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Abstract 
 
The tumor microenvironment in leukemia and solid tumors induces a shift of activated 

CD8+ cytotoxic T cells to an exhausted state, characterized by loss of proliferative 

capacity and impaired immunologic synapse formation. Efficient strategies and targets 

need to be identified to overcome T-cell exhaustion and further improve overall 

responses in the clinic. Here, we took advantage of the E-TCL1 chronic lymphocytic 

leukemia (CLL) and B16 melanoma mouse models to assess the role of the homophilic 

cell surface receptor SLAMF6 as an immune checkpoint regulator. The transfer of 

SLAMF6+ E-TCL1 cells into SLAMF6–/– recipients, in contrast to wild-type (WT) 

recipients, significantly induced expansion of a PD-1+ subpopulation among 

CD3+CD44+CD8+ T cells, which had impaired cytotoxic functions. Conversely, 

administering anti-SLAMF6 significantly reduced the leukemic burden in E-TCL1 

recipient WT mice concomitantly with a loss of PD-1+CD3+CD44+CD8+ T cells with 

significantly increased effector functions. Anti-SLAMF6 significantly reduced leukemic 

burden in the peritoneal cavity, a niche where antibody-dependent cellular cytotoxicity 

(ADCC) is impaired, possibly through activation of CD8+ T cells. Targeting of SLAMF6 

not only impacted tumor growth in B cell–related leukemia and lymphomas but also non-

hematopoietic tumors like B16 melanoma, where SLAMF6 is not expressed. In vitro 

exhausted CD8+ T cells showed increased degranulation when anti-human SLAMF6 

was added in culture. Taken together, anti-SLAMF6 both effectively corrected CD8+ T-

cell dysfunction and had a direct effect on tumor progression. The outcomes of our 

studies suggest that targeting SLAMF6 is a potential therapeutic strategy. 
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Introduction 
 
T-cell exhaustion, associated with the inability to mount successful antitumor immune 

responses, has increasingly become a target for immunotherapy. Programmed cell 

death 1 protein (PD-1, CD279) is well characterized as an inhibitory receptor that is 

upregulated during immune evasion (1-5). PD-1 expression under physiological 

conditions controls the magnitude of T-cell effector functions upon activation (6). Within 

the tumor microenvironment, however, overexpression of the PD-1 ligand, PD-L1, on the 

surface of tumor cells increases the likelihood of its binding to PD-1 on T cells, which, in 

turn, suppresses T-cell effector functions (6, 7). PD-1 expression is also associated with 

an exhausted state of T cells. Blocking the PD-1/PD-L1 axis has been demonstrated to 

be an effective way to remove the break on these otherwise suppressed T cells, 

restoring their cytotoxic capacity in setting of advanced solid tumors, as well as in 

leukemias (8, 9). 

 
Signaling lymphocyte activation molecule family 6, SLAMF6 (CD352, Ly108, NTB-A), is 

a homophilic cell surface receptor, belonging to the immunoglobulin superfamily (10, 11). 

SLAMF6 is a type I transmembrane protein with two extracellular immunoglobin (Ig)-like 

domains and three cytoplasmic tyrosine-based signaling motifs, one of which is 

immunoreceptor tyrosine-based switch motif (ITSM)(10, 12). The SLAMF6 receptor is 

expressed on the surface of a wide variety of hematopoietic cells, e.g. T, B, and NK cells 

(expression restricted to human), and interactions on different cell types allow for diverse 

immunomodulatory functions, some of which include, adhesion, innate T-lymphocyte 

development, neutrophil function, NK and CD8+ T cell–mediated cytotoxicity (13-22). 

Upon phosphorylation of the immunoreceptor, the two ITSMs, the SH2 domain-

containing T and NK cell adaptor SLAM-associated protein (SAP) is recruited to the 

SLAMF6 cytoplasmic tail (12, 21, 23). Upon engagement of SLAMF6, the ensuing 

signaling induces both cooperation between T follicular helper cells and germinal center 

B cells (18), as well as interactions between cytotoxic T-cell and B-cell targets (23). This 

process is dependent upon the presence of SAP. By contrast, in the absence of SAP, 

SLAMF6 negatively regulates both processes by recruiting the tyrosine phosphatases 

SHP1 or SHP2 to its cytoplasmic tail.   

 

Because B cells do not express SAP, we previously hypothesized that triggering 

SLAMF6 would negatively regulate B-cell responses. Indeed, monoclonal antibodies 
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13G3 and 330 directed against mouse SLAMF6 (24) react with TCL1-192 cells, a CD5+ 

(chronic lymphocytic leukemia) CLL B-cell clone that had been transferred into SCID 

mice (25, 26).  One injection of the antibody limits the expansion of TCL1-192 due to 

antibody-dependent cellular cytotoxicity (ADCC) and downregulation of B-cell receptor 

(BCR) signaling (26). Based on these observations, we then hypothesized that 

antibodies directed against SLAMF6 should also impact the immunomodulatory action of 

cytotoxic T cells that respond to E-TCL1 CLL cells. Here, we showed that anti-SLAMF6 

increases the CD8+ T-cell responses to CLL, resulting in a significantly reduced 

proportion of exhausted cytotoxic T lymphocytes (CTLs). We also demonstrated that 

anti-SLAMF6 not only arms CD8+ T cells in B-cell leukemias but also non-hematopoietic 

solid tumors like B16 melanoma, where the tumors do not express SLAMF6. Thus, anti-

SLAMF6 increases CTL responses to and affects expansion of both the leukemic cells 

and solid tumors. 

 
 
Materials and Methods 

 

Mice 

C57BL/6J (B6) wild-type (WT) mice were obtained from the Jackson Laboratory. E-

TCL1 mice (25) were kindly provided by Dr. Amy Johnson (Ohio State University, 

Columbus, OH).  SLAMF6–/– B6 mice were generated from Bruce4 ES cells (27). SAP–/– 

mice were generated as described elsewhere (28). All animals were maintained under 

specific pathogen-free conditions at the Beth Israel Deaconess Medical Center (BIDMC) 

animal facility. Experiments were performed in accordance to the guidelines and with the 

approval of the Institutional Animal Care and Use Committee (IACUC) at BIDMC. 

