
TECHNOLOGY AND CODE
published: 08 May 2020

doi: 10.3389/frai.2020.00029

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2020 | Volume 3 | Article 29

Edited by:

Roger B. Dannenberg,

Carnegie Mellon University,

United States

Reviewed by:

Bowei Chen,

University of Glasgow,

United Kingdom

Fabio Aurelio D’Asaro,

University of Naples Federico II, Italy

*Correspondence:

Jason Palamara

japalama@iu.edu

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 30 October 2019

Accepted: 03 April 2020

Published: 08 May 2020

Citation:

Palamara J and Deal WS (2020) A

Dynamic Representation Solution for

Machine Learning-Aided Performance

Technology. Front. Artif. Intell. 3:29.

doi: 10.3389/frai.2020.00029

A Dynamic Representation Solution
for Machine Learning-Aided
Performance Technology

Jason Palamara 1* and W. Scott Deal 2

1Department of Music and Arts Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN,

United States, 2Donald Tavel Arts and Technology Research Center, Department of Music and Arts Technology, Indiana

University-Purdue University Indianapolis, Indianapolis, IN, United States

This paper illuminates some root causes of confusion about dynamic representation

in music technology and introduces a system that addresses this problem to provide

context-dependent dynamics for machine learning-aided performance.While terms used

for dynamic representations like forte and mezzo-forte have been extant for centuries,

the canon gives us no straight answer on how these terms must be applied to literal

decibel ranges. The common conception that dynamic terms should be understood

as context-dependent is ubiquitous and reasonably simple for most human musicians

to grasp. This logic breaks down when applied to digital music technologies. At a

fundamental level, these technologies define all musical parameters using discrete

numbers, rather than with continuous data, making it impossible for these technologies

to make context-dependent decisions. The authors give examples in which this lack of

contextual inputs in music technology often leads musicians, composers, and producers

to ignore dynamics altogether as a concern in their given practice. The authors then

present a system that uses an adaptive process to maximize its ability to hear relevant

audio events, and which establishes its own definition for context-dependent dynamics

for situations involving music technologies. The authors also describe a generative

program that uses these context-dependent dynamic systems in conjunction with a

Markov model culled from a living performer–composer as a choice engine for new

music improvisations.

Keywords: music and machine learning, music and AI, dynamic representation, machine learning aided

performance, improvisation, Ableton Live, Max for Live, music technology

INTRODUCTION

As of this writing, music technologies (software and hardware) cannot perform relative dynamics,
only absolute dynamics. If a given system is set to play a tone at 0 dBFS, it will do so regardless
of context. Music technologists of many stripes, such as professional audio engineers, often adapt
methods for handling this, for instance, how professional audio engineers use the faders on a mixer
to adapt the incoming audio signals for a particular situation, given the particulars of the room,
the number of people present, and many other factors. However, music technologies do not adapt
themselves to different contexts natively, which often causes amateur or nascent users to make
mistakes leading tomany amplitude-related errors, such as feedback or the tendency tomix without
dynamic contrast (“brickwalling”) (Devine, 2013).
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Confusingly, there exists a dizzying preponderance of
methods music technologists use to represent dynamic levels
(dB Full Scale, dB Sound Pressure Level, MIDI velocities,
to name a few) (Dannenberg, 1993). These various systems,
helpful as they are in many respects, thus inveigle one of the
four fundamental properties of musical sound (volume, pitch,
duration, and timbre) in a haze of pseudo-scientific mystery.
The recent development of the LUFS and LKFS (the EBU R128
Standards, released in 2014) scales may do much to alleviate the
preponderance of complaints against the rising levels of loudness
(where the amplitude level of one piece of music is compared to
the next), but this scale will not fix a lack dynamic contrast within
a piece of music as it is being composed, mixed, or performed via
improvisational or generative technologies.

