC B cells and lead to their maturation 88 

through somatic hypermutation (SHM) and class switch recombination (CSR), brought about 89 
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by the expression of activation-induced cytidine deaminase (AID). Interestingly, AIDG23S 90 

mice carrying a knocked-in mutation of the AID gene, which causes specific defects in SHM, 91 

developed hyperplasia of GCs in GALTs, dysbiosis of the microbiota and more susceptibility 92 

to infection, indicating that SHM is essential in maintaining intestinal homeostasis and 93 

mucosal defense (6). GC Tfh cells are thought to be the positive regulators of this process, 94 

while Tfr cells, a subset of Foxp3
+
 regulatory T (Treg) cells, are negative regulators. Gut Treg 95 

cells, however, in addition to suppressing inflammation and preserving immune tolerance, are 96 

also known to promote GC and IgA responses by generating GC T cells, ultimately resulting 97 

in the diversification of gut microbiota (7, 8). Gut Treg depletion, in fact, causes a rapid loss 98 

of specific IgA responses in the intestine. Overall, Tfh and Treg cells function not so much in 99 

opposition but in a mutualistic relationship to regulate the GC reaction in the gut, maintain a 100 

diverse and healthy gut microbiota, and foster immune homeostasis. The exact mechanisms 101 

by which Treg and Tfh cells cooperation achieve these homeostatic and symbiotic functions 102 

are still poorly understood. Therefore, understanding the mechanism of these processes and 103 

their regulation will facilitate the development of new strategies for prevention or treatment of 104 

gut disorders. 105 

Another mechanism to modulate the host immune response is used by Shigella. It is 106 

well known that several rounds of infection with Shigella are needed to prime antibody 107 

responses, which are of short duration. Dr. Katja Brunner (Institut Pasteur) of the group led 108 

by Dr. Armelle Phalipon presented research providing insights into antibody suppression. 109 

Shigella can induce B cell death by invading the lymphocytes, and, as demonstrated using 110 

different mutants, by interaction of the type three secretion system (T3SS) needle tip adhesin 111 

IpaD with TLR2 on B cells. For apoptosis to occur bacterial co-signals are required which 112 

sensitize the B cells to apoptosis and upregulate TLR2 (9). Another mechanism was 113 

demonstrated for in vitro activated human blood B- and CD4
+
 T-, and CD8

+ 
T-lymphocytes, 114 
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but also B- and T-lymphocytes residing in the colonic mucosa. Shigella can inject these cells 115 

via the type III secretion system  without invading them (10). T cell activation enhances 116 

expression of GM1 gangliosides, which interact with the O-antigen-moiety of Shigella 117 

lipopolysaccharide, making these activated T cells more susceptible for T3SS-mediated 118 

injection (11). So far, the only outcomes of this direct targeting of activated T cells are the 119 

impairment of CD4+ T cell dynamics and migration, mediated by the T3SS effector IpgD. 120 

In the third presentation of this session, Dr. James Fleckenstein (Washington 121 

University School of Medicine), described new virulence factors from human ETEC strains, 122 

namely EtpA and EatA (reviewed in 13). EtpA is an extracellular adhesin, while EatA is a 123 

member of the serine protease autotransporter of the Enterobacteriaceae family and acts as a 124 

mucinase to degrade host MUC2. Degradation enhances epithelial access and ETEC 125 

adhesion, including that mediated the EtpA-mediated bridging of flagella with N-126 

acetylgalactosamine (GalNAc) exposed on the surface of epithelial cells. Affinity is highest 127 

for terminal GalNAc of blood group A, which might explain the more severe disease in 128 

humans with this blood group (14).  129 

Type 1 fimbriae (F1) also can play a role in ETEC interaction with the mucosa (15). 130 

