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ABSTRACT 

Increasing sophistication of electronic safety systems 
requires more advanced tools for design and 
optimization.  Systems of safety products already being 
designed are becoming too interdependent to calibrate 
as stand-alone modules.  Compounding this difficulty is 
the trend towards fewer test crashes and more 
sophisticated regulatory requirements. This paper 
presents a unified calibration approach to produce robust 
performance.  First, the set of crash samples are 
extended using statistical techniques. Then an 
automated calibration tool using Genetic Algorithms is 
used to provide robust performance against deployment 
requirements.  Finally, an expert systems is employed to 
ensure logical behavior.  Together, these powerful 
methods yield calibrations which out-perform manual 
calibrations and can be completed in far less time.   

PROBLEM DESCRIPTION 

Automotive safety products must meet demanding 
requirements.  Government regulations in the US market 
continue to move towards greater sophistication.  Market 
forces are driving a trend towards safer vehicle operation 
through sensing devices, decision algorithms, restraint 
devices, and active safety measures [1].  With increasing 
numbers of such products on each vehicle, and with 
increasing interaction between them, the design, 
optimization, and validation of vehicle systems is 
becoming more challenging.  As the requirements and 
difficulties mount, at the same time, there is intense 
pressure for systems to be provided at low cost, high 
reliability, and with short development cycle times.  
These opposing forces clearly call for a new paradigm in 
product development. 

This study focuses on the development of crash sensing 
electronics.  Crash testing, where expensive prototype or 
pilot vehicles are destroyed in the process, is an 
example of the tradeoffs involved in design needs versus 
budget cost.  Design of a robust deployment algorithm, 
and calibration of that algorithm to a given vehicle 
platform requires a representative set of crashes.  

Because of the wide variety of crashes that are possible, 
and the great variability even between repeated crashes, 
there is a strong need for a large library of crashes.  To 
extract the most value from the limited set of crashes 
typically funded for a platform launch, several methods 
have been proposed [2], such as amplitude scaling, time 
scaling (with constant velocity), or noise addition. This 
paper presents a simple method of extending crash 
libraries to facilitate more robust calibrations for crash 
sensing algorithms.  

The calibration process itself is accomplished through 
the careful setting of adjustable parameters within an 
algorithm to meet desired deployment decisions and 
timings, given the crash library. Calibration is a laborious 
process, and given the often-conflicting requirements, 
difficult to optimize.  Delphi has developed an automated 
optimization routine using Artificial Intelligence and high-
performance computing to greatly accelerate the 
calibration process, at the same time achieving higher 
quality results. 

Validation of calibration results depends heavily on a 
peer review process, conducted by experts with 
considerable experience in this area.  In this paper, we 
report on the use of a rules-based peer review tool 
system, which codifies the knowledge of these experts, 
thus streamlining the validation process and reducing the 
number of errors. 

METHODS 

CRASH LIBRARY EXTENSION - Ideally, a representative 
set of crash events would include low and high speed 
deploy tests, impacts into different barriers at different 
angles and varying amounts of offset to that barrier.  
Also important are non-deploy tests such as low speed 
impacts, rough roads and abuse events, representative 
of the many varied conditions that drivers force their 
vehicles to undergo.  Such an ideal library would include 
hundreds of events, many of which destroy the vehicle.  
Clearly, this is impractical. 
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The most common method to extend a crash library is to 
scale the amplitude of an accelerometer signal either 
higher or lower in magnitude to represent crashes of 
different speeds.  This is a simple practice, but does not 
adequately reflect reality, since the dynamics of a crash 
event are highly non-linear.  Another method is to scale 
the time axis of a crash, adjusting the amplitude so the 
crash energy remains constant.  However, this practice 
is also a linear method, and is not supported by crash 
physics.  Other methods use various bandpass filters to 
mix-and-match signals to poduce new test cases [2].  
Noise addition is a further technique, where signal-
derived noise is added to a heavily-filtered signal [3].  
These practice helps ensure algorithms are more robust 
against unavoidable crash variability.   