One might think that the system of dynamic representation
that has been with us for centuries would have been definitively
codified long ago, but as illuminated by Blake Patterson, many
musicians don’t follow a composer’s intent when they play to any
appreciable degree (Patterson, 1974). Moreover, much anecdotal
evidence suggests that this unfamiliarity with the various systems
for representing dynamic levels may result in a general dismissal
of the importance of one of the four fundamental parameters of
sound. As noted by Kyle Devine in his article Imperfect Sound
Forever: loudness wars, listening formations and the history of
sound reproduction, quite often, the lack of dynamics in modern
music has more to do with market-driven forces and personal
taste than with user’s technological naiveté (Devine, 2013).

Matthias Thiemel goes to admirable length to explain that,
concerning acoustic music makers, dynamics have always been
a fundamental parameter with which musicians “create meaning
and structure” (Thiemel, 2001). However, he also goes to great
length to explain that the history of the concept in music
is one that eschews a literal understanding of exact loudness
levels, in favor of an ever-adapting definition, which must
change according to the whims and predilections of the time
in which a composition is conceived. Thus, as he explains, the
dynamic fortissimo might mean one thing in an early piece of
Beethoven but means something completely different in a later
piece by the same composer. That dynamics must be understood
in the context of the composition and composer who wrote
them is largely understood by professional performing musicians
and musicologists, and this definition changes not only from
instrument to instrument, from piece to piece, and even depends
on the range of the instrument in question or the venue in which
the dynamic in question is to be played.

A professional trumpet player, upon encountering the
dynamic forte in the midst of an opera score of Puccini, may be
capable of calculating the required dynamic using some internal
concatenation of variables including the composer’s intention,
the conductor’s most recent indication, the range of the given
note, the size of the hall, and the probability of accidentally
overpowering the ensemble even though no “solo” was called for
in the score. The number of variables occurring to the player in
question will vary greatly due to a great many factors, i.e., the
maturity and experience level of the player, the cultural setting,
however, perhaps this short list will hopefully illustrate the sheer
number of factors involved in such a decision, which in this case

might result in the player in question playing the aforementioned
note with ameasurable dynamic level of 82 dB. In another setting,
the same player might play the same excerpt at 65 or 90 dB.
Dynamics would seem to be “all relative.”

For music technology, however, this malleable understanding
of musical dynamics presents a sizable problem. For instance,
if one was tasked with transcribing the composer’s handwritten
score into one of the many notation programs currently available
(Finale, in this case), the system would automatically assume
that the forte marking in question corresponds to a certain
MIDI velocity, which, when played via a digital instrument, will
have the same results every time the user hits the space bar.
In the case of Finale, a dynamic marking of forte corresponds
to a MIDI velocity of 88 (out of 128 possible values, from 0
to 127). When this velocity level reaches the digital instrument,
the dynamic will be converted into a loudness level, which is
easily definable as 88/128ths of the instrument’s total volume.
Every time this instrument plays this dynamic level, the same
volume level will be called upon to playback, no matter the
context. If a composer wants to prepare a “fixed media” score
or part for the aforementioned trumpet player, either there will
need to be another performer who will manage dynamics for
the fixed media part to provide context-appropriate dynamic
choices or the composer will tend to avoid large dynamic
contrasts altogether.

METHOD

To address the issues above, the authors here present a network
of interconnected programs, collectively called Avatar, which
may begin to fill the gap between musical technologies and
context-dependent musical dynamics (Figure 1). The system
has been designed trained to listen for a specific timbre
(the vibraphone), filtering out noise, and non-intentional
sound. This system then uses incoming amplitude levels to
establish an adaptive perceptual framework for two key musical
perception concepts, silence and the pain threshold. Finally,
the system provides context-dependent MIDI velocities and
musical dynamic representations of the audio it is hearing. These
dynamics can then be used by generative music systems to
play along and inform musical choices with context-dependent
volume levels. In performance, this system follows the dynamics
of the human vibraphone player, as a human collaborator would.
The current context-dependent dynamic system is composed of
two programs, sig2∼ (Figure 2), and dyna (Figure 3), and has
been written in the Max-for-Live language, to facilitate use by
music technologists in live performance using Ableton Live.