 

CLL cells 

Frozen peripheral blood mononuclear cells (PBMCs) provided by Dr. Jan Burger at the 

MD Anderson Cancer Center were used for all experiments. Information on patient 

samples is provided in Supplementary Table S1. Written patient consent for samples 

used in this study was obtained in accordance with the Declaration of Helsinki on 

protocols that were approved by the Institutional Review Board at the Beth Israel 

Deaconess Medical Center (BIDMC) and at the MD Anderson Cancer Center.  

 

In vitro stimulation of human CLL cells 
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Briefly, frozen CLL PBMCs were thawed, washed, and resuspended in RPMI-1640 

(Gibco) + 10% fetal bovine serum (FBS) + 1X penicillin/streptomycin (Gibco) + 1X L-

glutamine (Gibco). This same medium was used in all in vitro experiments. 50-100,000 

Cells were either left unstimulated or stimulated with goat anti-human F(ab’)2 IgM (20 

g/mL; MP Biomedical, Santa Ana, CA) alone, together with 1 M ibrutinib (ChemieTek, 

Indianapolis, IN) or anti-human SLAMF6 (10 g/mL;(Biolegend)), or in combination with 

both. Cells were cultured for 24 and 48 hours, and viability was determined by 

AnnexinV/Propidium Iodide (Biolegend, San Diego, CA) staining by BD LSRII flow 

cytometry. 

 

Degranulation was assessed in a 96-well U-bottom plate coated with anti-CD3 (5g/mL; 

OKT3, BioXcell) and anti-CD28 (5g/mL; CD28.2, Biolegend). Some wells were also 

coated with anti-human SLAMF6 (5g/mL; NT-7, Biolegend) or mouse IgG2b isotype 

control (5g/mL, Biolegend). CLL B cells were isolated from PBMCs by using CD19 

microbeads (Miltenyi Biotec), and the remaining cells were plated as 2.5 x 105 cells/well. 

Cells were then stimulated in the presence of 2μL of anti-CD107a. After 30 minutes at 

37°C and 5% CO2, brefeldin A (1:1000, BD Biosciences) was added and incubation 

continued for 4 hours. Cells were washed twice with cold PBS and stained for 

extracellular markers for 30 minutes at 4°C in FACS-staining buffer (PBS, 1% 

BSA(Sigma-Aldrich), 2 mM EDTA). After two washes, cells were resuspended in FACS-

staining buffer and analyzed by using a Cytoflex cytometer (Beckman Coulter). Data 

were analyzed by using Cytexpert software (Beckman Coulter). Antibodies used for 

these experiments are listed in Supplementary Table S1. 

 

In vitro T-cell exhaustion 

Fresh PBMCs were obtained from 5 healthy donors who provided written consent for the 

study (Beth Israel Deaconess Medical Center). The Lymphoprep® separation kit (Stem 

Cell Technologies) was used to isolate PBMCs from whole blood. Cells were then 

washed with PBS and counted. 96-well plates were coated with anti-CD3 and anti-CD28 

(1 g/mL each), and cells were plated at 2.5x105 cells/well in RPMI medium. Every two 

days, cells were re-suspended, washed, and transferred to a new 96-well plate coated 

with the same concentration of anti-CD3 and anti-CD28.  On day 8, cells were collected 
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and checked for exhaustion markers via flow cytometry and degranulation assays were 

performed with isotype or anti-human SLAMF6 (5 g/mL), as explained above.  

 

The in vivo E-TCL1 adoptive transfer model 

Fresh or frozen splenocytes (15-20 x106 per mouse) from 12-14 month-old leukemic E-

TCL1 mice were injected intraperitoneally (i.p.) into 8-12 week-old B6 WT or SLAMF6–/– 

recipients. Mice were irradiated at 400 Rad prior to leukemic transplantation. For 

experiments involving anti-SLAMF6 or isotype injections, mice were bled via tail vein bi-

weekly for 4 weeks after transfer. When leukemic burden (%CD19+CD5+) reached 20-

40% in blood, mice were randomized and injected i.p. with 200 g/mouse anti-mouse 

SLAMF6 (13G3)(18)(anti-SLAMF6 is an agonistic antibody that can induce positive or 

negative signaling depending on recruitment of its adaptor SAP or SHP1/2 on its 

cytoplasmic tail) or mIgG2a isotype control (Clone C1.8, BioXCell, West Lebanon, NH) 

(n=16 for each group). Mice were injected a total of 3 times, bi-weekly, and were 

euthanized one week after the third injection. Cells from the peritoneal cavity (PerC) 

were collected by flushing 10 mL PBS + 2%FBS and subsequent drawing of the fluid 

from the PerC. Bone marrow cells were flushed from the femurs with 5 mL PBS + 

2%FBS. Single-cell suspensions were prepared from spleen and red blood cells (RBC) 

were removed by RBC lysis buffer (Sigma, St. Louis, MO). Serum was obtained by 

centrifugation at 8,000 x g for 10 minutes at room temperature (RT). 

 

B16-OVA melanoma 

The B16-OVA cells were kindly donated and authenticated by Dr. James Mier (Division 

of Hematology / Oncology at the Beth Israel Deaconess Medical Center).  The cells were 

cultured in RPMI medium with 10% FBS and during the expansion phase, 105 B16-OVA 

cells were injected subcutaneously into each B6 WT mouse. Eight days post-injection, 

100 g/mouse anti-SLAMF6 or isotype control was i.p. injected and tumor volume was 

monitored daily by measuring 3 diameters using a caliper. On day 15, mice were 

euthanized, solid tumors extracted and lymphocytes isolated by digesting the tumors 

with collagenase IV (Gibco) for 30 minutes at 37°C (29). 

 

Flow Cytometry 

Antibodies used for flow cytometry are listed in Supplementary Table S2. Surface 

staining was done by first incubation with 20% rabbit serum (Rockland 
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Immunochemicals) + Fc block (Biolegend) for 10 minutes at RT and the prepared 

antibody cocktails were incubated with cells for 30 minutes at 4oC. Samples were 

washed twice with FACS buffer (PBS+ 2% FBS) and analyzed on a five-laser BD LSRII 

analyzer (BD Biosciences, Oxford, UK). Viable cells were gated as diaminidino-2-

phenylindole (DAPI)(Thermo Fisher) negative and doublets were excluded. Results were 

analyzed by FlowJo software (Ashland, Oregon). 