Lastly, an excellent example of the host-pathogen interaction mediated by by ETEC heat-131 

labile toxin (LT) was presented. In this model, initial delivery of LT triggers upregulation 132 

expression of CEACAM6 molecules on intestinal epithelial cells, which then serve as critical 133 

receptors for FimH, the tip adhesin of F1. While it has been suggested that ETEC use their 134 

toxins to propel organisms back into the environment, these studies suggest a more 135 

sophisticated scenario where LT is exploited to enhance a transient epithelial niche on small 136 

intestinal enterocytes. 137 

 138 

Modulation of E. coli by the host 139 
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It has become increasingly evident that host factors present in the gastrointestinal tract impact 140 

virulence and growth of pathogenic bacteria. In the intestines intrinsic factors of different 141 

origin are sensed by invading pathogens and used to modulate gene and protein expression. In 142 

the session “Modulation of E. coli by the Host” Drs. Åsa Sjöling (Karolinska Institute), 143 

Stephanie Schüller (University of East Anglia), and Guoqiang Zhu (Yangzhou University) 144 

presented recent data on how pathogenic E. coli respond to different host factors.  145 

The first talk by Dr. Sjöling described the ETEC response to bile stress encountered in 146 

the gastrointestinal tract. The bile components secreted by the gallbladder are reabsorbed by 147 

epithelial cells through the jejunum and ileum. Remaining bile acids may be converted to 148 

secondary bile acids by resident microbiota, mainly in the large intestine. Regulation of 149 

virulence and biofilm formation in response to specific concentrations of bile has been 150 

reported in a number of enteropathogenic bacteria (16, 17). 151 

Human ETEC isolates expressing the colonization factors CS5 and CS6 belong to a 152 

globally spread and highly virulent lineage (18). Isolates of this lineage respond specifically 153 

to the bile salt sodium glycocholate (NaGCH), which not only induces specific expression of 154 

colonization factor CS5 (16, 19), but also an entire regulon of virulence factors located on a 155 

virulence plasmid as well as on the chromosome. Dr. Sjöling explained how this induction is 156 

governed by the transcription factor CsvR (Coli surface virulence factor regulator) located 157 

upstream of the plasmid-encoded CS5-operon. CsvR also regulates motility by down-158 

regulation of flagellar operons located on the chromosome. Altogether the results indicate that 159 

bile salt sensing induces a large virulence regulon, controlling the initial states of attachment 160 

to the host. Oxygen regulation is an important factor in the gut since pathogenic species in the 161 

gastrointestinal (GI) tract are often facultative anaerobes that might thrive in presence of 162 

higher levels of oxygen. Oxygen levels decrease through the GI tract and a radial gradient is 163 

also present with oxygen levels diffusing from the intestinal mucosa towards the anaerobic 164 
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gut lumen (20). Dr. Schüller introduced a microaerobic diffusion Chamber system to 165 

determine the influence of oxygen and human colonic epithelium on virulence gene 166 

expression in enteroaggregative E. coli (EAEC). While oxygen induced expression of the 167 

transcription factor AggR and its dependent adhesion factors AAF and dispersin, physical 168 

contact with host cells triggered subsequent expression of the mucinase Pic and the cytotoxins 169 

HlyE and Pet. Interestingly, host cell-mediated virulence gene induction occurred 170 

independently of the master regulator AggR (21, 22). 171 

Bacteria use quorum sensing to signal a coordinated gene expression within a bacterial 172 

population. The acyl-homoserine-lactones (AHL) are produced and sensed by Gram-negative 173 

species to communicate and recent findings indicate that homologues are secreted by 174 

eukaryotic cells thereby mediating interkingdom signaling. Dr. Zhu reported findings that 175 

exogenous and endogenously produced AHL activate acid resistance regulons and stress 176 

responses in enterohemorrhagic E. coli (EHEC) thereby facilitating survival in low pH 177 

environments. 178 

An interesting connection was revealed in this session, contrasting intestinal 179 

colonization strategies used by different E. coli pathotypes. AggR and CsvR are both 180 

members of the AraC-family of transcriptional regulators and activate adherence by distinct 181 

pathogens in response to different environmental cues. Interestingly, AggR activates dispersin 182 

in EAEC, and CsvR (23) the dispersin-like protein CexE in ETEC, as well as the putative 183 

secretion systems encoded by the aatPABCD operon. Hence, E. coli as well as other 184 

enteropathogens share conserved transcription factors and responses to host stimuli. 185 

