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1D Convolutional Neural Networks for Detecting
Nystagmus

Jacob L. Newman, John S. Phillips, and Stephen J. Cox

Abstract— Vertigo is a type of dizziness characterised by
the subjective feeling of movement despite being station-
ary. One in four individuals in the community experience
symptoms of dizziness at any given time, and it can be
challenging for clinicians to diagnose the underlying cause.
When dizziness is the result of a malfunction in the inner-
ear, the eyes flicker and this is called nystagmus. In this
article we describe the first use of Deep Neural Network Ar-
chitectures applied to detecting nystagmus. The data used
in these experiments was gathered during a clinical investi-
gation of a novel medical device for recording head and eye
movements. We describe methods for training networks
using very limited amounts of training data, with an average
of 11 mins of nystagmus across four subjects, and less than
24 hours of data in total, per subject. Our methods work
by replicating and modifying existing samples to generate
new data. In a cross-fold validation experiment, we achieve
an average F1 score of 0.59 (SD = 0.24) across all four
folds, showing that the methods employed are capable of
identifying periods of nystagmus with a modest degree of
accuracy. Notably, we were also able to identify periods of
pathological nystagmus produced by a patient during an
acute attack of Ménière’s Disease, despite training the net-
work on nystagmus that was induced by different means.

Index Terms— 1D convolutional neural networks,
Biomedical signal processing, Dizziness, Electronystag-
mography, Nystagmus, Time series classification, Vertigo,
Vestibular diseases.

I. INTRODUCTION

VERTIGO is a specific type of dizziness in which an
individual perceives that they or their environment are

moving, even though they are not [1]. Patients with vertigo can
experience unpredictable attacks of severe spinning, and this
can last for several hours at a time [2], during which they may
be completely incapacitated. Dizziness and vertigo can impact
significantly on many areas of a patient’s life, so quick access
to a diagnosis and treatment is desirable. There are a range of
clinical tests available for assessing balance disorders, such as
dizziness and vertigo [3], but they are all performed in clinical
environments and it is rare for them to take place whilst a dizzy
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Fig. 1. The CAVA device consists of five electrode pads contained
within two, detachable mounts, and an electronic logging unit which sits
behind the left ear. Two electrodes placed near the temples on either
side of the face capture horizontal eye movement. Two electrodes above
and below the left eye record vertical eye movement. A fifth electrode
beneath the right ear provides a reference voltage. The device also
contains a push button for patients to log events of interest, such as
the onset of an attack of dizziness.

or vertigo attack is in progress. Dizziness is usually episodic
and is often unpredictable [4], and some forms of dizziness can
be induced by movement of the head. There are many possible
causes of dizziness and vertigo [3], this means that forming a
diagnosis is made even more challenging [5]. As such, patients
often consult a number of clinicians from different specialities
before receiving a definitive diagnosis or treatment [6], [7].

The Continuous Ambulatory Vestibular Assessment (CAVA)
system has been developed to overcome the limitations of
conventional balance assessments which only take a snapshot
of a patient’s symptoms and in a clinical setting where it is
rather unlikely that a dizziness or vertigo attack will take place.
CAVA provides a continuous record of a patient’s vestibular
function and is intended to be worn for thirty days, for twenty-
three hours a day [8]. Hence it is highly likely to record any
attacks of dizziness or vertigo that the patient experiences
during this period. The data provided by the CAVA device
is intended to be analysed by computer algorithms before
presenting the outcome to a clinician to confirm and assess
the results in the context of the patient’s other signs and test
results, as it would be infeasible for clinicians to inspect many
days of data manually. The development of these algorithms
is the focus of the work presented here.

Vertigo is accompanied by a flickering eye-movement called
nystagmus and therefore, observation of eye movement is
crucial to clinicians for confirming whether a patient is expe-
riencing true symptoms of vertigo. The CAVA device (Fig. 1)
records horizontal and vertical eye-movements by way of the
corneo-retinal potential produced by the eyeballs. Nystagmus
is visible in eye-movement traces as a saw-tooth like signal,
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made up of a slow phase (a waveform with a shallow gradient)
and a fast phase (a waveform with a steeper gradient). The
polarity of the gradient of the fast phase defines the direction
of the nystagmus: a positive gradient corresponds to “right-
beating” nystagmus, a negative gradient “left-beating”. The
slow phase is clinically relevant because it corresponds to
involuntarily drifting of the eyes because of a vestibular
malfunction.

Previously, we undertook a clinical investigation involving
healthy volunteers who wore the CAVA device continuously
for up to thirty days [8], [9]. On eight days of their trial,
each participant watched a nystagmus-inducing video on a
VR headset. The data captured during this investigation was
randomised prior to an automated computer analysis, the
purpose of which was to identify the days on which nystagmus
had been induced. The algorithms we developed for that study
achieved a high level of diagnostic accuracy (sensitivity of
99.1% and specificity of 98.6%), demonstrating that very short
periods of clinically useful information could be confidently
identified from within days of normal eye-movement data.

Following this work, we continued to evaluate our device
and algorithms on pathological nystagmus that was provided
by patients experiencing vertigo as a symptom of specific
inner-ear diseases, or was induced as a result of a routine
balance test known as caloric testing. This data has provided
some novel challenges in classification because of a number of
differences between it and our artificially induced nystagmus
data. The induced data was characterised by high-amplitude,
highly regular sawtooth-like waves, that were always thirty
seconds in duration. By contrast, pathological nystagmus has a
much lower and much more variable amplitude, the signal-to-
noise ratio is therefore lower, the fundamental frequency of the
signal changes with time, and the total duration of the episodes
is also highly variable. Furthermore, in our previous work, we
were able to train models to detect nystagmus using a relatively
small dataset of artificially induced data, which contained only
a few minutes of nystagmus data. In order to train robust
models capable of detecting a broad range of pathological
nystagmus, much more data is required. Capturing adequate
amounts of representative data is costly, time-consuming and
generally challenging to obtain, as even symptomatic patients
may only capture a few minutes of dizziness over the course
of a month.

