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An important step in eukaryotic gene expression is the synthesis of proteins from
mRNA, a process classically divided into three stages, initiation, elongation, and
termination. Translation is a precisely regulated and conserved process in eukaryotes.
The presence of plant-specific translation initiation factors and the lack of well-known
translational regulatory pathways in this kingdom nonetheless indicate how a globally
conserved process can diversify among organisms. The control of protein translation
is a central aspect of plant development and adaptation to environmental stress, but
the mechanisms are still poorly understood. Here we discuss current knowledge of the
principal mechanisms that regulate translation initiation in plants, with special attention
to the singularities of this eukaryotic kingdom. In addition, we highlight the major recent
breakthroughs in the field and the main challenges to address in the coming years.
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INTRODUCTION

In eukaryotes, canonical cap-dependent translation begins with eIF4E recognition of the cap
structure (7-methyl guanosine) at the 5′-end of the mRNA and formation of the eIF4F complex.
Within this complex, eIF4G interacts with several factors, allowing mRNA recircularization and
recruitment of the preinitiation complex 43S (PIC) to the mRNA. Once loaded, this complex,
which consists of the small ribosomal subunit 40S, the ternary complex eIF2/GTP/tRNAi

met and
the factors eIF3, eIF1, and eIF1A, scans the mRNA in the 5′-3′ direction until an initiation codon is
found. At that point, the ribosomal subunit 60S is loaded and the elongation phase begins (Jackson
et al., 2010; Hinnebusch et al., 2016).

Regulation of protein synthesis is a widespread, dynamic mechanism that controls gene
expression in eukaryotes. This regulation takes place mainly, but not exclusively, during the
translation initiation phase and involves the regulation of the activity of the master kinase target
of rapamycin (TOR) and two important translation initiation factors, eIF4E and eIF2α (Chu
et al., 2013; Hinnebusch et al., 2016). Although regulation of these three main players has been
studied profusely in other eukaryotes, the information available as to how these proteins regulate
translation in plants is very limited. This review focuses on specific aspects of their involvement
in translation initiation in plants, introducing what is known in other organisms, what we know
about their regulation in plants, and how this regulation impinges on specific aspects of plant
development and response to environmental cues.
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THE TOR SIGNALING CASCADE

The TOR protein kinase is a central regulator of growth in
response to nutrients in eukaryotic cells. The importance of
this signaling pathway is shown by the large number of papers
published annually (see Dobrenel et al., 2016a; Eltschinger and
Loewith, 2016; Gonzalez and Hall, 2017 for recent reviews),
and the celebration of the 25-year anniversary of its discovery
(Hall, 2016). The two yeast TOR kinase genes were first
identified during a screen designed to seek the targets of the
antiproliferative drug rapamycin (Heitman et al., 1991). Soon
after, it was observed that translation initiation was altered in
yeast TOR mutants (Barbet et al., 1996). It is now well established
that TOR integrates the signals that perceive the nutritional
status of the cell and regulates downstream processes essential for
proliferation and growth. These include the ability to modulate
translation initiation (Ma and Blenis, 2009; Thoreen et al.,
2012; Nandagopal and Roux, 2015), maintenance of lysosome
identity (Yu et al., 2010; Munson et al., 2015), autophagy
(Noda and Ohsumi, 1998), and synthesis of ribosomes and
tRNAs (Ma and Blenis, 2009). Whereas yeast has two TOR
proteins, some filamentous fungi, animals, and plants have
only one (Franceschetti et al., 2011; Dobrenel et al., 2016a;
Eltschinger and Loewith, 2016). Yeast and mammalian TOR
proteins form two widely conserved multiprotein complexes that
differ structurally and functionally, TORC1 and TORC2; only
TORC1 is rapamycin-sensitive (Eltschinger and Loewith, 2016).
The ability of these TORC complexes to interact with specific
protein partners controls the diverse downstream outputs of the
TOR cascade.

