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Abstract—This letter presents the first work introducing a
deep learning (DL) framework for channel estimation in large
intelligent surface (LIS) assisted massive MIMO (multiple-input
multiple-output) systems. A twin convolutional neural network
(CNN) architecture is designed and it is fed with the received
pilot signals to estimate both direct and cascaded channels.
In a multi-user scenario, each user has access to the CNN to
estimate its own channel. The performance of the proposed DL
approach is evaluated and compared with state-of-the-art DL-
based techniques and its superior performance is demonstrated.

Index Terms—Deep learning, channel estimation, large intelli-
gent surfaces, massive MIMO.

I. INTRODUCTION

The massive MIMO (multiple-input multiple-output) archi-
tecture has been suggested as a promising technology for
fifth generation (5G) communications systems by providing
high spectral efficiency exploiting high spatial multiplexing
gains [1], [2]. However, its proposed marriage with millimeter
wave (mm-Wave) transmission comes with the expensive cost
of energy consumption and hardware complexity, even if
hybrid beamforming is employed [1], [3]. Recently, large
intelligent surface (LIS) (also known as reflective intelligent
surface) technology has been proposed as a promising solution
with low cost and hardware complexity [4]. An LIS is an elec-
tromagnetic 2-D surface that is composed of large number of
passive reconfigurable reflecting elements which are fabricated
from meta-materials [5].

LIS includes a programmable meta-surface which can be
controlled via external signals such as backhaul control link
from the base station (BS). Hence, real-time manipulation
of the reflected phase and magnitude becomes possible. This
property allows us to use LIS in wireless communications as
a reflecting surface between the BS and the users to improve
the received signal energy, expanding the coverage as well as
reducing the interference [6]. While LIS can provide low-cost
and simplistic architecture, it brings a difficulty of including
two wireless channels between the BS and user, one being
the direct channel and another one is the cascaded channel
between the BS and the users through LIS [7]–[9].
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Regarding channel estimation in LIS, a transmission proto-
col has been proposed in [7] for orthogonal frequency division
multiplexing, while [8] proposed a sparse matrix factorization
approach. Moreover, a dual ascent-based estimation has been
considered in [9]. One of the main challenges in LIS-assisted
wireless networks is that the channel estimation complexity
is high due to the large number of LIS elements. To lower
the complexity, deep learning (DL) techniques can be of
help [7]–[9]. By training a DL network with different channel
characteristics, it can adapt to the changes in the environment
such as the user motions and provide robust performance.
Also, updating the channel information can be done less fre-
quently, which lowers the complexity [10]. Notably, for LIS-
assisted massive MIMO, DL has been applied for the reflected
beamformer design [11] and signal detection [12]. Especially,
in [12], the transmitted symbols are estimated without channel
estimation. This approach is symbol-dependent, i.e., when the
modulation type is changed, the deep network cannot identify
the symbols and requires further training. To the best of our
knowledge, this is the first work studying DL for channel
estimation in an LIS scenario.

In this letter, we propose a DL approach for channel estima-
tion in a LIS-assisted mm-Wave massive MIMO systems. In
the proposed DL framework, we design a twin convolutional
neural network (CNN) for the estimation of direct (BS-user)
and cascaded (BS-LIS-user) channels and assume that each
user has access to the deep network to estimate its own
channel. The CNN is fed with the received pilot signals and
it constructs a non-linear relationship between the received
signals and the channel data.

The deep network is trained with several channel real-
izations to obtain a robust estimation performance. In the
prediction stage, a test data, which is separately generated than
the training data, is used to validate the performance. Finally,
we show that the proposed DL framework achieves reasonable
channel estimation accuracy and outperforms the existing DL-
based techniques [10], [13]. Furthermore, the results show
that the proposed DL approach has robust channel estimation
performance, which is tolerant to the changes in the user
locations up to 4 degrees.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an LIS-aided mm-Wave massive MIMO system
as shown in Fig. 1. We assume that the BS has M antennas to
serve K single-antenna users with the assistance of LIS which
is composed of L passive reflecting elements. In LIS-assisted
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Fig. 1. An LIS-assisted mm-Wave massive MIMO scenario.

communication scheme, each LIS element introduces a phase
shift onto the incoming signal from the BS. The phase of each
LIS element can be adjusted through the PIN diodes which are
controlled by the LIS-controller connected to the BS over the
backhaul link [9], [14].