Our specific method of data capture also makes the task of
identifying nystagmus more challenging. CAVA collects data
in real-world environments, where patients are expected to
apply the device to themselves, without expert supervision.
Thus, user-error could negatively impact upon the quality of
data collection, as could motion artefacts, or interference from
household sources of electromagnetic radiation. The long-term
duration of data capture also increases the chance of capturing
unseen or rare examples of eye movement data, making
classifiers more susceptible to making false positive detections.
The large quantity of data could also make the classification
process computationally slow. Thus, the variability of physi-
ological nystagmus, the availability of representative training
data, and the issues surrounding real-world data capture are
the three main challenges posed by this task. The objectives of

the work presented here are to overcome these limitations by
developing algorithms that can outperform traditional machine
learning techniques, as a step towards an automated nystagmus
detection system. To this end, we will soon undertake a blinded
recognition task in which our algorithms will be presented
with hundreds of data files, each representing a day’s worth
of eye movement data. The algorithms will then automatically
determine which of those files contains a period of nystagmus.
Our ultimate aim is for the system to be able to provide
automatic diagnosis as well as detection of nystagmus.

Apart from our previous work in [9], there are no pre-
vious studies that specifically focus on detecting nystagmus
within long-term electrooculography data. However, several
algorithms have been developed to identify nystagmus within
short-term data [10]–[15]. Many of these systems adopt a
heuristic approach to nystagmus detection, usually involv-
ing the identification of peaks in signal velocity, which can
indicate the presence of a fast phase. For example, [15]
used a peak detector followed by a clustering approach in
order to identify fast phases within short duration, bedside
recordings made from subjects with positional vertigo. Such
approaches, while effective when applied to short-term data
that are known to contain nystagmus, can be slow to process
large quantities of data and may produce many false positive
detections when applied to highly variable long-term data.
1D Convolutional Neural Networks (CNNs) have also been
used to classify diseased versus healthy induced nystagmus
signals captured using video goggles in clinical settings [16].
Despite this technique not being used to identify or confirm
the presence of nystagmus, it is reassuring that it achieved
a classification accuracy of 96.36% for discriminating sig-
nals from healthy people with those from patients suffering
from Vestibular Neuritis and Ménière’s disease. Deep Neural
Networks (DNNs) have also been applied to event detection
in Encephalography (EEG) and Electrocardiography (ECG).
Networks incorporating convolutional layers [17]–[19] and
Long Short-Term Memory (LSTM) [20]–[22] layers have been
shown to provide good results when tasked with detecting
abnormal events from long-term EEG and ECG data.

In this article, we develop our algorithm’s capability to de-
tect pathological nystagmus and present details of approaches
taken to overcome the limited availability and imbalance of
representative nystagmus data. We evaluate a Deep Neural
Network (DNN) designed to detect periods of pathological
nystagmus from within horizontal eye-movement data. Firstly,
in section II, we describe more details of the CAVA device (II-
A), followed by details of an ongoing clinical investigation (II-
B), which is the source of the dataset described in section II-C.
In section II-D, the experimental setup is explained, followed
in section II-E by a detailed description of our approaches
to overcoming limited training data and the DNN developed
for this task. The results of our experiments are provided in
section III, with a discussion in section IV. The manuscript
concludes in section V.

II. METHODS
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A. The CAVA Device

The CAVA device contains five ECG electrode pads that are
strategically placed on the face to record the corneo-retinal
potentials produced by the eyes (Fig. 1). The corneo-retinal
potential is conventionally used as a proxy for eye-movement
when use of cameras is deemed infeasible. Using this tech-
nique, also known as electrooculography or electronystagmog-
raphy, the device records horizontal and vertical eye move-
ment. The device also contains an accelerometer for recording
3-axis acceleration of the head. Vertical and horizontal eye
movement data are sampled at approximately 42 Hz and 3-
axis acceleration of the head at approximately 20 Hz. The
device has been designed to require minimal intervention from
the patient or the study team while deployed on trial, and so
patients are not required to charge, download data or otherwise
maintain their device. Patients are taught to apply and remove
the device by themselves, to activate the device’s event marker
and to interpret the device’s status LED. For more information
about the CAVA device, please see [8].

B. Clinical Investigation

We are currently undertaking a clinical investigation in-
volving patients suffering from pathological dizziness, such
as individuals with Ménière’s disease, Vestibular Migraine
and Benign Paroxysmal Positional Vertigo. We are in the
first training phase of this investigation, in which patients are
recruited to provide training and development data for our
computer algorithms. This will be followed by a second phase
in which patient data will be used as part of a blinded analysis.
During the trial, patients are required to wear the CAVA
device in the community, for twenty-three hours a day, for
thirty days. Thus, patients wear the device during their normal
daily activities and crucially during any dizzy attacks they
experience. Typically, data captured in this way is 24 hours
in duration and contains tens of minutes of nystagmus. The
beat direction of the nystagmus can be left or right beating,
depending on the patient’s specific condition and which ear(s)
are affected.