 

Identification of cytotoxic CD8+ T cells 

Fresh splenocytes isolated from mice were cultured with phorbol myristate acetate 

(50ng/mL; PMA) and ionomycin (Sigma-Aldrich)(1g/mL) for 4 hours in the presence of 

brefeldin A (1 l/mL) at 37oC with 5% CO2. After 4 hours, cells were washed twice with 

PBS, and cells were stained for CD3 and CD8, as mentioned in flow cytometry section. 

Next, cells were fixed and permeabilized using BD Cytofix/Cytoperm kit, according to 

manufacturer’s protocol and intracellular staining for granzyme B, IFN, and IL2 were 

performed. For CD107a staining, the antibody was added to the culture in the beginning 

for cell surface staining of CD107a upon degranulation, as described above. 

 

Histology 

Liver sections were harvested at the end of the experiment and were fixed in 10% 

formalin and stained with H&E at the BIDMC histology core. Assessment was done by 

Dr. Atul Bahn at MGH. 

 

Statistical Analysis 

Statistics for normally distributed mouse data sets were done by unpaired Student t test, 

whereas for non-normally distributed sets, two-sided Mann Whitney U test was used. For 

human CLL data, nonparametric Wilcoxon signed-rank test was used. Values reported 

as mean ± SD, and analyses were carried out using GraphPad Prism (La Jolla, CA). 

 
 
Results 
 
Exhausted PD1+CD8+ T cells in SLAMF6–/– B6 mice responding to TCL1-CLL cells  

To assess the role of SLAMF6 on the expansion of murine CLL cells, we transferred 

SLAMF6+ E-TCL1 into irradiated SLAMF6–/– or WT B6 mice. When recipient mice were 

euthanized 35 days post- transfer, no significant difference in spleen size or total number 
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of splenocytes was detected (Supplementary Fig. S1A-B). As judged by the 

percentage of CD19+CD5+ TCL1 cells among lymphocytes in spleen, blood, peritoneal 

cavity (PerC), and bone marrow, leukemic infiltration was unaffected by the absence of 

SLAMF6 interactions in the tumor microenvironment (Supplementary Fig. S1C). No 

difference in the percentages of CD3+ T cells (CD3: 6.1±0.2 vs. 7.5±0.6%) was observed 

between the two strains of recipient mice (Supplementary Fig. S1D). SLAMF6 was 

expressed at comparable levels among T-cell subsets from WT recipients 

(Supplementary Fig. S2A-B). 

 

The spleens of SLAMF6–/– recipients harbored significantly increased numbers (1.2±0.4 

x106 vs. 1.7±0.2 x105, p<0.0001) and proportions (4.5±0.7 vs. 13.1±3, p=0.0019) of PD-

1+CD3+CD44+CD8+ antigen-experienced T cells compared to WT mice (Fig. 1A). 

Because this suggested that the presence of SLAMF6 could negatively regulate CD8+ T-

cell exhaustion, we assessed relevant effector functions. The CTL effector functions of 

CD8+ T cells isolated from SLAMF6–/– recipients were impaired, as measured by 

CD107a (23.2±3.3 vs. 18.5±0.7%, ns), and intracellular granzyme B (41.9±2.5 vs. 

28±1.7%, p=0.002) and IFN(46.5±0.9 vs. 38.2±1.8%, p=0.003), whereas IL2 

production remained unchanged (Fig. 1B-C). An increase in CD8+ T cells was reflected 

by a diminished CD4+/CD8+ ratio in SLAMF6–/– mice as compared to the WT recipients 

(CD4+/CD8+ ratio 1.7±0.12 vs. 2.2±0.18, p=0.04)(Fig. 1D). Within CD4+ and CD8+ T-cell 

subsets, there was no significant shift in naïve (CD62L+CD44–) and effector/memory 

(CD62L–CD44+/CD62L+CD44+) subsets (Fig. 1E-F).  

 

It is well recognized that in T-cell SAP is recruited to the cytoplasmic tail of SLAMF6 

upon SLAMF6-SLAMF6 ligation, followed by initiation of a SLAMF6-related signaling 

network (23). To test whether SAP signaling was essential for expansion of exhausted 

CD8+ T cells, we transferred TCL1 cells into irradiated WT and SAP–/– mice. We found 

no changes in leukemic burden (Supplementary Fig. S3A) or in the abundance of 

exhausted T cells in the absence of SAP (Supplementary Fig. S3B-D), suggesting that 

the PD-1+CD8+ response to TCL1 is SAP-independent. Taken together, these findings 

suggest that expression and signaling through SLAMF6 negatively controls expansion of 

PD-1+CD44+CD8+ T cells and subsequent T-cell exhaustion in recipients of E-TCL1 

CLL cells. 
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 Anti-SLAMF6 limits expansion of adoptively transferred E-TCL1 CLL cells  

To evaluate whether anti-SLAMF6–induced signaling would have an effect on T-cell 

responses and leukemic expansion, we transferred tumor-bearing splenocytes from E-

TCL1 mice into WT mice. When TCL1 cell infiltration in the blood approached 20-40%, 

mice were randomized into one of two groups to receive once a week i.p. anti-SLAMF6 

or IgG2a isotype control (Fig. 2A). One week after the third injection, the recipient mice 

were sacrificed and analyzed for expansion of the transferred E-TCL1 CLL cells. 

Spleen weight and the total number of splenocytes of anti-SLAMF6–injected recipient 

mice were significantly reduced compared to isotype control mice (Fig. 2B-C, left 

panel)(spleen weight 0.95±0.04 vs. 0.38±0.1g, p=0.003, total splenocytes 6.1±1.03x108 

vs. 0.74±0.16x108, p<0.0001). Leukemic cell infiltration in the spleen was also 

significantly reduced, as judged by the percentage of CD19+CD5+ lymphocytes (79.7±1.7 

vs. 37.3±5.1% p<0.0001)(Fig. 2C, right panel). Consistent with this,anti-SLAMF6–

treated recipient mice exhibited a significantly reduced number of TCL1 cells in the blood 

(73.4±2.3 vs. 38.5±3.8%, p<0.0001) and infiltrating the bone marrow (5.5±1.3 vs. 