A third program, the AvatarPlayer (Figure 4), which will be
discussed toward the end of this section, makes use of a pitch
transition Markov model, culled from performances by a living
composer–improviser. This program takes in messages from
sig2∼ and dyna to generate context-dependent musical choices as
it plays along with live vibraphone input. A fourth program, the
AvatarMachineLoader (Figure 5), has been developed and used
by the authors to create a database of Markov transitions that are
used by the AvatarPlayer to generate new music.

Frontiers in Artificial Intelligence | www.frontiersin.org 2 May 2020 | Volume 3 | Article 29

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Palamara and Deal Dynamic Solution for Music Technology

FIGURE 1 | A schematic of Avatar’s process for establishing

context-dependent dynamics by listening to incoming audio.

Aside from the standard objects found natively in the
Max language, these programs also make use of a number of
external (added) Max objects. Most notably among these are
a number of external Max patches developed by the authors
with the prefix HIMI (Human Inclusive Musical Intelligence, a
tangentially related project), the bonk∼ object (from Puckette,
Apel, and Zicarelli, as revised by Böhm), the ml.markov object
(from Benjamin Smith’s ml.∗ machine learning for Max external
package; Smith and Deal, 2014), and a number of utility objects
from Karlheinze Essl’s RTC-lib package of externals (Essl, 1988).
With the exception of the objects from the HIMI library,
which will be included in the commercial release, these external
objects are open source or commonly available via Cycling
“74”s Max Package manager. To produce MIDI files from audio
recordings, the authors also use the Onsets and Frames audio-
to-MIDI converter from Google Magenta (Hawthorne et al.,

2017; Dinculescu et al., 2019), which may be implemented via
JavaScript, Python, or used online, and Ableton Live’s three
built-in audio-to-MIDI converters.

THE IMPORTANCE OF PERCEPTUAL
FRAMEWORKS, SILENCE, AND PAIN

The system we present begins by establishing some fundamental
perceptual frameworks extant within a human’s musical
understanding (Buettner, 1981), but which have been largely
absent from the world of musical technologies. Though John
Cage is correct in asserting that there is “no such thing as silence”
(Cage, 1992), as argued by Elizabeth Hellmuth Margulis, the
perception of silence is fundamental to our appreciation of music
in general (Margulis, 2007). Cage’s arguments aside, human
beings appreciate music not by taking in a stream of audio
and giving attention to the loudest elements, but by framing
music as what happens between a conceptual understanding
of silence (here defined as ambient sounds, incidental noises,
and unintentional sound, which does not pertain to the music
presented) and sounds that occur beyond a loosely defined
perceptual pain threshold. While the technical human pain
threshold corresponds to volume levels over 120 dB SPL,
many listeners establish a more personal definition that most
likely includes any intensity over 90 dB SPL in most contexts
(Smith, 1970). As Margulis states, silences “facilitate processing
by chunking the [musical] stream into units whose elements
pertain to one another and should be understood, evaluated,
and remembered together, by allowing time for the listener
to synthesize and reflect on the chunk that has just passed”
(Margulis, p. 5). Conversely, the perceived pain threshold
provokes the listener to avoidance, covering, or protecting their
ears, and in extreme cases, leaving a venue while the music is
still happening. These concepts are the fundamental boundaries
of human music-making, beyond which a musical performance
is apprehended as “too quiet,” “too loud,” or “painful” (Fisher,
1929). For music technologies, without an understanding of these
two fundamental concepts, there can be no context-dependent
musical dynamics (Cope, 2004; Collins, 2012).

THE SIG2∼ PROGRAM

The sig2∼ program, the first link in the context-dependent
dynamic system, begins by taking in raw audio, measuring the
maximum and minimum levels of audio levels it encounters.
In human musical performance, these definitions change over
time, and so sig2∼ changes, accordingly, adapting its minimum
(silence, noise floor), and maximum (pain threshold) throughout
the performance as a human listener might.