Interestingly, both AHL and bile sensing in EHEC have an opposite effect on colonization by 186 

downregulating the locus of enterocyte effacement (LEE) (24, 25). EHEC as well as EAEC 187 

primarily colonize colonic epithelium where bile salt concentrations are lower than in the 188 

proximal small intestine, where ETEC is preferentially found. Differences in regulatory 189 
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circuits may explain the spatial preferences. In summary, increased knowledge of the most 190 

important factors sensed at the site of infection might reveal novel targets to limit 191 

enteropathogenic disease.  192 

 193 

Modulation of E. coli by the environment. 194 

The bacterial pathogenesis field appreciates that the study of virulence mechanisms and gene 195 

expression needs to consider impacts of other microorganisms and metabolites in the 196 

environment. Enterohaemorrhagic E. coli (EHEC) O157:H7 is a serious foodborne pathogen 197 

most commonly transmitted to humans through contaminated beef and fresh produce. Strains 198 

of O157:H7 differ in their carriage of virulence genes, however human disease requires the 199 

T3SS-associated gene for intimin (eae), and one or more genes encoding for Stx1 and/or 200 

Stx2, the two isoforms of Shiga toxin (Stx). A number of publications describe mechanisms 201 

by which gut commensals regulate eae. This session explored how the gut microbiome 202 

influences the expression and toxicity of Stx. 203 

 As Dr. Frederic Auvray (Institut de Recherche en Santé Digestive) detailed in his talk, 204 

“Overview of Stx phages diversity and their role in virulence and evolution of Escherichia 205 

coli”, genes for Stx are encoded within lambdoid bacteriophages. These phages are 206 

genetically diverse, and capable of jumping to other E. coli including other pathogenic 207 

variants resulting in newly appreciated “hybrid” types. Excision may also lead to loss of 208 

prophage from O157:H7 and other Shiga toxin-producing E. coli (STEC), which can 209 

complicate interpretation of diagnostic assays. Induction of the phage is known to increase 210 

Stx production, and often this is achieved in the laboratory through addition of DNA 211 

damaging agents such as mitomycin C, fluoroquinolones or hydrogen peroxide.  212 

Dr. Edward Dudley (The Pennsylvania State University) described in the talk 213 

“Commensal E. coli that enhance toxin production by E. coli O157:H7” known mechanisms 214 
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by which non-O157:H7 E. coli can enhance virulence potential. This talk presented a newly 215 

discovered mechanism (26), involving a previously unknown microcin produced by a strain 216 

designated 0.1229. Co-culture of O157:H7 with 0.1229 leads to a recA-dependent 217 

enhancement of Stx production in vitro. Co-inoculated germ-free mice also exhibited more 218 

serious signs of disease than mice inoculated with either E. coli alone. These data demonstrate 219 

that non-Stx producing E. coli that naturally colonize the intestines may accelerate the course 220 

of disease.  221 

To the contrary, Dr. Mononmani Soundararajan (Institute for Molecular Infection 222 

Biology) demonstrated that some E. coli dampen toxin production in the talk “Inactivation of 223 

stx-phages by probiotic E. coli strain Nissle 1917”. Nissle 1917 (EcN) is a well-established 224 

probiotic strain and is the active component of the commercial product sold under the name 225 

Mutaflor. This study demonstrated that EcN, when incubated with an stx-converting 226 

bacteriophage, leads to a 2-log inactivation as measured by phage plaque assays. While the 227 

exact mechanism is unclear, heat-killed EcN exhibited similar activity, while treatment with 228 

Proteinase K abolished it, suggesting heat-stable protein(s) are responsible. The laboratory 229 

strain E. coli K-12, when co-cultured with O157:H7, increased Stx production, and previous 230 

work of others has shown that this mechanism involves stx-converting phage infection of the 231 

non-pathogenic strain. This talk demonstrated that in a triculture, where O157:H7, EcN, and 232 

K-12 are grown together, both Stx- and phage levels are reduced compared to the co-culture 233 

lacking EcN. These data demonstrate that probiotics including EcN may decrease the severity 234 

of O157:H7 disease.  235 

Lastly, Dr. Anne Kijewski (Norwegian Institute of Life Sciences) provided evidence 236 

that microbial metabolites, specifically vitamin K, may play a role in modulating virulence of 237 