In plants, analysis of the TOR pathway has been a challenge
because of the embryo lethality of knockout TOR mutants
(Menand et al., 2002), and the less reliable rapamycin sensitivity
of these eukaryotes (Rexin et al., 2015; Dobrenel et al., 2016a).
The latter is due to the differences in amino acid residues in
the 12 kDa FK506-binding proteins (FKBP12) of plants. The
generation of TOR inducible mutants and silenced lines (Deprost
et al., 2007; Caldana et al., 2013; Dobrenel et al., 2016b), the
introduction of the yeast FKBP12 in Arabidopsis, which increases
rapamycin sensitivity (Sormani et al., 2007), together with newly
developed drugs that target TOR such as Torin and AZD-8055,
have provided tools to dissect the role of TOR in plants. Although
all TORC1 components are present, no clear orthologs of the
TORC2 subunits AVO1 and AVO3 have yet been found in plants
(Robaglia et al., 2012; Maegawa et al., 2015).

TORC1 AND THE CONTROL OF
TRANSLATION INITIATION

In yeast and animals, TORC1 activation by nutrient signals
coordinately controls various components of the translation
initiation machinery by direct or indirect phosphorylation of
a subset of proteins (Ma and Blenis, 2009). These include
the translation initiation factors eIF4G, eIF4B, 4E-BPs, and
the 40S ribosomal S6 kinases (S6K1 and S6K2). Furthermore,
TORC1 can control general protein synthesis and the selective

translation of specific mRNAs, including those with 5′ terminal
oligopyrimidine (TOP) tracts (Thoreen et al., 2012). These
TOP mRNAs encode ribosomal and other proteins that
control translation. Although the mechanism by which these
mTOR-dependent mRNAs are selected is not yet clear, several
features of their 5′ UTR has allowed their classification in two
functional subsets of transcripts whose translation initiation is
regulated differently (Gandin et al., 2016). Not only nutrient
starvation, but also other stresses can modulate the TOR cascade
and canonical translation initiation, as shown during hypoxia,
when mTOR inactivation reduces the translation of several TOP
mRNAs and overall protein biosynthesis (Spriggs et al., 2010).

Plant lines in which TOR is silenced have reduced polysomal
content (Deprost et al., 2007), an observation that supports
TOR involvement in translation regulation. TOR also reduces
the transcription and translation rates of nuclear genes that
encode plastidic ribosomal proteins, suggesting protein synthesis
defects in chloroplasts. This correlates with the chlorotic
phenotype observed in TOR-silenced plants (Dobrenel et al.,
2016b).

Arabidopsis S6K conserves the main regulatory
phosphorylation sites found in human S6K (Dobrenel et al.,
2016a), and phosphorylation of S6K1 has been used to monitor
TORC1 activity in plants (Xiong and Sheen, 2011). This is
an important TOR effect, since the S6K pathway not only
stimulates overall protein synthesis but also eIF3h-mediated
translation reinitiation after an upstream open reading frame
(uORF) (Schepetilnikov et al., 2013), a frequent feature found
in plant mRNAs (von Arnim et al., 2014). Auxin treatment
activates TOR in Arabidopsis seedlings, and stimulates TOR
association with polysomes, where S6K1 is phosphorylated
(Bogre et al., 2013; Schepetilnikov et al., 2013). The loading of
the translation initiation factor eIF3h into polysomes in response
to auxin is impaired in TOR-deficient mutants with an inactive
S6K form, suggesting that eIF3h is possibly phosphorylated
by the TOR/S6K1 pathway (Schepetilnikov et al., 2013). With
respect to environmental pressures, TOR activity can modulate
the plant response to osmotic stress through the S6K1 kinase
pathway (Mahfouz et al., 2006; Deprost et al., 2007). Other
evidence pointing to TOR participation in plant adaptation
derives from the induction of the two S6K gene homologs
in Arabidopsis by cold and salinity (Mizoguchi et al., 1995).
Although the S6K pathway is conserved in plants, clear orthologs
of the other main target of TOR, the eIF4E-binding proteins
(4E-BPs), have not been identified in this kingdom (see below for
details).