The HIMI.elimin8∼ object (Figure 6), developed by the
authors for a tangentially related project, is an adaptive filter
algorithm that controls a noise gate, which is here useful for
filtering ambient sound out of the incoming audio. It takes
incoming audio for a short period of time (500ms), measures
its average strength, and gates the incoming signal accordingly,
passing only signals stronger than the established noise bed
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FIGURE 2 | Sig2∼.amxd, a program that uses machine learning to establish a conceptual framework for silence and the pain threshold.

FIGURE 3 | Dyna.amxd, a program that translates MIDI velocities into various dynamic representation systems.

through (Figure 7). This process begins automatically once the
device is loaded but can be manually reset if need be. As a
human listener ignores the ambient hum of an air conditioning
unit while trying to listen to live music, this system works best
if the performer remains as quiet as possible during this setup

process so a noise bed definition can be made. After establishing
this noise bed, the system is optimized to listen only for strong
signals and establish its dynamics with anything below this noise
bed defined as a non-musical event. As with any gating process,
there is a danger here that if the gate is set too high, it will cut
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out audio intended for the performance. If this occurs, the user
has two options, increase the signal (feed the system a higher
level of gain), or simply hit the “Set & Eliminate Noise Floor”
button again.

When using reactive electronics in a live audio situation it
is greatly advantageous to filter unwanted sounds, sustaining
resonances, and incidental sounds so the system may listen
specifically for the performer using the system, rather than trying
to distinguish the performer’s sound from an undifferentiated
stream of audio. Thus, sig2∼ uses bonk∼, a common external
Max object that may be trained to listen for specific timbres,
to build a spectral template of the player’s audio (bonk∼
was developed by Miller Puckette, Theodore Apel, and David

FIGURE 4 | AvatarPlayer.amxd, a program that uses machine learning to

generate new musical choices in a given player’s style.

Zicarelli, 64-bit version by Volker Böhm) (Puckette et al., 1998).
This template can be saved or rewritten if the player is going
to use the system again later. By clicking the “Train Timbre
Recognition System” button (Figure 8), the user enables the
bonk∼ object to listen for the timbre of the instrument you
are playing. As the current project uses a vibraphone player
as the listening target, the authors have created a timbre
template for vibraphone, which is automatically read by bonk∼
upon loading the device. This system will operate with no
training data but will simply listen for any incoming sharp
attack rather than distinguishing a specific instrument from
incidental noise.

Since bonk∼ parses an incoming audio stream into 11

frequency bands, any of which may recognize a frequency extant
in the timbre it is hearing, it was useful to include a dial

control that sets attack sensitivity (0–100). After repeated trials,
it was discovered that bonk∼ best recognizes the timbre of
the vibraphone above a sensitivity setting of 76. Similar trials
would likely be necessary to train and perfect the process for
another instrument’s timbre. Another purpose behind using the
bonk∼ object is to identify sharp attacks and pass them on to
the dyna device. Upon detecting a sharp attack, sig2∼ sends a
message wirelessly to any related objects in the session via the
“sharp” message.

The attack recognition “speed limit” default of 50ms slows

there cognition process to within human performance limits.
As of this writing, few human musicians can play notes at a

rate faster than 10Hz (Martin and Martin, 1973). Jason Barnes,

the world’s first true cyborg drummer, when wearing his robotic

drummer prosthesis, can play at speeds up to 25ms, hence the

default speed limit caps the system’s use to provide for less glitchy

playback (Weinberg and Driscoll, 2006). At this point, human

perception comes into play as well, as, beyond 20ms, human

FIGURE 5 | AvatarMachineLoader.maxpat, a standalone Max program that builds a Markov model of pitch transitions from MIDI files.
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FIGURE 6 | The process beneath sig2∼’s noise floor elimination apparatus.

beings find it hard to distinguish beats as distinct events, rather,
perceiving them as connected events or waves.