The BS transmits K data symbols sk ∈ C by using a base-
band precoder F = [f1, . . . , fK ] ∈ CM×K . Hence, the down-
link M × 1 transmitted signal becomes s =

∑K
k=1

√
γk f̄ksk,

where f̄k = fk
||fk||2 and γk denotes the allocated power at the k-

th user. The transmitted signal is received from the k-user with
two components, one of which is through the direct path from
the BS and the another one is through the LIS. The received
signal from the k-th user can be given by

yk =
(
hH

D,k + hH
A,kΨ

HHH)s + nk, (1)

where nk ∼ CN (o, σ2
n) and hD,k ∈ CM denotes the di-

rect channel between the BS and the k-th user. The vector
hA,k ∈ CL expresses the LIS-assisted channel between the
LIS and the k-th user. Ψ ∈ CL×L is a diagonal matrix, i.e.,
Ψ = diag{β1 exp(jφ1), . . . , βL exp(jφL)}. Here, βl ∈ {0, 1}
represents the on/off state of the LIS elements. In practice, the
LIS elements cannot be perfectly turned on/off, Hence, βl can

be modeled as βl =

{
1− ε1 ON
0 + ε0 OFF

for ε1, ε0 ≥ 0 [15].

φl ∈ [0, 2π) is the phase shift of the reflective elements.
Finally, the channel between the LIS and the BS is represented
by H ∈ CM×L.

In mm-Wave transmission, the channel can be repre-
sented by the Saleh-Valenzuela (SV) model where a geo-
metric channel model is adopted with limited scattering [7],
[14]. Hence, we assume that the mm-Wave channels, i.e.,
hD,k,hA,k and H, include the contributions of ND, NA and
NH paths, respectively. Thus, we can represent the channels
hD,k and hA,k as hD,k =

√
M
ND

∑ND

nD=1 α
(nD)
D,k aD(θ

(nD)
D,k ), and

hA,k =
√

L
NA

∑NA

nA=1 α
(nA)
A,k aA(θ

(nA)
A,k ), where {α(nD)

D,k , α
(nA)
A,k }

and {θ(nD)
D,k , θ

(nA)
A,k } are the complex channel gains and re-

ceived path angles for the corresponding channels, respec-
tively. aD(θ) and aA(θ) are M ×1 and L×1 steering vectors
of the path angles as aD(θ) = 1√

M
[ejω0 , . . . , ejωM−1 ]T,

aA(θ) = 1√
L

[ejω0 , . . . , ejωL−1 ]T where ωn = n 2πd
λ π sin(θ)

and d = λ/2 is the array spacing for the wavelength λ. Further,
the mm-Wave channel between the BS and the LIS is given
by

H =

√
ML

NH

NH∑
nH=1

α(nH)aBS(θ
(nH)
BS )aH

LIS(θ
(nH)
LIS ), (2)

where α(nH) ∈ C denotes the complex gain and {θ(nH)
BS , θ

(nH)
LIS }

are the angle-of-departure (AOD) and angle-of-arrival (AOA)
angles of the paths, respectively. aBS(θ) ∈ CM and aLIS(θ) ∈
CL are the steering vectors. Let Gk ∈ CM×L be the cas-
caded channel matrix between the BS and the k-th user as
Gk = HΓk where Γk = diag{hA,k}. Then, we can write
HΨhA,k = Gkψ, for which we have Ψ = diag{ψ}.

In this work, our aim is to estimate the direct and cascaded
channels {hD,k,Gk} in downlink transmission. In this case,
we assume that each user feeds the received pilot signals to
the deep network (henceforth, called ChannelNet) to estimate
its own channel.

III. CHANNEL ESTIMATION VIA DEEP LEARNING

The proposed DL framework uses the received pilot signals
as input to estimate the direct and cascaded channels.