At the end of each patient’s thirty day trial, they undergo
caloric testing in a clinical setting. In practice, a patient may
undergo many additional tests before receiving a firm clinical
diagnosis, but only caloric testing is undertaken here, as it used
as source of data collection rather than to facilitate a diagnosis.
During this procedure, which lasts about twenty minutes,
warm and then cool water are introduced into the inner ear
canal, causing momentary dizziness, usually for a couple of
minutes. In healthy people, warm water is expected to produce
nystagmus beating towards the irrigated ear, whilst cool water
produces nystagmus which beats in the opposite direction. For
patients with vestibular malfunction, the nystagmus response
may be weaker when the diseased ear is irrigated. Thus, the
beat direction of nystagmus induced through caloric testing is
controlled through the test itself. The experiments described in
this article use a combination of data captured during caloric
testing (3 out of 4 patients) and data captured during an attack
of vertigo in the community (1 patient).

TABLE I
A SUMMARY OF THE DATASET USED IN THE NYSTAGMUS DETECTION

EXPERIMENTS DESCRIBED IN THIS MANUSCRIPT. THE DURATIONS

PRESENTED ARE THE TOTAL DURATIONS OF NYSTAGMUS AND

NON-NYSTAGMUS DATA FOR EACH SUBJECT.

# Nystagmus Non-Nystagmus Source
(mm:ss) (hh:mm:ss)

1 10:53 00:51:55 Caloric Test
2 08:58 00:54:00 Caloric Test
3 06:14 16:50:24 Caloric Test
4 17:26 23:35:50 Ménière’s Attack

C. Dataset

The dataset used in the following experiments consists of
data captured from four individuals (Table I). Here, we only
use the data corresponding to horizontal eye-movement, as
the nystagmus we are aiming to detect occurs almost entirely
in the horizontal plane. The data was sampled with 12-bit
precision and at a rate of approximately 42 Hz. The data from
three of these individuals was captured during a caloric testing
procedure, during which four separate periods of nystagmus
are expected, each lasting up to three minutes. The difference
in total data duration for each patient is mainly due to the
duration that each patient wore their device. Patients 1 and 2
donned the CAVA device shortly before the caloric test started,
whereas patient 3 was wearing their device for several hours
before the test. The data from patient 4 represents a full day of
data, during which the patient reported experiencing an acute
Ménière’s attack, over a period of about three hours. All data
was hand-labelled at the sample level with either a 0 (normal
eye movement) or a 1 (nystagmus), based on a clinical expert’s
interpretation on the presence of nystagmus in each signal.

D. Experimental Setup

The main classification task was to automatically classify
each frame (where a frame is the data extracted from a moving
window) as either a positive example of nystagmus, or not.
The best frame duration was determined by experimentation
and the results are presented in section III. To evaluate our
system, we employed per-subject cross-fold-validation. Using
this approach, the data is divided into a number of testing
and training “folds”. Each testing fold contains data from a
single subject and the data from the remaining subjects is
used to train the neural network: this means that the system
is always tested on data from a patient it has never “seen”
before. In addition, we also withhold 20% of data from each
training fold to provide development data which was used
to determine the optimal network configuration for this task.
Table II shows the quantity of data within each of the four
folds, including the proportion of nystagmus data both before
and after data augmentation and class balancing steps were
applied (see section II-E.2 for more details).

E. Nystagmus Detection System

The nystagmus detection system is described in the fol-
lowing sections. The feature extraction process applied to
the training and testing data is described in section II-E.1.
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TABLE II
SHOWS THE NUMBER AND PROPORTION OF TRAINING FRAMES FOR

EACH SUBJECT’S TESTING FOLD, BEFORE AND AFTER DATA

AUGMENTATION AND SMOTE CLASS BALANCING. THIS DATA RELATES

TO EXPERIMENTS CONDUCTED USING A FRAME SIZE OF 400 FRAMES,
BUT THE PROPORTIONS ARE VALID FOR OTHER FRAME DURATIONS.

# # (%) Nyst. # (%) Nyst. # (%) Nyst. # Non-Nyst.
Frames Before Frames After Frames After Frames
Augmentation Augmentation SMOTE

1 155 (1.2%) 620 (4.8%) 12407 (50%) 12407
2 174 (1.4%)) 696 (5.3%) 12387 (50%) 12387
3 191 (2.5%) 764 (9.1%) 7604 (50%) 7604
4 131 (2.3%) 524 (8.6%) 5579 (50%) 5579

The methods by which we address the imbalance in class
data are described in section II-E.2. In section II-E.3, we
provide details of the DNN architecture we use. The machine
learning elements of the system were developed in Python,
using the Keras software package [23]. Post-processing and
data visualisation was performed using MATLAB. Lastly, in
section II-E.4 we discuss the classification process, including
a smoothing step applied to the DNN output.

1) Feature Extraction: A non-overlapping sliding window
is used to segment the time-series data (Fig. 2). No filtering
or pre-processing is applied to the data. We estimate the first
order derivative (velocity) of the signal by simple differencing,
producing vectors which we term frames. Using the velocity
signal negates the need to remove any DC drift in the signal,
which is common in electrooculography recordings. In the
velocity signal, periods of nystagmus are visible as periodic
spikes, whose sign depends on the direction of the nystagmus.
Each frame of data is normalised to be a unit vector. The
original data is labelled at the sample-level, and the class label
(“nystagmus present” or “nystagmus not present”) of each
frame is determined by majority vote of the samples from
which it was derived. For example, for a frame duration of
400 samples, a frame containing 100 nystagmus samples and
300 non-nystagmus samples would be assigned a “nystagmus
not present” label. In the case of a tie, frames are labelled as
“nystagmus not present”.