0.9±0.1%, p<0.0001)(Fig. 2D). Administering anti-SLAMF6, as judged by H&E staining, 

also diminished tumor infiltration in the liver (Fig. 2E). E-TCL1 CLL cells in the spleen 

and blood of anti-SLAMF6–injected mice appeared significantly more pro-apoptotic 

compared to isotype-injected mice, as measured by percentage of AnnexinV+ TCL1 cells 

(Fig. 2F). We concluded that leukemic cell expansion and viability were significantly 

reduced by administering anti-SLAMF6 to E-TCL1 CLL cell-bearing B6 mice. 

 

Anti-SLAMF6 reduces the number of exhausted CD8+ T cells 

Administeringanti-SLAMF6 to E-TCL1 CLL-bearing WT mice caused a shift among 

splenic CD8+ T cells from naïve (CD62L+CD44–) to antigen-experienced effector memory 

(eff/mem, CD62L+CD44+) phenotype (naïve 30.5±4.1 vs. 14.5±3.1%, p=0.02; eff/mem 

45±5 vs. 64.8±4.3%, p=0.02)(Fig. 3A). This shift in CD8+ T-cell subsets was also 

observed in the blood (naïve 30.6±3.7 vs. 8.9±2.6%, p=0.0008, eff/mem 54.9±4.5 vs. 

80.8±3.9%, p=0.001)(Fig. 3B). This increase in the percentage of CD8+ T cells resulted 

in an increased proportion of CD3+ T cells in the spleen and blood (spleen: 6.6±0.7 vs. 

15.3±2.3%, p=0.0002; blood: 7.6±0.9 vs. 17.4%, p=0.01) of anti-SLAMF6–treated tumor 

recipients (Fig. 3C).  This was also reflected in a significantly reduced CD4+/CD8+ ratio 

in the spleen of anti-SLAMF6–injected mice (spleen: 1.18±0.1 vs. 0.74±0.17, p=0.04) but 

not in the blood (blood: 0.68±0.06 vs. 0.61±0.2)(Fig. 3D). CD4+ T-cell subsets, i.e. 
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CD62L+CD44– or CD62L+CD44+, were not affected by the anti-SLAMF6 

(Supplementary Fig. S4).  

  

Because exhausted CD8+ T cells display a loss of effector function in CLL patients (1), 

we further analyzed the in vivo effect of anti-SLAMF6 on CD8+ T-cell exhaustion. The 

percentage of activated CD3+CD44+CD8+ T cells in the spleen that expressed the well-

known marker PD-1 in the anti-SLAMF6–injected group during the response to TCL1 

cells was significantly lower compared to that in isotype control mice (3.1±0.5% vs. 

11.7±1.6, p=0.0002)(Fig. 4A, left panel), and the absolute number of 

PD1+CD3+CD44+CD8+ T cells was also reduced in the spleen (0.1±0.03 vs. 0.6±0.1 x106, 

p=0.0003)(Fig. 4A, right panel). This effect of anti-SLAMF6 was also observed in the 

blood (5±1 vs. 11.1±1.2%, p=0.001)(Fig. 4B). In addition to PD-1, the proportion of 

CD3+CD44+CD8+ T cells expressing additional markers of exhaustion, CD160, LAG3, 

and KLRG1, was also significantly reduced in the spleen after injection ofanti-SLAMF6 

(Fig. 4C).  

 

To test whether the phenotypical changes in the exhausted CD8+ T-cell compartment of 

anti-SLAMF6-injected mice correlated with an increase in effector functions, splenocytes 

isolated from anti-SLAMF6–injected mice were in vitro stimulated with PMA/ionomycin in 

presence of brefeldin A for 4 hours. Intracellular staining of CD8+ T cells showed 

significantly increased lysosomal CD107a (6.7±0.3 vs. 8.8±0.50%, p=0.003) and 

granzyme B (14.3±0.6 vs. 21.8±1.5%, p=0.001)(Fig. 4D), and  IFN (35.5±2.9 vs. 

46.8±1.7%, p=0.003) and IL2- (8.7±0.9 vs. 12±0.5%, p=0.009) expressing CD8+ T cells 

were significantly increased (Fig. 4E). From these data, we concluded that SLAMF6 is a 

negative checkpoint inhibitor, which restricts CD8+ T-cell exhaustion in response to 

murine CLL cells.  Consequently, signaling induced by anti-SLAMF6 reduced the 

number of exhausted CD8+ T cells, which unleashes CTL responses against leukemic 

cells.  

 
Reduction of TCL1 cells in the PerC of anti-SLAMF6–treated B6 mice  

Previously, we have shown that anti-SLAMF6 fails to reduce the leukemic burden in the 

PerC of SCID mice into which the aggressive CLL clone TCL1-192 had been transferred 

(26). Upon administering anti-SLAMF6, a significantly reduced number of leukemic cells 

(3.1±0.68 vs. 1.1±0.26 x107, p=0.01), as well as a significantly reduced percentage of 

on August 24, 2020. © 2019 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on July 17, 2019; DOI: 10.1158/2326-6066.CIR-18-0664 

http://cancerimmunolres.aacrjournals.org/


leukemic engraftment (91.4±1.1 vs. 79.8±2.7%, p=0.001), was found in the PerC of WT 

recipients of E-TCL1 cells (Fig. 5A). Similar to leukemic cells in spleen and blood, 

TCL1 cells residing in PerC of anti-SLAMF6–injected mice were significantly more pro-

apoptotic compared to isotype-injected recipients (Fig. 5B).  

 

Knowing that ADCC does not work in the PerC (30), we speculated that this reduction in 

leukemic engraftment might be due to activation of T cells We found that the percentage 

of T cells had increased (1.5±0.3 vs. 2.8±0.4%, p=0.09) and the CD4+/CD8+ ratio had 

decreased in anti-SLAMF6-injected mice compared to the control group, although it did 

not reach statistical significance (Fig. 5C). Although we did not find a change in CD4+ T-

cell subsets (Supplementary Fig. S4), we found a shift from naïve to effector/memory 

phenotype in CD8+ T cells in PerC of anti-SLAMF6–injected mice (naïve 38.7±4.1 vs. 

11.8±2.04%, p=0.0004, eff/mem 52.5±4 vs. 75.8±1.9, p=0.0009)(Fig. 5D). These 

activated CD8+ T cells seen in the PerC with anti-SLAMF6 treatment led to increased 

frequency of PD-1 expression (percentage: 9.5±1.1 vs. 3.6±1.9%, p=0.03; absolute 

number: 1.7±0.4 vs. 0.5±0.3 x104, p=0.09)(Fig. 5E). Because PD-1 expression can be 

correlated with either activation or exhaustion, it is plausible that the increase in PD-

1+CD8+ T in the PerC may be a sign of activation at the time of analysis. In conclusion, 

as a single agent, anti-SLAMF6 not only reduced leukemic burden and engraftment in 

spleen, blood, and bone marrow but also in the PerC through activation of cytotoxic 

CD8+ T cells. 