Sig2∼ uses another adaptive algorithm to establish a perceived
pain threshold. Upon encountering strong audio levels, sig2∼
again lowers its sensitivity using the HIMI.peakamp∼ object.
This process is rather simple but continually calculates an overall
maximum peak amplitude from the audio it has encountered.
Sig2∼ then uses this maximum to scale incoming audio peaks
to a MIDI-friendly 128 integer range (0–127). In this manner,
if the system suddenly encounters a greater amplitude level
than previously encountered, it simply adapts its scale to
accommodate the new peak. The newly defined 128 integer MIDI
velocity is sent out of the device via the output at the bottom and
also “wirelessly” via the “rawVEL” send object. By establishing
these perceptual frameworks and maintaining in real time, the
sig2∼ program can be relied on to convert incoming audio levels
into MIDI velocities, giving any connected program a reliable
dynamic context in an easy-to-use MIDI format.

THE DYNA PROGRAM

The dyna program is the second device that makes up the
context-dependent dynamic system. dyna takes in the equivalent

FIGURE 7 | Sig2∼’s noise floor elimination apparatus at work.

MIDI velocities sent from the sig2∼ device (via the “rawVEL”
message) and defines dynamic ranges either derived from various
popular music notation programs or as defined by the user.
The sharp message, also sent by sig2∼ acts as a trigger for
the dynamic representations, giving the performer a context-
dependent dynamic of their volume level as they play.

Inside the “sharpvelocitycalculation” subpatcher (Figure 9),
dyna combines the incoming “sharp” message (indicating that a
sharp attack has occurred) and the rawMIDI velocity of the most
recent attack into a single message. One of the stickiest problem
dyna addresses is the visual feedback to the performer, which
needs to be extremely responsive (new higher dynamics may
happen very quickly) but slow enough that the visual feedback
system does not constantly “twitch” from dynamic to dynamic
quicker than can be read by a human. To counteract this problem,
this subpatcher makes use of another preexisting object called
HIMI.waiter, a Schmitt–Trigger delay that waits until all inputs
have ceased before beginning a short delay and then sending
a second bang. In the interim, if HIMI.waiter receives further
input, the delay is canceled, and the process is reset. HIMI.waiter
slows this process and allows the system to give preference to
louder dynamics and ignore quick reflections at lower dynamics.
This is modeled after human perception, which prefers louder
dynamics, instead of perceiving quick reflections as reverberation
(Doyle, 2004).

The actual dynamic definitions further illuminate the
problems inherent in the dynamic representation used by many
of today’s most popular music software. As shown in Table 1,
there appears little agreement regarding dynamic and their
corresponding MIDI velocities among programs such as Finale,
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FIGURE 8 | The timbre recognition system, using bonk∼.

Sibelius, MuseScore, and Dorico. Thus, with dyna, the authors
have picked what seems to be the best solution to MIDI velocity
dynamics currently on the market and also provided options for
users to define dynamics in several other ways using the defaults
from the major notation programs as presets.

Using the minimum and maximum established amplitudes
from the processes described above, dyna’s representational
default applies a logarithmic curve to the MIDI values between
0 and 127 taken from the Dorico notation program. Dorico’s
default dynamic scheme assigns these velocity values to the 10
most common dynamic values pppp, ppp, pp, p, mp, mf, f, ff, fff,
and ffff. However, unlike the other leading notation programs,
the developers of Dorico have wisely left room at the top of
their dynamic range (velocities 124–127) to accommodate for
what audio engineersmight call headroom, but which the authors

here define as the volume above the perceived pain threshold.
By default, incoming amplitude levels are thus evaluated by
dyna based on these definitions. If situations or preferences call
for changes to these definitions, the presets for other dynamic
schemas are available via the menu at the bottom right of dyna’s
user interface.