2) Balancing Class Data: The small amount of nystagmus
eye movement data available is a significant challenge when
training machine learning algorithms for this task. Although
some patients report episodes of dizziness lasting up to several
hours, our data shows that when they do occur, periods of
nystagmus are sporadic and last for a few minutes at most.
Even if patients were to experience daily attacks, this would
still correspond to less than 1% of the total eye-movement
data collected. Training with such a small set of nystagmus
data leads to overfitted models that do not generalise well to
unseen examples of nystagmus [24]. Large class imbalances
can prevent models from learning discriminative features, as
the optimal model becomes close to one that simply classifies
everything as the majority class.

There are two predominant techniques for overcoming class
imbalances: oversampling and undersampling. Oversampling
aims to create new examples of the underrepresented class,
whilst undersampling reduces the number of examples in
the majority class. Experimentally, oversampling has been

Fig. 2. The top panel shows a 200 sample frame corresponding to an
example of left-beating nystagmus. The bottom panel shows the velocity
signal extracted from the example shown in the top panel. The signal
has been normalised by transformation to a unit vector, such that the
magnitude of the vector is equal to 1. The fast phases of the nystagmus
are visible as prominent peaks of negative velocities.

shown to outperform undersampling [25], [26], especially
when applied to large class imbalances and when training
neural networks. A number of oversampling techniques have
previously been described for rebalancing class data, including
random duplication of examples from the minority class [27],
Synthetic Minority Oversampling Technique (SMOTE, [28]),
which generates new examples by interpolating the feature
space between neighbouring data points, or by exploiting an
understanding of the data, such as by mirroring or translating
signals [29].

To address these issues, we have employed a number of
techniques designed to create new training examples of nys-
tagmus from the limited number of examples available in each
training fold (Fig. 3). Our approach combines conventional
oversampling techniques with data replication methods based
on our intuition about nystagmus. The techniques are applied
separately for each fold of the cross-validation. First, each
nystagmus frame is duplicated and reversed in time. This step
results in nystagmus that beats in the opposite direction to
the original example. Next, all examples are duplicated and
multiplied by −1, which again reverses the direction of the
nystagmus but by reversing in the y-axis (e.g. a velocity of 1
becomes a velocity of −1). Three new examples of nystagmus
are produced for each original frame of nystagmus. These
data augmentation steps do not require knowledge of the beat
direction for the original nystagmus signal, as we are not
currently concerned with balancing the quantities of left and
right-beating nystagmus. Finally, we use SMOTE to balance
the number of examples in the nystagmus and non-nystagmus
classes.

3) Neural Network: Fig. 4 shows the Deep Neural Network
(DNN) architecture developed for use in these experiments.
One network was trained for each fold of the cross-validation
using an Nvidia GeForce GTX 1080 Ti GPU-enabled graphics
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Fig. 3. The methods of data manipulation used to generate new
examples of nystagmus from existing ones. (A) A 200-sample frame
displaying an original timeseries waveform. The waveform is a positive
example of nystagmus. (B) Nystagmus examples are duplicated and
flipped in the x-axis, and (C) also duplicated and flipped vertically. These
steps produce four times the original volume of nystagmus training data.

card, taking approximately thirty-seconds per epoch (an epoch
is a single pass of the training data through the network, during
training). Our DNNs use 1D Convolutional layers, hence they
are Convolutional Neural Networks (CNN). In a 1D-CNN,
it is generally accepted that the first layers of the network
are concerned with detecting lower level features of the target
signal, such as signal velocity and acceleration, whereas later
layers may learn more subtle, higher level features. We opted
to use CNNs because they have shown to work well for event
detection in other types of 1D signal, such as arrhythmia
detection in Electrocardiography (ECG) data [17], [18]. 1D
CNNs are particularly well suited to detection tasks in the
time domain, specifically where target signals can occur at
any time during the full signal. The arrangement of our
CNN architecture was adapted from examples of networks
successfully applied to ECG event detection. The parameters
used in our networks, such as the kernel size and number
of filters per layer, were determined by way of preliminary
parameter searches. The values selected provided a good
balance between classification accuracy and time taken to train
the networks.

The network consists of 11 layers in total. The input layer
has 199 dimensions, corresponding to the dimensionality of
the velocity features in the data frames. This is followed by
two 1D convolutional layers, with a kernel size of 3, which
are intended to learn the basic features of the data. A 20%
dropout layer is used to improve the generalisability of the
network, followed by two more 1D convolutional layers. A
1D pooling layer reduces the network dimensionality to 128.
A dropout layer precedes two Dense layers, followed by the
final output layer. The total number of trainable parameters
was 72, 953. To train the network, the Adam’s optimiser and
a learning rate of 0.001 was used, with a batch size of 20. All
networks were trained using 30 epochs, which was found to
be the optimal duration for classification of the development
data. Binary cross-entropy was selected as the loss function
and accuracy was the chosen performance metric.

4) Classification: Unseen test data was treated using the
same feature extraction process as applied to the training data

Input Layer
Input: X, 199, 1

Output: X, 199, 1

1D Conv Layer
# Filters: 24
Kernel Size: 3

Input: X, 199, 1

Output: X, 197, 24

1D Conv Layer
# Filters: 24
Kernel Size: 3

Input: X, 197, 24

Output: X, 195, 24

Dropout Layer
Dropout: 20%

Input: X, 195, 24

Output: X, 197, 24

1D Conv Layer
# Filters: 128
Kernel Size: 3

Input: X, 195, 24

Output: X, 193, 128

1D Conv Layer
# Filters: 128
Kernel Size: 3

Input: X, 195, 24

Output: X, 193, 128

Max Pooling Layer
Input: X, 191, 128

Output: X, 128

Dropout Layer
Dropout: 20%

Input: X, 128

Output: X, 128

Dense Layer
# Units: 64

Input: X, 128

Output: X, 64

Dense Layer
# Units: 64

Input: X, 64

Output: X, 64

Classification Layer
Input: X, 64

Output: X, 1

Fig. 4. Deep Neural Network architecture containing 11 layers, inclusive
of input and output layers. ‘X’ denotes a sample / frame.