 
Administering anti-SLAMF6 prevents expansion of B16 melanoma tumors 

Although SLAMF6 expression is restricted to hematopoietic cells, we next asked 

whether anti-SLAMF6 could also empower the CTL response against non-hematopoietic 

tumors. To this end, we subcutaneously transplanted SLAMF6-negative B16 melanoma 

cells into B6 WT mice. Eight days post transplantation, mice were injected i.p. with 

100g/mouse anti-SLAMF6 or isotype control. Tumor volume was monitored daily, and 

mice were euthanized on day 15 for analysis of tumor-infiltrating lymphocytes (TILs)(Fig. 

6A). As measured by solid tumor weight, mice injected with anti-SLAMF6 had 

significantly smaller tumors compared to isotype controls (0.8±0.2 vs. 0.25±0.07, 

p=0.01)(Fig. 6B). Upon analysis of CD45+ lymphocytes in the tumor, we found 

significantly less percentages of CD8+PD-1+ TILs in anti-SLAMF6–injected mice 

compared to isotype control, suggesting activation of CD8+ T cells in the tumor (11.3±1.6 
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vs. 2.9±1.03, p=0.004)(Fig. 6C). These findings suggest that anti-SLAMF6 is not only 

applicable to B-cell tumors but also to other cancer types. 

 
Anti-human SLAMF6 increases degranulation of exhausted CD8+ T cells  

Next, we wanted to test whether our findings using anti-mouse SLAMF6 on exhausted 

CD8+ T cells could also be observed using a human monoclonal antibody. To do this, we 

chronically stimulated PBMCs with anti-CD3/anti-CD28 three times, and on day 8, 

generated exhausted CD8+ T cells in vitro from healthy donors. Compared to freshly 

isolated PBMCs, we found significantly increased CD8+PD1+ T cells with chronic 

stimulation (Fig. 7A). We then checked the effect of mouse anti- human SLAMF6 

(mhSLAMF6) on degranulation capacity of fresh and exhausted CD8+ T cells. Cells 

were stimulated in vitro with anti-CD3 and anti-CD28 along with isotype or anti-

hSLAMF6 for 4 hours and degranulation was measured by CD107a staining. Comparing 

fresh and exhausted CD8+ T cells receiving isotype antibody showed significantly 

reduced degranulation capacity in exhausted CD8+ T cells compared to fresh cells (Fig. 

7B, left). Although mhSLAMF6 had no effect on degranulation of fresh CD8+ T cells, it 

significantly increased degranulation of exhausted CD8+ T cells (Fig. 7B, middle and 

right). This suggested that signaling through SLAMF6 may be altered in exhausted T 

cells and could be reversed using a monoclonal antibody. 

 

Anti-human SLAMF6 affects CD8+ T cells from CLL patients  

To begin to translate our results for therapeutic purposes, we set up in vitro experiments 

with a humanized anti-human SLAMF6 (hSLAMF6). First, we tested the capacity of the 

antibody on CD8+ T cells of CLL patients. When T cells were stimulated in vitro with anti-

CD3/anti-CD28 in the presence of isotype or hSLAMF6 for 4 hours, CD8+ T cells had 

significantly increased degranulation capacity with hSLAMF6 treatment, as judged by 

CD107a staining (Fig. 7C). Degranulation from CD8+ T cells of CLL patients was 

comparable to that of exhausted T cells generated in vitro from healthy donors (Fig. 7A-

B), suggesting that exhausted CD8+ T cells could be activated through a SLAMF6 

signaling–related mechanism.  This also demonstrated that the effect of anti-human 

SLAMF6 appears to be comparable irrespective of the Fc being mouse or human.  

 

Because we know that SLAMF6 has an effect on BCR signaling, we determined the 

viability of human CLL cells with hSLAMF6 in the presence of and in combination with 
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ibrutinib. PBMCs from IGHV-unmutated CLL patients with varying levels of IgM surface 

expression (Supplementary Table S1). Ibrutinib alone served as a positive control for 

the system, as its interference with BCR-induced survival in vitro is well-established (31). 

CLL cells were either stimulated with anti-human IgM or left unstimulated, and ibrutinib, 

anti-hSLAMF6, or both were added to the cells. CLL viability was determined as 

percentage of AnnexinV/PI-negative cells, 24 or 48 hours after stimulation (Fig. 7D). We 

found that upon BCR stimulation, addition of anti-hSLAMF6 alone reduced viability to 

comparable levels as those of ibrutinib, and this was enhanced if the two were 

combined, suggesting that the improved effect of combining anti-SLAMF6 and ibrutinib 

we observed in vivo also applies to human CLL cells in an in vitro setting. 

 

 

Discussion 

Overcoming immune evasion, a phenomenon by which pathogens and cancer cells 

escape the host immune system, is being actively pursued to identify immune 

checkpoints for therapeutic targeting. Chief among the successfully exploited 

mechanisms is the well-characterized PD1/PD-L1 axis. Blockade of this pathway has 

proven to be effective in solid tumors, as well as hematologic malignancies (8,9). 

 

CLL is well known to generate impaired immune responses in the host, with the 

malignant clone residing in well-vascularized tissues and circulating in peripheral blood 

but also in close proximity to effector cells that are capable, if activated appropriately, of 

carrying out a cytotoxic response. Defective T-cell responses have been observed in 

CLL patients, including imbalance of T-cell subsets, inability to form immune synapses 

between CLL B cells and T cells, increased expression of inhibitory receptors (e.g. PD-1, 

CD160, LAG3), and loss in proliferation and cytotoxic capacity (2,3,7,32,33). These, in 

turn, result in ineffective antitumor responses. Thus, treatment protocols are based on 

agents with the ability to generate an immune response e.g., anti-CD20, checkpoint 

inhibitors, or cellular therapies (34). 