REGULATION OF eIF4E ACTIVITY IN
ANIMALS BY ITS ASSOCIATION TO
DIFFERENT PROTEINS

In animals, eIF4E translational activity is tightly regulated
by a myriad of proteins that regulate eIF4E function by
phosphorylation (Waskiewicz et al., 1997) or by binding directly
to eIF4E. These latter proteins, which are one of the focus of this
review, modulate general and specific translation.
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Probably the best-known eIF4E translational regulators are
the mammalian 4E-BPs (Lin et al., 1994; Pause et al., 1994;
Poulin et al., 1998). These proteins interact with eIF4E through
multiple contacts to the lateral and dorsal surface of eIF4E (Paku
et al., 2012; Lukhele et al., 2013; Peter et al., 2015). The dorsal
interaction comprises the so-called 4E-binding motif (4E-BM), a
canonical sequence YXXXXLØ (where Ø denotes a hydrophobic
amino acid) present in 4E-BPs. Since the same motif is used
by eIF4G for eIF4E binding (Mader et al., 1995; Marcotrigiano
et al., 1999), the output of 4E-BPs/eIF4E interaction is the
displacement of eIF4G from the eIF4E-eIF4G complex, which
leads to general inhibition of mRNA translation (Haghighat et al.,
1995). 4E-BPs interaction with eIF4E is intimately coupled to
their phosphorylation status, which is controlled and adapted
to physiological conditions through the master kinase TOR
(Nandagopal and Roux, 2015). After TOR phosphorylation,
mammalian 4E-BPs dissociate from eIF4E, whereas in their
hypophosphorylated state, 4E-BPs form a tight complex with
eIF4E (Pause et al., 1994).

Along with the 4E-BPs, other proteins known as
4E-interacting partners associate to eIF4E through canonical
4E-BM or similar structures (Napoli et al., 2008). In general
terms, these proteins support multiple protein–protein
interactions that create bridges between the 5′ and 3′ UTR
of specific mRNAs, rendering them inactive for translation
(Wells, 2006; Rhoads, 2009). Although these eIF4E interactors
control specific animal developmental programs, such a
mechanism has not been found yet in plants.

In addition to these translational regulators, several eIF4E
interactors were recently implicated in eIF4E-dependent mRNA
export and degradation (Nishimura et al., 2015; Osborne and
Borden, 2015). Some of these proteins, such as LRPPRC, PRH,
or 4E-T, interact with eIF4E through the canonical 4E-BM
(Dostie et al., 2000; Topisirovic et al., 2003, 2009), which
highlights the importance of this domain in eIF4E binding and
regulation.

REGULATION of eIF4E ACTIVITY BY ITS
ASSOCIATION TO DIFFERENT
PROTEINS IN PLANTS

As described above, the most common and powerful tool for
regulation of eIF4E activity in animals is protein association
to the dorsal surface of eIF4E. For this reason, it is surprising
that despite the conservation of the amino acids involved in the
eIF4E/eIF4G interaction and the precise regulation of translation
in different developmental and environmental conditions, no
clear homologs of these eIF4E regulators have yet been found
in plants. This is especially surprising for 4E-BPs, which appear
to have been conserved throughout the evolution of many
eukaryotic species, but specifically lost in plants (Hernandez et al.,
2010).

Besides the lack of plant orthologs for the 4E-BPs and
eIF4E-interacting partners, the existence of proteins that regulate
eIF4E activity through eIF4E association remains an open
question. Different studies reported the identification of proteins

bearing the consensus 4E-BM that bind eIF4E and eIFiso4E
(Freire et al., 2000; Freire, 2005; Lázaro-Mixteco and Dinkova,
2012), although their role in translation has yet to be elucidated.
Apart from these proteins, an Arabidopsis database search
retrieves more than 6900 proteins that contain one or more
canonical eIF4E-binding domains (YXXXXLØ) (Toribio et al.,
2016), that therefore might bind eIF4E and regulate its function.
The number of possible plant eIF4E interactors could be larger
if we consider that the canonical domain can have variations
at the 3′ end and that some structures like the reversed
L-shaped motif can also promote eIF4E binding (Napoli et al.,
2008). Other evidence that supports the existence of these
eIF4E regulators are the presence of conserved RNA-binding
proteins in plants as the case of Brn, which mediates eIF4E
translational inhibition of targeted mRNAs in animals (Kim et al.,
2013).

It is worth to mention that wheat eIF4E and eIFiso4E
show different isoelectric isoforms that are compatible with
changes in their phosphorylation state (Gallie et al., 1997).
Although the kinases involved have not been identified, the
existence of different isoelectric states opens the possibility
that these modifications could regulate translation initiation
during plant development and/or in response to environmental
cues.