(Section II-E.1). Testing data was classified on a frame-by-
frame basis by a fold-specific Deep Neural Network (DNN), as
described in section II-E.3. After this classification stage, each
frame was represented by a binary classification, indicating
whether that frame contained nystagmus or not.

A sequence of classified frames typically has some frames
labelled “nystagmus” and some “non-nystagmus”. A single
frame classified as nystagmus, surrounded by non-nystagmus
frames, is not likely to be a genuine episode, as episodes of
nystagmus are typically much longer than the duration repre-
sented by a single frame (14 sec is the longest frame duration
tested here). Similarly, a frame classified as non-nystagmus
that is found within a number of positively classified frames
is likely to be a false negative detection. Therefore, we used
a sieve filter to smooth the output from the classification. For
a full description of the operation of a sieve filter, please
see [30], but to summarise, the sieve essentially operates
by removing very short durations of negative or positive
classifications.

In addition to the DNN classifier described here, we also
performed baseline experiments using a Support Vector Ma-
chine (SVM) classifier and neural networks containing only
non-convolutional layers. The SVM classifier and one of the
non-convolutional networks used the same velocity features as
the DNN classifier. We did not normalise the recognition fea-
tures for the SVM classifier, as this classifier is not capable of
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extracting temporal patterns, and normalisation could destroy
some potentially discriminative aspects of the data. Parameter
optimisation was used to select the best configuration of SVM
classifier for each training fold. A further non-convolutional
neural network baseline used frequency domain recognition
features (Fast Fourier Transform) instead of velocity features,
and was configured in a similar manner to [9]. All experiments
were evaluated using the same cross-fold validation approach,
and the same training data was used for comparable experi-
ments. These baseline experiments were performed using all
class balancing techniques (augmentation and SMOTE), but
we did not apply the sieve filter, as the results are generally
too poor to benefit from post-processing.

III. RESULTS

The first experiment sought to find the optimal frame
duration for the subsequent experiments. Table III shows the
results of varying the frame duration from 100 samples (2.3 s)
to 600 samples (14.1 s). These results were obtained using both
data augmentation and SMOTE simultaneously. The average
F1 score was lowest for a frame duration of 100 samples,
suggesting that this duration is not long enough to capture
a sufficient number of nystagmus beats in order to train a
reliable network. A frame duration of 400-samples produced
the highest average performance across all metrics except
for sensitivity, which was only marginally lower than the
highest value obtained. Therefore, all subsequent experiments
are performed using a 400-sample frame duration.

Table IV shows the results of the nystagmus detection
task across eight different experiments: First, three baseline
experiments using an SVM and two non-convolutional neural
networks, followed by five different system configurations of
Deep Neural Network (DNN). For the five DNN systems,
the first uses networks trained without using any class bal-
ancing techniques. The second is a system where the class
data is replicated by the augmentation methods described
in section II-E.2, but not using the SMOTE method or any
post-processing of the classification. The third a system uses
SMOTE without the other data replication techniques. The
networks in the fourth system are trained using all class
balancing techniques, including data replication and SMOTE,
but no sieve filter. In the final system, all data replication
approaches were used, including the sieve filter. We mostly
consider the F1 scores when comparing results from the dif-
ferent classifiers, as this metric is commonly used in Computer
Science to summarise the results of binary classification tasks.
More detail regarding the F1 score can be found in [31], but
in summary it provides the harmonic mean of precision and
recall.

The results for all baseline experiments showed poor per-
formance compared to the DNN approaches. The results from
the SVM classifier were the lowest of the three baselines, with
poor results across all metrics, except for accuracy. However,
the values shown for classification accuracy are misleadingly
high for all experiments, which is a common issue when
evaluating classification performance on a vastly imbalanced
dataset, where high accuracies can be achieved simply by

classifying all examples as belonging to the majority class.
The non-convolutional networks offered improved results over
the SVM, with the network trained using velocity features
outperforming the network trained using frequency domain
recognition features. The average F1 score for each baseline
experiment was worse than for all configurations of DNN. A
McNemar’s test confirmed that the difference in performance
was statistically significant for all configurations of DNN
compared to all other systems (p < 0.0001). We achieved
qualitatively similar results to the SVM using Random Forest,
K-Nearest Neighbour and XGBoost classifiers.

TABLE III
EXPERIMENTAL RESULTS SHOWING THE EFFECT OF VARYING FRAME

SIZE (IN SAMPLES) ON THE FRAME-LEVEL CLASSIFICATION

PERFORMANCE OF OUR DEEP NEURAL NETWORK SYSTEM. THE

RESULTS FOR EACH SUBJECT WERE OBTAINED USING HOLD-ONE-OUT

CROSS-VALIDATION, IN WHICH EACH SUBJECT WAS HELD-OUT FOR

TESTING AND THE REMAINING SUBJECTS WERE USED FOR TRAINING.
EACH CLASSIFIER USED ALL CLASS BALANCING TECHNIQUES

(AUGMENTATION AND SMOTE), BUT NO SIEVE POST-PROCESSING.