 

Currently, the most effective method of studying the tumor microenvironment is through 

the use of murine models (35). In this study, we employed the E-TCL1 adoptive 

transfer model to assess the relevance of SLAMF6 in the murine CLL microenvironment 

and the usefulness of targeting this receptor with a monoclonal antibody to SLAMF6 to 
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improve its therapeutic action on leukemic cell expansion and enhance CD8+ T-cell 

functions. When E-TCL1 leukemic cells were made to reside in a tumor 

microenvironment that lacks SLAMF6, i.e. the SLAMF6–/– mouse, we observed an 

expansion of a PD-1+ subset of CD3+CD44+CD8+ T cells with reduced cytotoxic 

functions. This supports the concept that SLAMF6-SLAMF6 interactions, and possibly 

intracellular signaling initiated from this interaction, are important in the development of 

CD8+ T-cell functions. 

 

This concept was further supported by the outcomes of our experiments with anti-

SLAMF6, which in vivo reduced the leukemic burden in the E-TCL1 adoptive transfer 

model. Administering anti-SLAMF6 reduced the number and proportion of 

PD1+CD3+CD44+CD8+ T cells concomitantly with an increase in cytotoxicity, as 

determined by expression of CD107a and granzyme B.  Possible reasons for reduction 

in exhausted PD1+CD8+ T cells include induction of ADCC and/or downregulation of PD-

1 from the cell surface after SLAMF6 ligation. SLAMF6 serves as a co-stimulatory 

receptor in T cells and recruits SAP to its cytoplasmic tail. We found no effect of SAP 

deficiency in this system when murine CLL cells were transferred into SAP–/– mice. This 

suggests that our findings are independent of SAP, but whether there is a direct link 

between SLAMF6 and PD-1 signaling needs further investigation. 

 

The change in the CD4+/CD8+ T-cell ratio appears to be associated with CLL 

progression (1,5,36,37). This association is complemented by the findings that both 

CD4+ and CD8+ T cells acquire a PD-1+ phenotype that is associated with their inability 

to perform effector functions (5,7,36-38). Although the shift in the CD4+/CD8+ ratio 

appeared to be inverted in our system, anti-SLAMF6 was able to restore the phenotype 

and functions of exhausted CD8+ T cells, which would support the notion that exhausted 

T cells need to be re-activated within suppressive tumor microenvironment for antitumor 

immunity. Thus, empowering CD8+ T-cell effector functions adds to the ability of anti-

SLAMF6 to control disease by removing the CLL cells by ADCC and downregulating 

BCR signaling.  

 

This dual activity of anti-SLAMF6 is in contrast with the mechanism by which anti-CD20 

and ibrutinib control CLL in patients (34) Primarily, anti-SLAMF6 induces activation of 

ADCC mediated by engagement of antibody Fc portion with Fc receptors on 
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macrophages and NK cells (26). Secondly, signaling of SLAMF6 in CLL B cells reduces 

proximal BCR signaling and survival in both murine and human models. Lastly, antibody 

binding to SLAMF6 on the surface of T cells causes reduction in the number of PD-

1+CD3+CD44+CD8+ T cells and results in increased effector functions of remaining CD8+ 

T cells. This finding of the anti-SLAMF6 applies to other models as well. Previously, our 

lab demonstrated that injections of anti-SLAMF6 inhibit antibody responses in an 

immunization model (24). Inhibition of antibody production coincides with our finding that 

anti-SLAMF6 reduced BCR signaling, thus survival of B cells. We also found that i.p. 

injection of anti-SLAMF6 to subcutaneously growing B16 melanoma cells significantly 

reduced the tumor growth. Because melanoma cells do not express SLAMF6, this was 

through the reduction in the percentage of PD1+CD8+ T cells that infiltrated the tumor, 

suggesting activation of T-cell responses. This suggests that there is a selection by the 

antibody towards the PD-1+ subpopulation in activated CD8+ T cells and this was 

irrespective of the disease model used.  

 

To confirm relevance of our findings in the mouse models, we used both CLL CD8+ T 

cells, as well as generated exhausted CD8+ T cells in vitro, and demonstrated that anti-

human SLAMF6 increased degranulation of these exhausted cells. In these short 

cultures, it was not possible to dissect the effect of antibody on numbers of exhausted 

CD8+ T cells. It was previously shown that SLAMF6 partakes in re-stimulation–induced 

cell death (RICD) involving interactions through SAP and LCK (39). It is also possible to 

think that anti-SLAMF6 and anti-hSLAMF6 induced RICD in exhausted CD8+ T cells in 

our models. 

 

Recently Ayers and colleagues (40) identified IFN–related gene expression profiles that 

could predict response to PD-1 checkpoint blockade in variety of tumor types. Starting 

with 19 and validating in 62 melanoma patients, a “preliminary expanded immune” 28-

gene set correlating with IFN signatures was identified. One of these genes was 

SLAMF6. IFN signaling is known to associate with a T cell–inflamed microenvironment 

that responds to anti–PD-1 therapy. This may be a platform to test combination of anti-

SLAMF6 together with anti–PD-1 for a better T-cell response against various tumors. 

 

We found that the leukemic burden and infiltration of E-TCL1 cells in the PerC was 

lowered by anti-SLAMF6. Leukemic cells, as well normal B cells, show different 
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characteristics when they are in the PerC or in the spleen, and one idea is that the PerC 

is a hypoxic niche that favors adhesion and growth of tumors (41-44). We previously 

demonstrated no ADCC effect of anti-SLAMF6 in PerC in a T cell–independent system, 

similar to that observed with anti-CD20 injections (26, 30). Although the ADCC function 

of an antibody is eliminated in this niche due to the microenvironment, signaling through 

SLAMF6 in T cells was able to reduce tumor infiltration. Anti-SLAMF6 was selectively 

targeting PD-1+CD3+CD44+CD8+ T cells in the spleen and blood and possibly induced 

their killing by ADCC. However, because the antibody was unable to induce ADCC in the 

PerC, it enriched for PD1+CD8+ T cells. This suggests that there is a correlation between 

PD-1 and SLAMF6 signaling and understanding the mechanisms behind this may be 

relevant therapeutically. PD-1 contains a cytoplasmic tail with an ITSM that binds SHP1 

and SHP2, similar to that in SLAMF6 (45-47). There may be a competition for binding of 

SHP1/2 that, in turn, dictates the responses from T cells. Understanding these niche-

dependent changes to tumor killing is important, as there may be niches in the human 

body that are not accessible for certain type of treatments. 