For this work, we use a simple point-wise interpolation 
between crashes.  Crash data from two target crashes is 
sampled at 10 kHz and, at each data point, intermediate 
values are calculated.  This method has the advantage 
that integrated velocity is bounded by the velocities of the 
two original crashes.  Extrapolation techniques, such as 
amplitude scaling, time-scaling, and mix-and-match are 
not bounded, and can generate high-amplitude signals 
that may lead to undesired algorithm behavior. With 
point-wise interpolation, intermediate points can be 
scaled to provide desired equivalent velocities.  Also, the 
noise of an interpolated crash will tend to be different 
from either target crash due to the non-correlation of the 
two crashes.  This variety aids in the training of the 
calibration, making the results less susceptible to noise 
influences.  Figure 1 shows a sample of point-wise 
interpolation. 

Figure 1.  Crash signals for point-wise interpolation.  
Original (target) crashes are shown in thick black and 
thick gray lines, and the interpolated crashes are shown 
as a thin black line.  Axes are purposely unlabeled for 
data anonymity. 

The vehicle platform studied included only two no-trigger 
(NT) crash events, with 15 deploy tests.  A crash set of 
this size leaves several regions of interest 

underrepresented.  In particular, there was a gap of 10 
kph between the fastest NT test and the slowest deploy 
test. To help fill in this region the low speed frontal and 
the frontal NT crashes were used to generate three 
intermediate points.  For four types of deploy tests, 
crashes were performed at two different speeds, 
separated by either 13 or 18 kph, leaving significant gaps 
in the coverage of the crash universe. 
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Figure 2.  Portion of crash set, showing sets of identical 
crash setups run at different speeds. 

Point-wise interpolation was used for the Frontal, Left 
Angle, Right Angle and Center Pole events, shown in 
Figure 2, to generate intermediate crashes.  Trigger 
times were defined by equivalent speed, and interpolated 
linearly between the high speed and the low speed 
deploy time requirements.  In addition to these events, 
interpolation was also performed between the low speed 
center pole crash and an underride event of the same 
speed.  A new NT event was generated in a similar 
manner between the frontal NT event and a similar 
speed NT test of a different type.  A total of 10 new 
crashes were created using point-wise interpolation.  

The sets of crashes were grouped into data sets for the 
purposes of calibration and evaluation.  Figure 3 
summarizes these groupings. 

Crash Set Name Method Used 

Original Data None.  This is the test set used for 
calibration, including 2 NT and 15 
deploy crashes. 

Evaluation Data None.  This is the crash set used to 
evaluate performance of the 
calibrations.  Results are reported on 
combined Original and Evaluation crash 
sets. 

Scaled Data Lo speed crashes scaled up to fill gaps 
between like-crash types.  Includes 5 
new crashes. 

Interpolated Data New crashes created by interpolating 
between like-crash types, or between 
same-speed crashes of different types.  
Includes 10 new crashes. 



Figure 3.  Crash sets used in this study, and the method 
used to generate the crashes. 

AUTOMATED CALIBRATION OPTIMIZATION - Manual 
calibration is a difficult task, involving analysis of crash 
signals, detailed understanding of the algorithm, and 
considerable trial and error adjustment of parameters to 
meet requirements.  Automating this process has been 
successfully accomplished using the Artificial Intelligence 
technique known as Genetic Algorithms [4].  Genetic 
Algorithms (GA) search the space of parameter 
combinations to optimize the performance of the 
algorithm to the requirements.  Two components 
essential to this process are a simulation of the 
algorithm, and a numerical measure of how well the 
requirements are met.  A set of robustness functions 
were developed which analyze many aspects of 
algorithm performance, and return a robustness value.  
This robustness value, when optimized, indicates 
optimized results, and can be used as a figure of merit in 
assessing the quality of performance [5].   The exact 
nature of the robustness function is not germain to the 
general method presented here; it simply must provide 
numerical values which track monotonically with 
perceived performance.  