O157:H7. While vitamin K naturally occurs within the intestinal tract of humans, individual 238 

differences in concentration occur due to diet, host factors, and microbial communities 239 
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present. Through investigating different chemical forms of vitamin K, it was discovered that 240 

menadione and menadione bisulfite both inhibited the growth of E. coli O157:H7 strain 241 

EDL933 in laboratory broth. Addition of these compounds also decreased Stx toxin 242 

production and gene transcription, and decreased stx-converting phage levels, when bacteria 243 

were grown in the presence of hydrogen peroxide or ciprofloxacin. This treatment also 244 

increased O157:H7 survival, collectively suggesting these vitamin K derivatives dampen 245 

phage induction normally resulting from DNA damaging agents. Several DNA damaging 246 

agents including ciprofloxacin and mitomycin C induce cellular filamentation of O157:H7, 247 

and this phenotype was also inhibited by menadione and menadione sodium bisulfate. 248 

 Collectively, the talks in this session provided a new appreciation of how the intestinal 249 

environment, especially other E. coli strains, may direct the severity of disease outcome 250 

during an O157:H7 infection. Future work is needed to understand whether results also apply 251 

to non-O157 STEC, which are collectively a more common cause of human illness than 252 

O157:H7. Additionally, previous studies demonstrated that extracts from fecal bacteria can 253 

reduce Stx production, and the work presented on vitamin K may provide us with insights 254 

into the possible mechanism(s) behind such observations. 255 

 256 

A role of bacterial cell surface glycoproteins in colonization of  host cells  257 

Cell surface-associated glycosylation systems translate into a molecular barcode that is 258 

pivotal to the pathogenicity of several bacteria, mediating distinct bacteria-host interactions 259 

and increasing bacterial fitness in their niche (27). Thus, for understanding of the 260 

pathogenesis of bacterial infections, insight into glyco-compound biosynthesis is 261 

instrumental. However, due their secondary gene product-nature this is a challenging 262 

endeavour (28, 29). 263 
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 Dr. Christina Schäffer (BOKU University of Natural Resources and Life Sciences) 264 

began the “Host-pathogen interaction at the receptor level” session, presenting as example her 265 

work on glycobiology-based strategies of the Gram-negative anaerobe Tannerella forsythia 266 

which support its status as a periodontal pathogen (30). This pathogen is gaining attention not 267 

only as a cause of periodontitis – globally, the most common inflammatory disease of 268 

bacterial origin – but also due to its link to systemic diseases. It is covered by a 2D crystalline 269 

cell surface (S-) layer that displays a unique protein glycosylation encoded by a general 270 

protein O-glycosylation system (31, 32). The BOKU research group found that the 271 

localization of T. forsythia within dental plaque varied depending on changes in the S-layer 272 

glycan, which also affected aggregation with and the prevalence of other bacteria present in a 273 

multispecies biofilm model (33). Immune response profiling of primary monocytes and 274 

human oral keratinocytes (HOK) revealed that truncation of the T. forsythia glycan leads to 275 

significant reduction of IL-1β and regulates macrophage inflammatory protein-1. HOK 276 

infected with T. forsythia produce IL-1Ra, chemokines and VEGF (34). Overall, the T. 277 

forsythia S-layer and attached sugars contribute to dampening the immune response to initial 278 

infection, mediate persistence of the bacterium in the host and, hence, play a pivotal role in 279 

orchestrating the bacterial virulence. As future aims it will be important to deepen our 280 

understanding of the vast mechanisms bacteria possess for protein glycosylation to devise 281 

novel strategies for designing vaccine formulations and protein therapeutics, based on 282 

synthetic glycobiology approaches. 283 

The knowledge on interaction of adhesion factors of the bacteria with host cell glycans 284 

can also be used to develop strategies to prevent colonization. The research group of Dr. Eric 285 

Cox (Ghent University) has demonstrated that porcine F18
+
 ETEC and/or Stx2e-producing 286 