# tp tn fp fn Sens. Spec. F1 MCC Acc.
(%) (%) (%)

100 samples
1 118 1035 259 159 43 80 0.36 0.20 0.73
2 122 1235 111 106 54 92 0.53 0.45 0.86
3 111 20578 4677 40 74 81 0.04 0.11 0.81
4 219 32956 2401 257 46 93 0.14 0.17 0.93

Mean: 54.3 86.5 0.27 0.23 0.83
200 samples
1 85 546 99 55 61 85 0.52 0.41 0.80
2 91 558 113 25 78 83 0.57 0.50 0.82
3 60 11321 1305 17 78 90 0.08 0.17 0.90
4 171 14913 2749 83 67 84 0.11 0.17 0.84

Mean: 71.0 85.5 0.32 0.31 0.84
300 samples
1 50 385 43 45 53 90 0.53 0.43 0.83
2 64 348 98 14 82 78 0.53 0.46 0.79
3 43 7533 882 10 81 90 0.09 0.18 0.89
4 138 8994 2769 43 76 76 0.09 0.15 0.76

Mean: 73.0 83.5 0.31 0.31 0.82
400 samples
1 46 283 37 26 64 88 0.59 0.50 0.84
2 53 262 71 7 88 79 0.58 0.52 0.80
3 32 5746 564 9 78 91 0.10 0.19 0.91
4 86 7805 1009 58 60 89 0.14 0.19 0.88

Mean: 72.5 86.8 0.35 0.35 0.86
500 samples
1 27 230 25 32 46 90 0.49 0.38 0.82
2 40 213 52 9 82 80 0.57 0.49 0.81
3 27 4701 346 7 79 93 0.13 0.23 0.93
4 82 5897 1147 40 67 84 0.12 0.17 0.83

Mean: 68.5 86.8 0.33 0.32 0.85
600 samples
1 34 181 30 16 68 86 0.60 0.49 0.82
2 28 174 48 12 70 78 0.48 0.38 0.77
3 23 3893 312 6 79 93 0.13 0.22 0.92
4 67 4994 872 39 63 85 0.13 0.18 0.85

Mean: 70.0 85.5 0.34 0.32 0.84
*tp = true positive, tn = true negative, fp = false positive, fn = false negative,
MCC = Matthews Correlation Coefficient.

For the different combinations of DNN system, the results
from each combination of class balancing and sieve filtering
are better than the baseline DNN, in terms of classification
sensitivity and average F1 score. The differences are all
statistically significant, according to a McNemar’s test. A com-
bination of all techniques, including the sieve filter, provides
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the highest F1 scores across three out of four subjects. For the
best set of results, the sensitivity ranges from 25% for patient
4 to 81% for patient 2, and specificity near to 100% for all
patients. Examination of the columns labelled tp, tn, fp and fn
in Table IV shows that the number of false positive detections
is extremely low compared to the number of true negative
detections, producing a high level of specificity. Some systems
showed a decrease in F1 score for patient 3 compared to the
baseline. This was due to an increase in the number of false
positive detections. However, inclusion of the sieve filter was
sufficient to reduce these short and isolated misclassifications.

TABLE IV
RESULTS OF A FRAME-LEVEL CLASSIFICATION TASK. THE FIRST THREE

ROWS SHOW THE RESULTS OF THREE BASELINE EXPERIMENTS

OBTAINED USING AN SVM CLASSIFIER AND TWO NON-CONVOLUTIONAL

NEURAL NETWORKS. EACH BASELINE USED ALL CLASS BALANCING

TECHNIQUES BUT NO SIEVE POST-PROCESSING. THE FOURTH RESULT

WAS OBTAINED USING A DEEP NEURAL NETWORK (DNN), WITHOUT

CLASS BALANCING OR A SIEVE FILTER. ALL SUBSEQUENT RESULTS

RELATE TO EXPERIMENTS USING DNNS AND VARIOUS COMBINATIONS

OF CLASS BALANCING.

# tp tn fp fn Sens. Spec. F1 MCC Acc.
(%) (%) (%)

SVM baseline
1 0 320 0 72 0 100 0.00 0.00 0.82
2 0 333 0 60 0 100 0.00 0.00 0.85
3 0 6310 0 41 0 100 0.00 0.00 0.99
4 0 8814 0 144 0 100 0.00 0.00 0.98
Non-convolutional network baseline
1 32 278 42 40 44 87 0.44 0.31 0.79
2 41 277 56 19 68 83 0.52 0.43 0.81
3 11 5218 1092 30 27 83 0.02 0.02 0.82
4 75 5749 3065 69 52 65 0.05 0.05 0.65
Non-convolutional network baseline using FFT features
1 19 265 55 53 26 83 0.26 0.09 0.72
2 4 234 99 56 7 70 0.05 -0.19 0.61
3 0 6298 12 41 0 100 0.00 -0.00 0.99
4 120 3719 5095 24 83 42 0.04 0.07 0.43
DNN. No class balancing. No sieve filter
1 0 320 0 72 0 100 0.00 0.00 0.82
2 0 332 1 60 0 100 0.00 -0.02 0.84
3 10 6296 14 31 24 100 0.31 0.32 0.99
4 0 8814 0 144 0 100 0.00 0.00 0.98
Data replication. No SMOTE or sieve filter
1 18 315 5 54 25 98 0.38 0.39 0.85
2 31 330 3 29 52 99 0.66 0.65 0.92
3 22 6242 68 19 54 99 0.34 0.36 0.99
4 66 8631 183 78 46 98 0.34 0.33 0.97
SMOTE. No data replication or sieve filter
1 33 311 9 39 46 97 0.58 0.54 0.88
2 34 321 12 26 57 96 0.64 0.59 0.90
3 32 6055 255 9 78 96 0.20 0.29 0.96
4 92 8193 621 52 64 93 0.21 0.26 0.92
All balancing techniques. No sieve filter
1 46 283 37 26 64 88 0.59 0.50 0.84
2 53 262 71 7 88 79 0.58 0.52 0.80
3 32 5746 564 9 78 91 0.10 0.19 0.91
4 86 7805 1009 58 60 89 0.14 0.19 0.88
All balancing techniques, plus sieve filter
1 35 320 0 37 49 100 0.65 0.66 0.91
2 49 321 12 11 82 96 0.81 0.78 0.94
3 30 6287 23 11 73 100 0.64 0.64 0.99
4 44 8647 167 100 31 98 0.25 0.24 0.97

*tp = true positive, tn = true negative, fp = false positive, fn = false negative,
MCC = Matthews Correlation Coefficient.