The user may also create unique dynamic presets (which
are savable as Ableton Live.adg files for users of Max-for-Live).
However, using the Dorico default has one interesting benefit in
the case of the dyna program. Once the system has defined its
context-dependent dynamics, the upper limit will remain stable
unless the system suddenly encounters a greater dynamic. Thus,
dyna can also be used as a pedagogical tool, as, a fewminutes into
a performance, greatly expanded dynamic peaks can be jarring
to human listeners. In this case, a user employing dyna with the
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FIGURE 9 | Dyna’s sharpvelocitycalculation patch.

default settings would see the system register the “pain” dynamic
before resetting the maximum, thus alerting the performer to a
dynamic unevenness they might not have discovered otherwise.
Overall, once the context-dependent dynamic system is trained,
it will listen to the player intelligently and report on the player’s
dynamic performance, allowing the player to better assess their
dynamic proficiency vs. what is on the written page.

THE AVATARPLAYER PROGRAM

The AvatarPlayer program uses Markov note-to-note state

transitions derived from a living composer–performer’s

improvised performances as a “choice engine,” providing a

dynamically sensitive duet while listening to a live performance

on the vibraphone. Using this system, the percussionist
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TABLE 1 | A comparison of dynamic markings and corresponding MIDI velocities used by various notation programs.

Musical dynamic pppp ppp pp p mp mf f ff fff ffff

Finale MIDI velocities 10 23 36 49 62 75 88 101 114 127

MuseScore MIDI velocities 16 33 49 64 80 96 112 127

Dorico default MIDI

velocities*

5 14 25 46 61 77 89 101 119 123

Dorico linear curve MIDI

velocities*

5 14 25 46 61 77 89 101 119 123

Sibelius MIDI velocities 16 39 61 71 84 98 113 127

*These results were achieved using the default curve set to 2.5 and a linear setting of 1.

Blacked-out areas represent dynamics not used by these programs.

FIGURE 10 | AvatarPlayer’s four favored notes, chosen via a machine-learning

database.

improvises on the vibraphone while the system listens, playing
when he is playing and stopping when he stops. When the
AvatarPlayer plays, it generates novel pitch content based on
the Markov model of the player’s style, filtered through several
algorithmic AI processes. While the Markov model provides
statistical probabilities to drive note choice, these algorithmic
AI behavior processes change the way these data are used and
are patterned after real-life vibraphone improvisation techniques
used by the percussionist model.

The AvatarPlayer’s use of the Markov model is currently
governed by five playback behaviors. The first such behavior
(“favor four notes”) queries the Markov model for four notes to
favor in its performance (Figure 10). Favoring these four chosen
notes gives the note output a noticeable tonal centricity, a quality
noticeably common in the live performer model’s playing style.
The behavior “Favor novelty” queries the Markov model for
note-to-note transitions one by one, which creates a somewhat
randomized, atonal quality. The behavior “Favor repetition”
picks one note and favors repeating it two-out-of-three times.
Cycling through these behavior modes (Figure 11) provides
the system with a performance that sounds more human and
less randomized, a common complaint against many generative
music applications.

AvatarPlayer is also equipped with an autonomous AI mode,
which makes musical accompaniment without listening to the

FIGURE 11 | AvatarPlayer’s various playback behaviors.

live input. This mode is often useful in sound checking and
system tests and can even be MIDI-mapped in Ableton Live so
as to be turned on and off during performance. Its MIDI output
can be easily recorded, so as to generate new compositional
material, but Avatar’s true purpose is as a collaborator using the
sharp message from sig2∼ and the dynamic velocities from the
dyna program to create a sensitive context-dependent musical
collaborator that actively listens as a musician would in a duet.

To further invoke a blended human-machine cyborg aesthetic,
Avatar’s developers have also created a number of high-quality
Ableton Live instruments using the percussionist-model’s own
vibraphone as the sound source. In practice, the Avatar system
listens to a human playing a vibraphone and plays along
sensitively using an audible simulacrum of the vibraphone,
behaving to a certain degree in the manner of the original human
it is modeled after.
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FIGURE 12 | A schematic of how various machine learning technologies are used to create a Markov state transition table for a given performance.