F18
+
 E. coli (STEC) interact via their fimbrial tip adhesin with glycosphingolipids having 287 

blood group ABH determinants on a type-1 core. The relative binding affinity to different 288 
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blood group determinants decreases in the order B5 type 1 and A6 type1, A7 type I and B7 289 

type 1, H5 type 1, A7 type 4, A8 type 1 and A9 type 1, with the latter having the weakest 290 

interaction (35). Ten mg per mL PBS of the A6 type 1 oligosaccharide was able to decrease 291 

binding to intestinal villi by 73% suggesting that the sugar could be used as a decoy receptor 292 

to decrease intestinal colonization. By conjugating the oligosaccharide on a carrier, the 293 

concentration needed for 70% inhibition was significantly decreased. Experiments using a 294 

small intestinal segment perfusion model demonstrated that this was sufficient for the host to 295 

reabsorb intestinal fluid secretion due to infections with F18
+
 ETEC. Supplementing feed or 296 

water of piglets with the decoy receptor significantly reduced duration and height of fecal 297 

excretion of and F18
+
 STEC strain, showing the potential of this strategy to control infection 298 

in piglets.   299 

Piglets which suckle their dam are protected against ETEC infection by milk 300 

antibodies that interfere with binding of the fimbrial adhesins of ETEC to the mucosa, but at 301 

weaning this protection disappears and severe ETEC-induced diarrhea can occur. The VIB 302 

research group (Ghent University-VIB) of Dr. Vikram Virdi demonstrated that the antigen-303 

binding variable domain of the llama heavy chain-only antibody (VHH), specific for the 304 

adhesin of F4+ fimbriae, grafted onto porcine IgA Fc and expressed in Arabidopsis seed was 305 

able to neutralize the infection of piglets with an F4
+
 ETEC strain (36). VHHs can survive 306 

harsh chemical and temperature conditions yet remain functional. In that first study co-307 

transformation of VHH-IgA with the porcine joining chain and secretory component led to 308 

the production of light-chain devoid, assembled multivalent dimeric, and secretory IgA-like 309 

antibodies. The produced antibodies, a mixture of monomeric, dimeric and secretory IgA 310 

significantly reduced infection.  311 

Unexpectedly, this group demonstrated in a second study that the monomeric IgA 312 

(mVHH-IgA) format against ETEC delivered orally in feed is sufficient to prevent ETEC 313 
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bacterial attachment, and to lower the shedding of the challenge ETEC bacteria, thus 314 

protecting piglets similarly as the SIgA format (37). Furthermore, they showed that mVHH-315 

IgAs can be produced efficiently in soybean seeds and a Pichia pastoris yeast cell production 316 

platform. Crushed soybean seeds expressing mVHH-IgA, or the dried medium from Pichia 317 

secreting mVHH-IgA, when orally delivered in a feed formulation, protected the piglets from 318 

the ETEC challenge. The convenient scalability and frugal downstream processing make 319 

these anti-ETEC mVHH-IgAs most suitable for translation as a safe alternative prophylaxis to 320 

antibiotics. Moreover, given the anatomical organ size similarity, the in-piglet model results 321 

are highly relevant for translation of oral mVHH-IgA applications for human GI infections. 322 

 323 

New vaccine strategies against enterotoxigenic Escherichia coli (ETEC) 324 

Vaccination is considered an effective prevention option for ETEC induced diarrhoea. Indeed, 325 

vaccinating pregnant livestock animals to provide protective maternal antibodies to suckling 326 

newborns largely prevents neonatal diarrhea in young animals particularly pigs (38). 327 

However, though a few vaccine candidates have been under clinical studies (39-41), there are 328 

still no vaccines licensed against ETEC associated diarrhea for humans (42, 43). 329 

Using controlled human challenge models (CHIMs) is a cost- and time efficient way 330 

to test new prevention strategies among which new vaccine candidates (44). Such models 331 

already exist for ETEC disease, but there is a need for models that use relevant ETEC strains 332 

circulating in low-and-middle-income countries. Some vaccine candidates require specific 333 

toxin or colonization factor (CF) profiles in the challenge strain, for example testing a heat-334 

stable toxin (ST)-based candidate would require absence of heat-labile toxin (LT) to avoid the 335 

contribution of LT to diarrheal stool output, the main outcome measure in a challenge model. 336 