A. Labeling

Consider the downlink scenario where the BS transmits the
orthogonal pilot signals xp ∈ CM , one at a single coherence
time τ , with p = 1, . . . , P and P ≥ M . Hence, the total
number of channel uses to estimate the direct channel is P
The received signal at the k-th user can be given by

yk =
(
hH

D,k +ψHGH
k

)
X + nk, (3)

where X = [x1, . . . ,xP ] ∈ CM×P is the pilot signal matrix
while yk = [yk,1, . . . , yk,P ] and nk = [nk,1, . . . , nk,P ] are
1× P row vectors and nk ∼ CN (0, σ2

nIP ). We assume that
the pilot training has two phases: direct channel estimation
(i.e., hD,k) and the cascaded channel estimation (i.e., Gk). In
phase I, we assume that all of the LIS elements are turned
off, i.e., βl = 0,∀l, by using the BS backhaul link1. We note
here that by setting βl as {1, 0} does not affect the the direct
and cascaded channels since they do not depend on the reflect
beamformer Ψ as seen in (3). Then, the received baseband
signal at the k-th user becomes

y
(k)
D = hH

D,kX + nD,k. (4)

Here, the direct channel hD,k is selected as the label of the
deep network with the corresponding input data of y

(k)
D .

Once hD,k, being the estimated channel, is obtained, in the
second phase of the training stage, the cascaded channel Gk

can be estimated. This can be achieved via two approaches. In
the first approach, P = M pilot signals are transmitted when
each of the LIS elements is turned on one by one. In this
case, the BS sends a request to LIS via the micro-controller
device in the backhaul link to turn on a single LIS element
at a time. For the l-th frame, the reflect beamforming vector
becomes ψ(l) = [0, . . . , 0, ψl, 0, . . . , 0]T where βl̄ = {0 : l̄ =
1, . . . , L, l̄ 6= l} and the received signal from the cascaded
channel at the k-th user becomes

y
(k,l)
C =

(
hH

D,k + gH
k,l

)
X + nk,l, (5)

1When the PIN diodes are turned off, the reflecting elements are almost
transparent with the insertion loss nearly being zero such that the incoming
signals pass through the reflecting elements [16].

Authorized licensed use limited to: University of Warwick. Downloaded on May 23,2020 at 10:53:49 UTC from IEEE Xplore.  Restrictions apply. 



2162-2337 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2020.2993699, IEEE Wireless
Communications Letters

3

where y
(k,l)
C = [y

(k,l)
C,1 , . . . , y

(k,l)
C,P ] and nk,l = [n

(l)
k,1, . . . , n

(l)
k,P ]

are 1× P row vectors. In (5), gk,l represents the l-th column
of Gk as gk,l = Gkψ

(l). Then the least-squares (LS) estimate
of gk,l becomes

ĝk,l =
(
y

(k,l)
C XH(XXH)−1)H − hD,k. (6)

By using ĥD,k, (6) can be solved for l = 1 . . . , L. Then,
we can construct the estimated cascaded matrix as Ĝk =
[ĝk,1, . . . , ĝk,L].

In the second approach, channel estimation is done when
all LIS elements are turned on. In this case, the L columns of
Gk are jointly estimated by using X̄ ∈ CML×ML pilot signal
matrix. Let the reflect beamforming vector be an L×1 vector
of all ones, i.e., ψ̄ = 1L, then we can write the ML × 1
received signal as

ȳ
(k)
C =

(
h̄H

D,k + ḡH
k

)
X̄ + n̄k, (7)

where h̄D,k = 1L ⊗ hD,k where ⊗ denotes the kronecker
product and ḡk = [gT

k,1, . . . ,g
T
k,L]T. Then, the LS estimate of

ḡk becomes

ˆ̄gk =
(
ȳ

(k)
C X̄H(X̄X̄H)−1)H − h̄D,k. (8)

The estimated cascaded channel from (6) and (8) will
yield the same results if perfectly orthogonal pilots are used.
When the pilot signals become correlated/corrupted, then (6)
provides better results since X involves less corruption than
X̄ (Please see Fig. 4).

Algorithm 1 Training data generation for ChannelNet.
Input: K, U , V , X, ψ SNR, SNRh, SNRG.

1: Output: Training datasets DDC and DCC.
2: Initialize with t = 1 and the dataset length is T = UVK.
3: for 1 ≤ v ≤ V do
4: Generate h

(v)
D,k and G

(v)
k from Section II , ∀k.

5: for 1 ≤ u ≤ U do
6: [h

(u,v)
D,k ]i,j ∼ CN ([h

(v)
D,k]i,j , σ

2
h), ∀k.