BUILDING THE MACHINE LEARNING
MODEL: THE AVATARMACHINELOADER

PROGRAM

As described above, the AvatarPlayer program makes use of a
Markovmodel of pitch state transitions gathered from an analysis
of real audio (Figure 12). The first hurdle in accomplishing
this task is the transcription of a large number of audio files

into MIDI files that the AvatarMachineLoader program may
analyze. Though there are a number of systems designed to do

this currently available to the user, the best and most easily

obtainable is theOnsets and Framesmodel released by researchers

at Google Magenta. This model may be used online quite easily
or implemented via open-source JavaScript or Python code
(Hawthorne et al., 2017). Onsets and Frames achieves this level of
accuracy by using two separate neural networks (a convolutional
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neural network and a recurrent neural network) to detect pitch
onsets even in polyphonically complex audio files.

As the Onsets and Frames model is designed at present
to listen for piano timbres, rather than vibraphone, results
are somewhat mixed. To improve accuracy of the eventual
model, the authors also produced MIDI files using Ableton
Live’s built-in audio-to-MIDI transcription features, which use
three different algorithms to assess pitch (focusing variously on
melodic pitch movements, harmonic clusters, or rhythms). By
painstakingly converting each audio recording using all four of
these models, the authors hoped that the dataset (combined into
a single multi-hour MIDI file) is significantly large enough to
decrease the prominence of false positives and misapprehended
pitches (Li et al., 2018). As these systems represent a sort of
black box, it is difficult to say definitively whether the present
model is an accurate representation of the original player.
Accordingly, this procedure was repeatedly tested using MIDI
files of music by gold standard composers like J.S. Bach and
Vince Guaraldi. As new improvisations are supplied by the
model composer–performer, the audio files are converted in
these four ways and added to an ever-growing concatenated
MIDI file.

Once the MIDI file dataset is compiled, the file must be
passed through a Markov chain generator object (ml.markov)
in order to produce a database of state transitions. The authors
have achieved the best results setting this object to “order 4.”
This setting produces state transitions that take into account
the previous three notes. Since the ultimate goal is to create
a model for vibraphone performance, the developers thought
it best to generate a Markov model that took into account
standard vibraphone performance technique, which utilizes four
mallets in two hands, meaning the performer is often commonly
improvising using groups of four notes.

While the present AvatarPlayer program utilizes a database of
only pitch-to-pitch state transitions, the AvatarMachineLoader
program also uses additional ml.markov objects to generate
state transitions for MIDI velocities, durations, and
harmonies. These late additions will eventually make it
possible to generate novel material that is patterned after
a more complete model of the original living composer-
performer’s performance. After these models are built,
they may be saved as a simple text file that can be loaded
into the AvatarPlayer’s own ml.markov object. Once the
AvatarPlayer’s model is loaded and built, a simple bang message
will generate new MIDI pitches conforming to the model’s
state transitions.

RESULTS

The Avatar system, consisting of sig2∼, dyna, and the
AvatarPlayer, was successfully debuted at the Fata Morgana
music and art festival in Indianapolis on October 3, 2019,
by percussionist and Professor Scott Deal. The system
performed admirably and has since been featured at the
MusicaAcoustica festival in Beijing, China, on October 22,
2019. These performances were well-received, and it has

been reported that the system is rather easy to use and
implement, even in the absence of the developers. A number of
national and international performances for 2020 have already
been scheduled.

It is often difficult to quantify the success or failure of musical
experiments where the end result is a creative phenomenon. Such
is the case with the present system in that the end result is not
quantifiable data, but public performances using the system. As
outlined above, the public performance record of this system
is still in its infancy. While the recent results have all been
promising, the pool of users will be extremely limited until such
a time as the Avatar system is released commercially. As such, a
commercial release date of February 28 has been announced, after
which the system may be tested by the public and hard data may
be collected and assessed.

A data-driven comparison of similarities between the living
composer–performer upon which the system is modeled and
the model itself would be a useful metric by which the system
could be judged. The authors are presently beginning work on
a future paper involving assessments of this type, which could
be used as a model for assessments of future musical machine
learning projects.