Efforts to develop a model based on a STh only epidemiologically relevant strain was 337 

presented by Dr. K Hanevik (University of Bergen). An inoculum of 10
10

 CFU of the STh 338 
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only ETEC strain TW10722 was observed to cause an overall diarrhea attack risk of 78% in 339 

healthy human volunteers (45). However, a good immunological correlate of protection for 340 

ETEC disease is still missing (46). While ETEC specific small intestinal IgA antibodies are 341 

thought to be an important contributor to protection against symptomatic ETEC infection, 342 

measuring it is both impractical and inaccurate due to the location of infection and the 343 

dilution/contaminant effects of intestinal content. 344 

The use of CHIMs has a large potential to increase understanding of ETEC 345 

pathophysiology and the search for potential correlates of protection (44). An adequate 346 

antibody response is dependent on CD4
+
 T cell helper cell involvement (47). Dr. Hanevik 347 

showed that ETEC infection elicited a rapid and long-lasting human CD4 T cell response 348 

against CFs CS5, CS6, and the ETEC mucinase YghJ. These responses correlated with serum 349 

anti-CS5 and anti-CS6 IgA levels. Further experiments should examine which particular T 350 

cell subtypes are involved, and how this correlates with ETEC specific IgA intestinal lavage 351 

and with protection against ETEC. 352 

 Key challenges in developing effective vaccines against ETEC diarrhea in humans 353 

include heterogeneity among ETEC strains and difficulty in inducing robust local mucosal 354 

immunity (42, 43). Over 25 immunologically different colonization factors (CFs) and two 355 

very distinctive enterotoxins (Sta (with two variants STh and STp) and LT) have been 356 

identified from ETEC strains isolated from human diarrhea patients. ETEC bacteria producing 357 

any one or two CFs and either or both enterotoxins can cause diarrhea in children and 358 

international travelers. To overcome these challenges, new strategies have been implemented 359 

for developing effective ETEC vaccines. This includes high expression of multiple ETEC CFs 360 

in a vaccine product, identification of conservative antigens among ETEC strains, and 361 

application of an epitope- and structure-based vaccinology platform to induce antibodies 362 

protecting against heterogeneous ETEC strains. To enhance vaccine candidates in stimulating 363 
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local mucosal immunity, mucosal adjuvants double mutant LT (dmLT; LTR192G/L211A), LTB, 364 

CTB, LT and CT B subunit hybrid (LCTB), as well as aminopeptidase N (APN)-specific 365 

antibody formats were applied to increase antigen uptake by small intestinal epithelial cells 366 

and thus local mucosal immune responses. Several of these strategies were explored in the 367 

ECMIS 2019 symposium. 368 

Dr. Ann-Mari Svennerholm (University of Gothenburg) presented results from several 369 

clinical trials of an oral inactivated ETEC vaccine comprising four recombinant ETEC strains 370 

overexpressing the most prevalent human ETEC CFs (i.e., CFA/I, CS3, CS5 and CS6) in 371 

combination with an LCTB toxoid (ETVAX) (39, 40) and given alone or together with dmLT 372 

adjuvant in Swedish adults and in decreasing age groups (45 years to 6 months of age) in 373 

Bangladesh. These studies showed that the vaccine is safe and induced strong mucosal 374 

immune responses against all the primary vaccine antigens determined by IgA antibody in 375 

lymphocyte secretions (ALS) and/or fecal SIgA antibody responses in a majority of the 376 

vaccinees (39, 40). Furthermore, the vaccine was shown to induce a mucosal immunological 377 

memory for at least 1-2 years after primary vaccination (49). Additionally, dmLT adjuvant 378 

was demonstrated an effective adjuvant to enhance ETVAX in inducing mucosal immunity in 379 

Bangladesh children. Thus, addition of dmLT adjuvant to the vaccine significantly enhanced 380 

mucosal immune responses against CFs and the O antigen (O78 LPS) of ETVAX in infants 6-381 

11 months of age. 382 

Different from the cocktail vaccine strategy, Dr. Weiping Zhang (University of 383 