In Fig. 5 we present the Receiver Operator Curves (ROCs)
for each fold of the cross-validation experiment using all
balancing techniques. These curves were generated using the

A

C D

B
Test on Subject 1 Test on Subject 2 

Test on Subject 3 Test on Subject 4 

Fig. 5. These Receiver Operator Curves (ROCs) correspond to the
classification outputs from each of the four cross-validation folds. They
were generated using the direct outputs from the neural networks trained
using all balancing techniques, but prior to the smoothing stage. A
shows the ROC for subject 1 and has an Area Under Curve (AUC) of
0.81. B is for subject 2 and has an AUC of 0.93. C is for subject 3 and
has an AUC of 0.93. D is for subject 4 and has an AUC of 0.87.

classification probabilities produced each fold-specific neural
network. All plots show that the networks perform well
across a range of classification thresholds. The Area Under
Curve (AUC) statistic for each plot ranges from 0.85 to 0.93,
demonstrating consistent discriminative capabilities across all
testing folds.

IV. DISCUSSION

The results presented in the previous section have high-
lighted the problem of classifying events that are rather
variable and occur as less than 1% of the available data. It
is encouraging that we were able to use nystagmus data from
patients undergoing caloric testing to train a network to detect
pathological nystagmus. This is promising for future research
as until there is widespread wearing of the CAVA device,
caloric testing is the only reliable way to obtain vestibular-
induced nystagmus data for analysis and diagnosis.

We have shown that 1D Convolutional Neural Networks
(CNNs) are well-suited to this task and vastly outperform
other machine learning approaches, such as Support Vector
Machines (SVMs) and simpler non-convolutional neural net-
work architectures. It is well known that 1D CNNs work well
when applied to pattern recognition problems involving time-
series signals such as Electrocardiography data [17], [32],
particularly where the features of interest can occur at any
point in time in a given signal. By contrast, conventional
distance metrics and machine learning techniques do not
perform well when the position of the target signal is highly
variable, as confirmed by the results presented here. Therefore,
it is far more common to apply traditional machine learning
techniques to derived features that are independent of time,
such as frequency domain recognition features. However, by
using a similar technique to our previous work [8], [9], we
have also shown that a combination of Fast Fourier Transform
(FFT) features and non-convolutional neural networks are still
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outperformed by networks using simpler velocity features.
This disparity in performance is likely due to the increased
variability of pathological nystagmus obscuring informative
frequency components. This explanation is supported by pre-
vious work [33], where it was also suggested that common
sources of signal noise can mask or imitate the presence the
nystagmus.

Although neural networks have previously been applied to
several tasks involving eye-movement signals, such as classi-
fying normal versus abnormal nystagmus during caloric tests
[16] and detecting saccades [34], this study is the first example
of 1D CNNs applied to the task of detecting entire nystagmus
waveforms from within hours of normal eye-movement data.
While heuristic approaches to detecting optokinetic nystagmus
have been shown to yield high levels of classification accuracy
(89.13% sensitivity and 98.54% specificity in [10], and 93%
accuracy in [12]), these results are not comparable with our
study as the data was captured during optokinetic tests and are
extremely short in duration (8 seconds each in [10], compared
to up to 24 hours in our longest example and almost an hour
in the shortest). While it is impressive that [10] were able to
extract and analyse eye-movement signals from young children
in a laboratory setting, the constrained detection task described
is very different to identifying nystagmus within many hours
of eye-movement data.

Another factor separating our study from others is that over
half of the data used was captured in the community, rather
than a clinical setting. Capturing data in ‘real world’ conditions
may be affected by motion artefacts, incorrect donning of the
monitoring device, by measurable differences between sponta-
neous and induced nystagmus, or by the increased variability
of continuous, long-term eye movements. By contrast, nystag-
mus captured during caloric testing is usually uninterrupted,
the data capture process is monitored by a professional, and
is not subject to the same sources of real-world ‘interference’.
Therefore, our results are a first step towards reliable detection
of nystagmus in long-term eye-movement data, although there
is evidently much room for improvement.

The performance we demonstrate for subject 4, the subject
who wore the device for 24 hours, is the lowest of all test
subjects presented. For the experiments giving the highest
average F1 score overall, we were able to identify nearly
a third of subject 4’s nystagmus (44 frames), but at the
expense of nearly four times the number of false positive
detections (167 frames). At first glance, this might seem like
a disappointing result, however, a further 8647 true negative
detections were made. Thus, we were able to identify a
significant proportion of pathological nystagmus buried within
vast and highly variable eye movement data, with only a
small proportion of true positive detections. It should also be
noted that even an apparently low F1 score of 0.24 actually
represents performance that could not be obtained through
guessing.