DISCUSSION, SCALABILITY, AND
LIMITATIONS

Though various other technologies exist that purport to translate
volume into MIDI velocity, results from this context-dependent
system have been encouraging. The uses of more accurate
instantaneous audio to MIDI transcription are many, as MIDI is
the definitive control protocol underlying any music technology.
It is hoped that in the near future, systems like Onsets and
Frames may evolve into easily implementable real-time audio-
to-MIDI. However, even with reliable real-time audio-to-MIDI,
technologies will do little to cure the lack of context-based
dynamics outlined above.

That said, the context-dependent dynamic system outlined
above has many other potential applications. By filtering
out excess noise and amplitude overages, this system could
be adapted to control lighting and video effects, or to
transcribe audio to dynamic notation in real time (perhaps
as a plug-in for one of the notation programs mentioned
above). The minimum and maximum definitions defined
by sig2∼ could be used to automatically (and cheaply) mix
audio channels in situations where a professional audio
engineer is unavailable. Systems like Landr, which use
machine learning to mix or master audio files, are already
affecting the market. Perhaps a context-dependent system for
dynamics could do similar things for the ensemble classroom.
But still, the system’s most exciting possibilities revolve
around creating new music by artificial intelligence or in
enhancing the performance capabilities of human musicians
with technology (Rowe, 1992; Miller, 2003; Weinberg and
Driscoll, 2006).

While the present system works reliably, much more work is
on the horizon. At the outset, the authors sketched out a goal of
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building a system that would build a machine learning model
of what it hears in real time, save it, and update the model
as more data became available. The present system does these
things in achingly slow fashion, and not in real time. Another
drawback of the lack of real-time adjustment has only become
apparent after repeated use of the system. Users of the system
have recently reported that since the present system does not save
its definitions for the perceptual frameworks of silence and the
pain threshold from session to session, Avatar seems to begin
each session with a heightened sensitivity to loud sounds, and
takes a significant amount of interaction with a player before the
system is trained to react appropriately. It is hoped that along
with the focus on making real-time machine learning models,
the system will also eventually be able save these adaptations
and remember them in future sessions. With the advent of
very reliable audio-to-MIDI transfer via models like Onsets and
Frames, the authors hope that it may be possible to make real-
time machine learning a feature of the Avatar system in the
near future.

The current focus on dynamics, while fundamental, presents
only one important parameter of musical performance. To
truly listen to music like a human, the system must also
listen for, understand, and differentiate pitch, timbre, and
duration. Beyond these low-level features, there are high-
level features, like mood, emotion, tonal implications, and
many others that provide much of the richness inherent in
the best music of all genres. Adapting Avatar for durational
perception, closely related to the concepts of dynamics and
silence, has already begun in earnest. The machine learning
tools currently extant within the Max environment (notably,
the previously mentioned ML.∗ and the ml.lib externals package
from Nick Gillian), while brilliantly developed, leave much to
be desired in the way of easy connections to common musical
practice. Creating Markov models for monophonic pitch-to-
pitch transitions are useful and simple to build at present but
doing the same for a given MIDI file’s harmonic content or

articulative character requires a complete redesign of the system’s
inputs and outputs.

Another limitation of the project as it stands is the dependence
on the bonk∼ object’s timbre recognition capabilities, which

could be enhanced greatly. At the very least, adding multiple
timbral models to Avatar will allow the user to use instruments
other than the vibraphone, greatly widening the user base.
Once these systems are improved, it should not be difficult to
provide the system with timbral recognition capabilities. The
ultimate goal of the authors is to provide a truly intuitive
program that listens, rather than having to be managed
by a knowledgeable user. These and the many other goals
of this team will take much time and considerable hard
work, but the rewards of such an enterprise are well-worth
the effort.

OTHER INFORMATION

Project Link: http://tavellab.net/
Operating system: Mac OSX 10+ / Windows 10+.
Programming language: Max standalone, also works as Max-for-
Live device within Ableton Live.
Restrictions for non-academic use: none.
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