Illinois) presented the epitope- and structure-based multiepitope fusion antigen (MEFA) 384 

vaccinology platform to develop broadly protective ETEC subunit vaccines. A combination 385 

of two MEFA proteins, CFA/I/II/IV MEFA which applied CFA/I subunit CfaB backbone to 386 

present neutralizing epitopes of CFA/II (CS1 - CS3) and CFA/IV (CS4 - CS6) and toxoid 387 

fusion MEFA 3xSTaN12S-mnLTR192G/L211A of which three copies of STa toxoid STaN12S were 388 
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presented by the monomeric LT mutant (a single peptide with one LTB subunit peptide 389 

genetically fused to one LTA subunit peptide with mutations at residues 192 and 211), was 390 

shown to induce antibodies that broadly inhibited adherence of ETEC bacteria producing any 391 

of the seven most important ETEC adhesins (CFA/I, CS1 - CS6) and neutralized 392 

enterotoxicity of both toxins (LT, STa) (50). Moreover, antibodies derived from CFA/I/II/IV 393 

MEFA and toxoid fusion protected against ETEC diarrhea in a pig challenge model, 394 

suggesting the potential application of these two proteins for a broadly protective multivalent 395 

ETEC subunit vaccine. Additionally, Dr. Duan from Yanzhou University presented that 396 

antibodies induced by toxoid fusion 3xSTaN12S-mnLTR192G/L211A protein had little cross 397 

reactivity to guanylin and uroguanylin (51). Researchers from the Henry Jackson Foundation 398 

and the Naval Medical Research Center examined the application of recombinant ETEC 399 

adhesin proteins CfaEB of CFA/I and CssBA of CS6 as carrier proteins for antigens of 400 

Campylobacter jejuni and Shigella flexneri, and protection against ETEC adherence. From a 401 

non-human primate immunization study, they reported that Aotus nancymaae monkeys 402 

immunized with HS23/36-CfaEB were protected when challenged with ETEC and C. jejuni. 403 

Recombinant CssBA alone was also evaluated as vaccine against CS6 ETEC strains. In 404 

contrast to the multivalent vaccine strategy, conservative antigen vaccine approach was also 405 

discussed.  406 

 Researchers also presented recent advances in inducing small intestinal mucosal 407 

immunity. Researchers from Ghent University presented data on antibody-mediated targeting 408 

of vaccine antigens to aminopeptidase N (also known as CD13), an apical membrane protein 409 

in enterocytes involved in transcytosis of F4 fimbriae (52). A key hurdle in oral subunit 410 

vaccines is poor transport of vaccine antigens across the epithelial barrier (53). This might be 411 

surmounted by their targeted delivery to APN. Upon oral administration to piglets, the 412 

selective delivery of vaccine antigens, as fused antigens or encapsulated in microparticles, to 413 
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APN by antibodies resulted in their transport across the small intestinal barrier and the 414 

induction of antigen-specific systemic and mucosal IgA
+
 antibody secreting cells (54-56).  415 

 Progress on vaccines against pig post-weaning diarrhea (PWD) was presented as well. 416 

Coliprotec
® 

F4, an oral vaccine licensed in some European countries by Elanco Animal 417 

Health, was shown to improve pig growth performance (based on daily weight gain) during 418 

the first three weeks of the post-weaning period. Pigs immunized with the oral live bivalent E. 419 

coli F4/F18 (Coliprotec
® 

F4/F18) showed similar technical performance parameters and a 420 

significant reduction in medication use, compared to pigs treated with colistin. Additionally, 421 

researchers in the US examined the MEFA platform to include neutralizing epitopes of F4 422 

and F18 fimbriae and toxins LT, STa, STb and Stx2e to develop a broadly protective vaccine 423 

against PWD (57, 58). 424 

 While developing effective vaccines against ETEC-associated diarrhea remains to be 425 

challenging, progress has been made from recent research. Novel vaccine technologies 426 

include those presented at ECMIS-2019 and continuous efforts from research groups can 427 

accelerate ETEC vaccine development and potentially lead to the licensing of effective 428 

vaccines for children’s, travelers’, and pig post-weaning diarrhea. 429 

  430 
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