TRANSLATION REGULATION BY THE
INITIATION FACTOR eIF2α

Inhibition of canonical translation by eIF2α phosphorylation has
been analyzed exhaustively (Hinnebusch et al., 2016). Studies
in yeast and other eukaryotes showed the eIF2 function in
formation of the ternary complex Met-tRNAi

Met-eIF2-GTP,
needed to couple the initiating Met-tRNAi

Met at the first
AUG in the 5′ leader of mRNAs. The resulting eIF2-GDP
complex is recycled by eIF2B to eIF2-GTP, which binds a
new molecule of Met-tRNAi

Met and forms a new ternary
complex to initiate translation. eIF2, one of the best-characterized
translation initiation factors, is composed of three subunits,
eIF2α, eIF2β, and eIF2γ. Phosphorylation of the conserved
Ser51 residue in the eIF2α subunit inhibits eIF2B dissociation
from the eIF2-GDP complex and thus, formation of a new
ternary complex, whose depletion arrests initiation of protein
synthesis. Phosphorylation of eIF2α is a key mechanism that
controls mRNA translation in eukaryotes in response to stress.
In yeast, the general control non-derepressible 2 (GCN2) kinase
phosphorylates eIF2α during nutrient starvation. GCN2 is part
of a complex also comprised of GCN1 and GCN20 proteins,
necessary to trigger eIF2α phosphorylation (Hinnebusch, 2005;
Castilho et al., 2014). In mammals, protein kinases in addition to
GCN2 phosphorylate eIF2α in various stress conditions including
nutrient starvation, protein misfolding, or immune responses
(Harding and Ron, 2002; Baker et al., 2012; Donnelly et al.,
2013).

In Arabidopsis, GCN2 mediates eIF2α phosphorylation after
stress treatments such as UV light, amino acid starvation,
cadmium, oxidative stress, and wounding, and it is so far the

Frontiers in Plant Science | www.frontiersin.org 3 April 2017 | Volume 8 | Article 644

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00644 April 24, 2017 Time: 12:55 # 4

Sesma et al. Translation Initiation in Plants

only eIF2α kinase identified in plants (Lageix et al., 2008; Zhang
et al., 2008; Sormani et al., 2011; Wang et al., 2016). In addition,
ILITHYIA (ILA), the Arabidopsis homolog of yeast GCN1,
is needed to promote eIF2α phosphorylation in response to
cold (Wang et al., 2016). Despite this evidence, the functional
relevance of this regulatory pathway in plant adaptation to stress
is not yet completely understood (see Echevarria-Zomeño et al.,
2013; Browning and Bailey-Serres, 2015 for recent reviews). In
plants, GCN2-dependent eIF2α phosphorylation is reported to
regulate protein synthesis, although this mechanism as a general
inhibitor of translation is limited to the responses to the purine
synthesis inhibitor 8-azaadenine and the amino acid synthesis
inhibitor chlorsulfuron (Lageix et al., 2008). Moreover, data are
contradictory regarding the role of GCN2 in plant adaptation
to amino acid deprivation (Zhang et al., 2008; Faus et al.,
2015).

In addition to abiotic and nutritional stresses, recent evidence
suggests a function for GCN2 and eIF2α phosphorylation in
plant immunity, although their role remains elusive. eIF2α

phosphorylation is reported in response to Pseudomonas syringae
pv. maculicola ES4326/avrRpt2 infection (Pajerowska-Mukhtar
et al., 2012), but its influence on bacterial growth has yet to be
determined. Adult gcn2 plants show enhanced resistance to the
necrotroph Pectobacterium carotovorum subsp. carotovorum and
the biotrophic fungus Golovinomyces cichoracearum, a response
that contrasts with the enhanced susceptibility of young gcn2
plants to G. cichoracearum or Hyaloperonospora arabidopsidis
inoculation (Liu et al., 2015). Other studies reported activation
of eIF2α phosphorylation in response to treatment with the
defense-related hormones salicylic acid, jasmonic acid, the
ethylene precursor ACC, and the priming agent β-aminobutyric
acid (Lageix et al., 2008; Luna et al., 2014; Wang et al.,
2016).