The two lowest F1 scores were produced by the two
longest data files, suggesting that performance, specifically
the number of false positive detections, is correlated with
the total duration of eye-movement. To explore this further,
we visualised the false positive and false negative detections

15:40:10 15:40:12 15:40:14 15:40:16 15:40:18 15:40:20 15:40:22 15:40:24 15:40:26 15:40:28
Time (Seconds)

3800

3820

3840

3860

3880

Q
ua

nt
is

at
io

n 
Le

ve
ls

A False Negative Detection of Nystagmus

11:45:54 11:45:56 11:45:58 11:46:00 11:46:02 11:46:04 11:46:06 11:46:08 11:46:10 11:46:12
Time (Seconds)

4200

4220

4240

4260

4280

Q
ua

nt
is

at
io

n 
Le

ve
ls

A False Positive Detection of Nystagmus

Fig. 6. The top panel shows a false positive detection, in which
the signal appears nystagmus-like, but with noisy and ‘stepped’ slow
phases that are likely to have been produced by the subject reading.
The bottom panel shows an example of a false negative classification
of right-beating nystagmus. The signal contains two short periods of low
amplitude nystagmus, the first ending at about 11:46:00 and the next
starting approximately nine seconds later.

(Fig. 6). False negatives, such as the example shown in the
bottom panel of Fig. 6, were subtle, containing low amplitude
nystagmus concealed by relatively high levels of background
noise. Analysis of one of the false positive detections for
subject 4 (top panel of Fig. 6), revealed a period of reading that
was misidentified as nystagmus and which is redolent of some
examples genuine nystagmus, such as that shown in Fig. 2.
This signal is very similar to that of nystagmus, except that the
slow phase is characterised by short saccadic motions, moving
from left-to-right, corresponding to the eyes reading each word
on a line of text. We expect that correctly identifying examples
such as these may be possible by training the network with
more representative training data. These results highlight the
challenges posed by real world data compared to data obtained
in a laboratory setting, and suggest a sensible focus for future
work.

Our experimental framework was designed around a blinded
recognition experiment that we will undertake at the end of
an ongoing clinical investigation. In this experiment, our al-
gorithm will be presented with around 400 separate data files,
each file containing a day’s worth of eye movement data, and
will determine which of these files contain positive examples
of nystagmus. Each day will be classified as containing a
positive example of nystagmus if any frames within that day
are positively classified as nystagmus. Therefore, for this task,
higher specificity for frame-level classification is preferred,
since any number of false positive frames would lead to a
false positive ‘day’. The ROCs for each testing fold (Fig. 5)
showed that all classifiers performed well across a range of
classification thresholds, showing that the system could be
configured to favour sensitivity or specificity, depending on
the requirements of a given task. For example, initial screening
tests usually favour sensitivity, while increased specificity is
more appropriate for invasive follow-up procedures.
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V. CONCLUSION

In this article we have demonstrated techniques for over-
coming the limited availability of data for training neural net-
works to detect nystagmus. This is the first reported application
of the use of deep neural networks for this task. The results
have shown that despite very limited amounts of training data,
it is possible to overcome large class imbalances by generat-
ing new examples of training data from existing examples.
Although we only achieved moderate frame-level accuracy,
tuning our system to provide higher levels of sensitivity is
likely to provide adequate results for a potential screening
application.

Although these techniques have proven capable of achieving
moderate levels of accuracy for detecting nystagmus, our next
goal is to evaluate them on a much larger dataset, and also to
compare the current results to those obtained when training
networks using larger quantities of genuine data. Over the
remainder of our current clinical investigation, we will capture
a wealth of data from patients suffering from dizziness and ver-
tigo. That data will be subject to a blinded analysis, where the
task will be to automatically detect the days on which patients
reported experiencing episodes of dizziness or vertigo. The
models used for that analysis will be similar to those described
here, thus providing a challenging and thorough evaluation of
these techniques. An additional challenge posed by this task
is the inclusion of patients with Benign Paroxysmal Positional
Vertigo (BPPV), whose nystagmus may contain a large com-
ponent of vertical eye movement. Although in our previous
clinical investigation we established that CAVA was capable
of capturing vertical eye movements, it has been shown that
the voltage resolution of vertical electrooculography data is
lower than for the horizontal channel [35]. Therefore, it will be
interesting to evaluate how this impacts upon our algorithm’s
capabilities to detect nystagmus in the vertical plane.

In parallel to our clinical investigation, we intend to explore
and evaluate a range of other contemporary machine learning
approaches for this classification task. For example, we wonder
whether Generative Adversarial Networks (GANs) could be
used to augment our limited volumes of training data, perhaps
in place of SMOTE. GANs essentially work by pitching two
neural networks against each other; one to generate artificial
examples of the positive class (the “generator”), and one to
learn to distinguish between genuine examples from those
produced by the generator (the “discriminator”). In doing so,
GANs could learn to produce new yet realistic examples of
nystagmus with which to train our DNNs. There are also
a number of variations to neural networks which we would
like to evaluate and which have shown to provide incremental
improvements when applied to other classification problems.
For example, ResNet and DenseNet are approaches to neural
networks which seek to overcome the vanishing gradient
problem, whereby network weights can become so small that
all or part of a network will stop training. 2D convolutional
neural networks have also been used in cardiac arrhythmia
detection with good results.

Following the completion of our clinical investigation, we
will have a large dataset of patient data available to us

with which we can further evaluate and develop the methods
described here. A longer term aim is to apply this system to
vertigo resulting from a variety of defined inner-ear conditions,
and to quantify the characteristics of nystagmus from them,
with a view to determining whether different pathologies
can be discriminated on the basis of the nystagmus signals
they produce. Our ultimate aim is to develop a complete
medical system to allow clinicians to assess dizzy patients
purely on the data provided by the CAVA system. In this
regard, we also intend to extend our system to provide a more
detailed analysis of a patient’s nystagmus, by automatically
extracting parameters such as slow and fast phase velocity.
This innovation has the potential to improve the speed and
accuracy of diagnosis for patients reporting dizziness and
vertigo, by providing an objective record of a patient’s dizzy
episodes over the course of a month.
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