7: [G
(u,v)
k ]i,j ∼ CN ([G

(v)
k ]i,j , σ

2
G), ∀k.

8: for 1 ≤ k ≤ K do
9: Usingh

(u,v)
D,k and g

(u,v)
k,l , generate y

(k)(u,v)

D and y
(k,l)(u,v)

C

from (4) an (5).
10: Using y

(k)(u,v)

D and y
(k,l)(u,v)

C ; design X
(t)
DC and X

(t)
CC.

11: Using h
(u,v)
D,k , G

(u,v)
k ; design the output z

(t)
DC, z

(t)
CC.

12: D(t)
DC = (X

(t)
DC, z

(t)
DC), D(t)

CC = (X
(t)
CC, z

(t)
CC).

13: t← t+ 1,
14: end for k,
15: end for u,
16: end for v,

B. Input Design: Received Pilots

The deep network accepts the received signals as input at
the preamble stage. As a result, the input-output pairs become
{y(k)

D ,hD,k} and {y(k,l)
C ,gk,l} for direct and cascaded channel

estimation, respectively. In order to feed the deep network
we use real, imaginary and the absolute value of each entry

Fig. 2. Proposed deep neural network architecture.

of the received signal. While the use of only real/imaginary
components is still possible [10], it is shown in [17]–[20] that
the use of “three-channel” data ameliorates the performance by
enriching the features inherited in the input data. Let us define
the input of the deep network as XDC and XCC for the direct
and cascaded channel, respectively. Then, XDC is a M̃×M̃×3
real-valued “three-channel” matrix, each of which is of size
M̃ =

√
M . In order to benefit from 2-D convolutional filters,

we construct the matrix quantity XDC from the vector y
(k)
D

by partitioning yD,k into
√
M subvectors and put them into√

M columns2. In particular, for the first and the second
“channels” of XDC, we have vec

{
[XDC]1

}
= Re

{
y

(k)
D

}
and vec

{
[XDC]2

}
= Im

{
y

(k)
D

}
. Finally, the third “channel”

is denoted by the element-wise absolute value of y
(k)
D as

vec
{

[XDC]3
}

=
∣∣y(k)

D

∣∣. Similarly, we can define XCC as an
L ×M × 3 real-valued matrix and we have vec

{
[XCC]1

}
=

Re
{
ỹk
}

, vec
{

[XCC]2
}

= Im
{
ỹk
}

and vec
{

[XCC]3
}

=∣∣ỹk∣∣ where ỹk = [y
(k,l)T

C , . . . ,y
(k,L)T

C ]T is an LM × 1 vector
composed of the received pilot signals. The input design for
the second approach can also be done accordingly by using (7).
The output of the deep network is the vectorized form of the
channel matrices, i.e., zDC =

[
Re{hD,k}T, Im{hD,k}T

]T
and

zCC =
[

Re{vec{Gk}}T, Im{vec{Gk}}T
]T

which are 2M×1
and 2ML × 1 vectors, respectively. The training data can
be obtained by generating the input-output pairs for several
realizations, as described in Algorithm 1.

C. Network Architectures and Training

ChannelNet composed of two identical CNNs, each of
which is composed of 9 layers as illustrated in Fig. 2. The
first layer is the input layer which accepts the received pilot
signals. Since the same network is used for both direct and
cascaded channels, the size of the input differs as described
in Section III-B. The {2, 3, 4}-th layers are convolutional
layers (CLs) with 256 filters of size 3 × 3. The fifth and
the seventh layers are fully connected layers (FCLs) with
1024 and 2048 units respectively. There are dropout layers
with a 50% probability after each FCL and the last layer is
the regression layer. The network parameters are fixed after
a hyperparameter tuning process that yields the best perfor-
mance for the considered scenario [17]–[19]. The proposed
deep network is realized and trained in MATLAB on a PC
with a single GPU and a 768-core processor. We used the
stochastic gradient descent algorithm with momentum 0.9 and
updated the network parameters with learning rate 0.0002 and

2
√
M is assumed to be an integer value. If not, a rectangular XDC can

always be constructed without affecting the network training.
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Fig. 3. Channel estimation NMSE with respect to SNR.

mini-batch size of 128 samples. Then, we applied a stopping
criterion in training which ceases training when the validation
accuracy does not improve in three consecutive epochs.