CHALLENGES AND FUTURE
PERSPECTIVES

The recent development of techniques for obtaining ribosome
footprints in plants, by direct isolation of monosomes (Ribo-seq)
(Merchante et al., 2015, 2016; Hsu et al., 2016) or by TRAP-SEQ
(translating ribosome affinity purification-RNA sequencing)
(Wang and Jiao, 2014; Juntawong et al., 2015; Reynoso
et al., 2015), have revolutionized translation studies; they allow
determination of exact ribosome positions on a genome-wide
scale at single-codon resolution. These techniques have already
been used to identify global features in translating mRNAs
(Hu et al., 2016; Zhao et al., 2016), translating mRNAs in
chloroplasts (Zoschke et al., 2013; Chotewutmontri and Barkan,
2016) and mRNAs regulated at the translational level during
developmental processes such as seed germination and in
response to stress conditions or plant hormones (Mustroph
et al., 2009; Juntawong et al., 2014; Merchante et al., 2015; Bai
et al., 2016). In addition, the incorporation of a non-canonical
aminoacid, azidohomoalanine (AHA), has recently been used to
monitor newly synthesized proteins in plants. The use of AHA
was firstly reported by Echevarria-Zomeño et al. (2015), where
AHA was described to mark de novo synthesized HSP90 and
HSP70 proteins under heat stress conditions in Arabidopsis.
This method, coupled to tandem liquid chromatography-mass
spectrometry (LC-MS), has now been implemented to allow
non-radioactive analysis of protein synthesis in plants (Glenn
et al., 2017). All these techniques will be extremely helpful
for identifying and characterizing the mechanisms that regulate
translation in response to nutritional and environmental cues.

The recent development of chemical genetic tools and cellular
assays for analysis of TOR pathway in plants will help to identify
new targets of this pathway and to understand its involvement

FIGURE 1 | Regulation of translation initiation by the (TOR) pathway, eIF4E activity and eIF2α phosphorylation in response to developmental and
environmental cues in plants. Different treatments activate plants’ TOR and GCN2 that promote downstream phosphorylation of S6K and eIF2α, respectively. In
addition, eIF4E and eIFiso4E activity could be also regulated in these organisms, although the possible mechanisms involved in this regulation has not been
elucidated yet. Despite that these events could lead to regulation of translation initiation (based on the information in other eukaryotes), in some cases the precise
role of these pathways in translational control remains unclear in plants. Solid lines highlight experimentally demonstrated associations among processes; in contrast,
dashed lines represent possible links that are missing or unresolved in plants.
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in translation regulation. It will also be relevant to clarify
the regulatory activity of TOR on TOP mRNAs, as well
as its role in regulating plant adaptation through selective
translation of ribosomal proteins. In addition to translation,
glucose-mediated TOR signaling has been found to play an
important role at transcriptional level in Arabidopsis (Xiong
et al., 2013).

Since the function of putative plant eIF4E interactors has not
been studied in detail, considerable effort is needed to determine
the role of these proteins in mRNA translation, export or decay,
and how such regulation could affect plant development or
responses to environmental stimuli.

An exclusive feature of plant translational machinery is
the presence along with eIF4E of eIFiso4E isoforms, which
mediate the translation of specific mRNA populations as part
of the eIFiso4F complexes (Mayberry et al., 2009; Martinez-
Silva et al., 2012; Chen et al., 2014). Therefore, it would
be of interest to analyze the possible specialization of the
eIF4E putative regulators in the selective regulation of eIF4E
and eIFiso4E proteins. It will also be important to study the
nature of eIF4E and eIFiso4E post-translational modifications
and their function in the control of translation initiation in
plants.

The effort to define the role of phosphorylated eIF2α

during plant adaptation to environmental changes highlights
current interest in this area. Reports with contrasting results
nonetheless emphasize the need for additional studies to clarify
the participation in plant immunity of eIF2α phosphorylation
and of the TOR pathway. As inhibition of translation mediated
by eIF2α phosphorylation is less severe in plants than
in mammals, it is necessary to clarify its role in plant
adaptation to stress; identification of plant mRNAs targeted
by this regulatory mechanism would constitute a major
breakthrough.

In this review, we have focused on the regulation of the TOR
pathway and eIF4E and eIF2α translation initiation factors by
developmental and environmental cues (Figure 1). Nevertheless,
when analyzing translation regulation during plant response
to environmental changes, other mechanisms including those
that affect translation elongation and termination, or formation
of cytoplasmic ribonucleoprotein foci must also be considered.
Many important questions remain to be answered; indeed, we are
just beginning to understand translational regulation in plants
and can thus anticipate major findings in this field in coming
years.
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