 

Peritoneal metastases of ovarian, pancreatic, gastric, and colon cancers are common, 

and in most cases are of poor prognosis and survival rate if left untreated (48-51). 

Targeting and treatment of peritoneal tumors remain a challenge due to delivery, 

pharmacology, and efficacy (51).  Regional chimeric antigen receptor (CAR) T-cell 

infusion for peritoneal carcinomatosis has shown to be effective, suggesting that the 

regional activation of T cells is important in clearing of tumors in the peritoneum (52, 53). 

It would be of interest to test in different models of peritoneal tumors whether targeting 

SLAMF6 could play a role in clearing these tumors. 

 

Overall, besides the ability of anti-SLAMF6 to induce ADCC, improvement in effector 

CD8+ T-cell responses makes SLAMF6 an intriguing candidate for therapy as it appears 

to not only work on tumors in secondary lymphoid organs and the peripheral blood but 

also in hypoxic niches like the PerC or in solid tumors. We propose that anti-SLAMF6 

alone or in combination should further be explored in B-cell leukemias and lymphomas in 

a clinical setting.  
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Figure Legends 

 

Figure 1. Expansion of TCL1 cells upon transfer into SLAMF6–/– mice coincides 

with reduced effector functions and increased exhaustion of CD8+ T cells. 

Splenocytes from E-TCL1 mice [15-20 x106 ] were transferred into irradiated (4 Gy) WT 

(n=9) or SLAMF6–/– (n=9) mice, and after 35 days the recipient mice were sacrificed for 

analysis by flow cytometry. (A) Left panel: Representative plots of PD1+CD3+CD44+CD8+ 

T cells from the spleen of WT and SLAMF6–/– recipient mice. Right Panel: Percentage 

and numbers of PD1+CD3+CD44+CD8+ T cells from the spleen. (B) Fresh total 

splenocytes from WT and SLAMF6–/– injected mice were cultured with PMA/ionomycin 

for 4 hours in the presence of brefeldin A. After cell surface staining with CD3 and CD8, 

cells were fixed and permeabilized for intracellular staining. CD107a antibody was added 

to the culture in the beginning. CD107a and granzyme B were a measure of cytotoxic 

capacity of CD8+ T cells from WT and SLAMF6–/–. (C) IFN and IL2 as a measure of 

effector function of CD8+ T cells in WT vs. SLAMF6–/– groups. (D) Splenocytes were 

stained for CD3, CD4, CD8, CD44, and CD62L. Dead cells were excluded as DAPI-

negative. CD3+, CD3+CD4+, CD3+CD8+ T-cell percentages in the spleen were compared 

between WT and SLAMF6–/– mice. (E) Naïve (CD62L+CD44–) and effector/memory 

(Eff/Mem, CD62L–CD44+, CD62L+CD44+) subsets as percentage of CD3+CD8+ T cells in 

the spleen of WT and SLAMF6–/– mice. (F) Naïve and effector/memory, subsets as 

percentage of CD3+CD4+ T cells in the spleen of WT and SLAMF6–/– mice. The data 

from two independent experiments were pooled.  Statistical analyses used the two-sided 

Mann Whitney U test. All graphs depict the mean±SD. P values are as shown. 

 

 

Figure 2.  Injection of mouse anti-mouse-SLAMF6 effectively limits in vivo 

expansion of TCL1 CLL cells in WT [B6] mice. 

Splenocytes [15-20x106 ] isolated from E-TCL1 mice were transplanted into WT [B6] 

mice. When the leukemic burden reached 20-40% in the blood, anti-mouse-SLAMF6 IgG 

(13G3) (200 g/mouse; n=16) or mouse isotype (IgG2a) control (n=16) was injected. 

After a total of three bi-weekly injections, mice were euthanized and analyzed, as 

schematically outlined in Fig. 2A.  (B) Representative spleen pictures and spleen 

weights. (C) Total number of splenocytes and leukemic cell infiltration as judged by the 

percentageCD19+CD5+ TCL1 cells in the spleen of anti-SLAMF6–injected mice 
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compared to isotype-injected mice. (D) Percentages of TCL1 cells (CD19+CD5+) in blood 

and bone marrow between isotype- and anti-SLAMF6–injected groups. (E) 

Representative H&E staining from liver of isotype- and anti-SLAMF6–injected mice.  (F) 

TCL1 cells isolated from spleen and blood of the anti-SLAMF6–injected group (n=5) to 

compare apoptosis (% of AnnexinV+) to TCL1 cells from the isotype-injected group 

(n=4). The data obtained in four independent experiments were pooled. The two-sided 

Mann Whitney U test was used for statistical analysis. All graphs depict mean±SD. P 

values are as shown.  

 

Figure 3. Administering anti-SLAMF6 causes a skewing of CD8+ T cells toward a 

memory phenotype in WT mice. 

Cells from isotype- (n=12) or anti-SLAMF6 (n=11)–injected mice were stained for CD3, 

CD4, CD8, CD44, and CD62L. Dead cells were excluded as DAPI-negative. (A) Left 

panel: Representative flow cytometry plots for CD8+ T-cell subsets. Right panel: Naïve 

(CD62L+CD44–) and effector/memory (Eff/Mem; CD62L–CD44+, CD62L+CD44+) subsets 

presented as percentage of CD3+CD8+ T cells in the spleen of isotype- vs. anti-

SLAMF6–injected mice. (B) Naïve and effector/memory subsets presented as 

percentage of CD3+CD8+ T cells in blood. (C) Percentage of CD3+ T cells from the 

spleen and blood of anti-SLAMF6– or isotype-injected recipient mice.  (D) Left panel: 

Representative flow cytometry plots for CD4+ and CD8+ T cells pre-gated on CD3+ cells. 

Right panel: CD4+/CD8+ T-cell ratio in the spleen and blood between isotype- and anti-

SLAMF6–injected groups. All graphs depict mean±SD. P values are as shown. The data 

obtained in three independent experiments were pooled. The two-sided Mann Whitney U 

test was used for statistical analysis.  

 

Figure 4. In vivo administering anti-SLAMF6 reduces the number of  

PD1+CD3+CD44+CD8+T cells and improves effector functions.  