IV. NUMERICAL SIMULATIONS

In this part, we evaluate the performance of the proposed
ChannelNet framework with comparison to the state-of-the-
art DL-based approaches such as MLP [13] and SF-CNN [10].
Throughout the simulations, we select P = M = 64, L =
100, and K = 8. The physical environment is modeled with
ND = NA = NH = 10 paths, where the direction of users
are uniform randomly drawn from the interval [−π, π] and we
select ε0 = ε1 = 0 unless stated otherwise.

To train the network, we generate different channel scenar-
ios for U = 100, V = 500 and K = 8. During training,
three signal-to-noise ratio (SNR) levels are used to improve
the robustness, i.e., SNR= {10, 20, 30} dB. In addition, syn-
thetic noise is added to the labels with SNRh =SNRG =

{20, 30} dB, where SNRh = 20 log10( |[h]i|2
σ2
h

) and SNRG =

20 log10(
|[G]i,j |2
σ2
G

), respectively. Hence, the total data length
is T = 240000. During training 70% and 30% of the whole
generated data are used for training and validation respectively.
The training stage takes about 40 minutes, whereas the online
deployment of the proposed DL network only needs 0.004
seconds. Once the training is completed, a new received pilot
data other than the training data is generated and used in the
prediction stage, where J = 100 Monte Carlo experiments
are conducted to assess the normalized mean-square-error
(NMSE) performance i.e., the NMSE for Gk is defined as
1
J

∑J
j=1 ||Gk − Ĝ

(j)
k ||F/||Gk||F .

In Fig. 3, we present the channel estimation for direct and
cascaded channels with respect to SNR. We can see that the
DL-based approaches have better NMSE than the LS [7] due
to their better mapping architectures from the received pilots to
channel data. Among the DL-based techniques, ChannelNet
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Fig. 4. Channel estimation NMSE with respect to SNRX.

has superior performance as compared to the others. The
effectiveness of ChannelNet is due to the joint use of CL
and FCLs, whereas MLP and SF-CNN have FCL-only and
CL-only structures, respectively. While FCLs are powerful in
constructing non-linear mapping between input and the output,
CLs play very important role in DL networks when generating
new features to enrich the mapping performance. We also
observe that the performance of the DL-based approaches
saturates at high SNR (i.e., > 20 dB) because of the biased
nature of the neural networks which do not provide unlimited
accuracy. This problem can be mitigated by increasing the
number of units in various network layers. Unfortunately, it
may lead to network memorizing the training data and perform
poorly when the test data are different than the ones in training.
To balance this trade-off, we have used noisy data-sets during
training so that the network attains reasonable tolerance to
corrupted/imperfect inputs.

In Fig. 4, the effect of corrupted pilot data is examined and
the performance of the algorithms is obtained with respect
to SNR on the pilot data, i.e., SNRX = 20 log10(

|[X]i,j |2
σ2
X

)

when SNR= 10 dB. We observe that all of the algorithms
require at least SNRX ≥ 20 dB to provide a reasonable
NMSE performance and the proposed DL approach has the
superior performance among all.We see that cascaded channel
estimation with the first method is more robust to pilot
corruption than the second method due the use of fewer pilot
signals.

The adaptation of DL-based techniques when the channel
data change is an important performance measure. In Fig. 5,
the NMSE is presented when the AOAs of the users in the test
stage are different for training. In the test stage, we introduce
an angle mismatch into the AOA of all users with standard
deviation σθ and present the results in Fig. 5. We can see that
ChannelNet outperforms the other algorithms and it provides
satisfactory performance up to 4◦ angular mismatch in the test
data.
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In Fig.6, we present the performance with respect to non-
ideal switching of LIS elements for ε = ε0 = ε1. As it is seen,
ε ≤ 5× 10−3 provides satisfactory NMSE performance.

V. SUMMARY

We proposed a DL-based channel estimation technique for
LIS-assisted massive MIMO systems. In the proposed scheme,
each user has an identical deep network which is fed by the
received pilot signals to effectively estimate the direct and the
cascaded channels. We have conducted several experiments to
investigate the performance of the algorithms and observed
that the proposed approach outperforms the other algorithms.
We have shown that the proposed approach does not need to
be re-trained when the user locations change up to 4 degrees.
We have also investigated the non-ideal switching scenario

for the LIS elements and shown that the proposed method can
provide reasonable performance up to 0.5% amplitude error
in switching.
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