(A) Percentage and absolute numbers of PD-1+ antigen-experienced CD8+ T cells 

(CD3+CD44+CD8+) in the spleen (B) and blood after administering isotype or anti-

SLAMF6. (C) Percentages of antigen-experienced CD8+ T cells in the spleen expressing 

the exhaustion markers CD160, LAG3, KLRG1 between anti-SLAMF6– and isotype-

injected mice (n=5/group). (D) Freshly isolated total splenocytes from isotype- and anti-

SLAMF6–injected mice were cultured with PMA/ionomycin for 4 hours in the presence of 

brefeldin A. After cell surface staining with CD3 and CD8, cells were fixed and 
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permeabilized for intracellular staining. CD107a antibody was added to the culture in the 

beginning. CD107a and granzyme B were a measure of cytotoxic capacity of CD8+ T 

cells. (E) IFN and IL2 as a measure of effector function of CD8+ T cells in isotype vs. 

anti-SLAMF6 groups. The data obtained in three independent experiments were pooled 

(in A, B, D, and E). The two-sided Mann Whitney U test was used for statistical analysis. 

All graphs depict mean±SD. P values are as shown. 

 

Figure 5. Leukemic infiltration is reduced in the peritoneal cavity [PerC] of anti 

SLAMF6-injected mice, along with an increase of activated CD8+ T cells. 

(A) The total number of cells and % CD19+CD5+ TCL1 cells isolated from the PerC in 

anti-SLAMF6–injected mice compared to the isotype-injected group. (B) TCL1 cells 

isolated from the PerC of anti-SLAMF6-injected mice (n=5) to compare apoptosis (% of 

AnnexinV+) to TCL1 cells from isotype-injected mice (n=4). (C) Left panel: Percentage of 

CD3+ T cells from the PerC of anti-SLAMF6– or isotype- injected recipient mice. Right 

panel: CD4+/CD8+ T-cell ratio in the PerC compared between isotype- and anti-

SLAMF6–injected groups. (D) Naïve (CD62L+CD44–) and effector/memory (CD62L–

CD44+, CD62L+CD44+) subsets presented as percentage of CD3+CD8+ T cells in the 

PerC of isotype- vs. anti-SLAMF6–injected recipients. (E) Percentage and absolute 

numbers of PD-1+ antigen-experienced CD8 T cells (CD3+CD44+CD8+) in the PerC. The 

unpaired Student t Test was used for statistical analysis. All graphs depict mean±SD. P 

values are as shown. 

 

Figure 6. One injection of anti-SLAMF6 reduces expansion of B16-OVA melanoma 

tumors. 

B16-OVA cells (105/mouse) were injected subcutaneously into B6 WT mice, and 8 days 

after tumor inoculation, when tumors were not yet palpable, mice were randomized and 

injected i.p. with 100 g/mouse anti-SLAMF6 or isotype control. (A) Tumor growth was 

monitored daily by measuring 3 diameters until day 15. (B) Left panel: pictures of tumors 

harvested from anti-SLAMF6– or isotype-injected mice. Right panel: tumor weight. (C) 

Isolated tumor-infiltrating lymphocytes (TILs) were stained for CD45, CD8, and PD-1. 

Left panel: representative flow cytometry plots depicting CD45+CD8+PD1+ T cells. Right 

panel: CD8+PD1+ T cells as a percentage of CD45+ lymphocytes in the tumor. The data 

are representative of two independent experiments, unpaired Student t test was 

performed. All graphs depict mean±SD. P values are as shown. 
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Figure 7. Anti-human SLAMF6 increases degranulation of exhausted CD8+ T cells 

and reduces BCR signaling–mediated viability of CLL cells. 

Fresh PBMCs were obtained from healthy donors (n=5). Cells were stimulated with plate 

bound anti-CD3/anti-CD28 (1 mg/mL each). Every two days, cells were washed and 

transferred to a new plate with the same conditions for 8 days.  Day 8 comparison of 

exhaustion, measured by PD-1+ on CD8+ T cells, from cells unstimulated or chronically 

stimulated (Fresh vs. Exhaustion, respectively). (B) Left panel: Day 8 comparison of 

degranulation capacity of fresh and exhausted CD8+ T cells. Right panel: Fresh or 

Middle panel: exhausted CD8+ T cells stimulated with isotype or anti-hSLAMF6. (C) T 

cells from CLL patients (n=5) were cultured in presence of plate bound anti-CD3/anti-

CD28 (5g/mL each) along with anti-hSLAMF6 (5g/mL) or isotype control (mouse 

IgG2b) for 4 hours. CD107a was added to the cultures from the beginning. Cells were 

then stained for CD8 to measure degranulation. Left panel: representative flow 

cytometry plots for CD107a. Right panel: percentage of CD107a+CD8+ T cells under no 

stimulation or stimulation with anti-SLAMF6 or isotype control. (D) PBMCs from IGHV-

unmutated CLL patients (n=6) were cultured in presence of anti-human F(ab’)2 IgM, 

ibrutinib, and anti-hSLAMF6 or in combination for 24 and 48 hours. Viability of cells were 

measured by AnnexinV/PI staining. Representative gating is as shown. Viability of 

unstimulated wells was set to 100% as a baseline, and percentage of viability was 

calculated accordingly. Data are pooled from two independent experiments. For 

statistical analyses, nonparametric Wilcoxon signed-rank test was used. All graphs 

depict mean±SD. P values are as shown. 
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Figure 1.  

Increase of the number and proportion of exhausted PD1+CD8+ T 

cells in SLAMF6-/- B6 mice responding to TCL1-CLL cells . 
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SAC 
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Figure 2.  

Administering aSLAMF6 limits the expansion of  

TCL1 CLL cells in the spleen, liver and blood of B6 mice. 
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Figure 3.  

Anti-SLAMF6  increases the proportion of 

Effector / Memory CD8 T cells in B6 mice during the response  

to TCL1 cells. 
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Figure 4.  

Anti-SLAMF6 treatment reduces number and percentage  

of PD1+CD8 T cells in TCL1 bearing mice.  
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Figure 5.  

Leukemic infiltration is reduced in PerC of aSLAMF6 injected mice, along 

with increased activated CD8+ T cells, as compared to WT mice. 
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Figure 6.  

Administering aSLAMF6 prevents expansion of B16 melanoma 

tumors concomitantly with a reduction of PD1+ TILs 
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Figure 7.  

Anti-human SLAMF6 increases degranulation of exhausted CD8+ T 

cells from healthy and CLL patients and reduces BCR signaling 

mediated viability of CLL cells. 
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