We have implemented a GA optimization routine across 
a cluster of 23 workstations to achieve automated airbag 
deploy calibrations in as little as 4 hours [6].  A schematic 
of this SuperCluster is shown in Figure 4.  

 

Figure 4.  23-Node SuperCluster of 450 MHz Pentium II 
workstations using NT operating system, and a 100 Mb 
Ethernet switch.  Maximum operating speed is 10.6 
gigaflops. 

For the study reported here, we compare four different 
calibrations. The first method was a manual calibration, 
applied to the Scaled Data set, as described in Figure 3. 
The manual calibration employed a subset of the entire 
suite of functions available within the algorithm used.  

This is considered a conservative approach, and is often 
used because simultaneous optimization of all 100-plus 
parameters is very challenging for a human calibration 
engineer.    

The other three calibration methods each used the GA 
automated optimization tool, applied to, respectively: the 
Original Data set, the Scaled Data set, and the 
Interpolated Data set.  The GA-optimized calibrations 
used all available parameters.  From previous studies, 
we have found GA-optimized calibrations to perform 
equal or better than manual calibrations [6].  Each of the 
four calibrations was then applied to the Evaluation Data 
set without any further adjustment.  The robustness 
value was computed, and the results compared to the 
robustness on the data set used for calibration. 

PEER REVIEW EXPERT SYSTEM - Peer review of a 
calibration involves close analysis of results and the 
parameter settings used to achieve that output.  With 
small crash libraries, a concern is that the calibration 
may perform well on the data available, but might give 
unwanted performance when exposed to crash signals 
beyond the training set.  To guard against illogical or 
unwanted behavior, a peer review expert will pore over 
parameter settings, looking for values which, alone, or in 
combination with other parameters, may be inadvisable, 
based on their experience.  To aid this process, and 
unburden the experts, a set of rules were coded in an 
expert system tool.  The tool also allows the user to 
immediately run a robustness number check, providing 
instant feedback on the impact of adjusting parameters 
to the rule set. Occasionally we find that high 
performance parameter are outside of ranges the 
experts have investigated.  In these cases, the rules file 
is updated, and distributed to the user community. 

RESULTS 

Figure 5 shows the results of this study by comparing the 
robustness value of the four methods of calibrations 
against their training data set, and against a common 
evaluation data set, which included 18 new crashes plus 
the original 17.  Note that the robustness value ranges 
from 0.0 to 1.0, with the latter being a perfect score. To 
account for tolerance of hardware and crash-to-crash 
variation, a 15% margin was added to all crashes when 
computing the robustness number.  This margin was 
applied on the low side of deploy crashes and on the 
high side of NT crashes. 
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Figure 5.  Robustness values for each calibration
method, comparing results for the test data set and the
evaluation data set (which included the original crash
set).

Comparing each parameter value to a rule is facilitated
by a simple tool which applies a rules file to the
parameter values.  Often, these rules are heuristic
guidelines based on experience.  Examples of
parameters include velocity thresholds and filter cutoff
frequencies; and examples of rules include minimum
velocity thresholds depending on the filter
characteristics. To this tool, we have added the ability to
immediately re-compute the robustness value, providing
rapid feedback to the calibration engineer on the effect of
each adjustment.

In this study, the manual calibration had just one rule
violation, but of a benign nature.  The GA-optimized
calibrations had more rules violations that required
adjustment of parameters.  In this type of automated
search, those parameters which do not affect the
robustness value result can sometimes be left with
settings which seem inappropriate.  The expert system
tool checks these settings, and provides the user
recommended adjustments.  In the case of the GA-
optimized calibration on the Interpolated Data set had
three rules violations.  When these were adjusted, the
final robustness number did not change.

DISCUSSION

The true test of field-relevant robustness of an airbag
algorithm calibration is the performance on new data
beyond that which was used in the training phase.  This
robustness is achieved through three elements:  an
adequate training set, a thorough calibration, and careful
setting of parameters.  In this study, we have developed
automated tools for each of these tasks.  The results in
Figure 5 illustrate the value of this new approach.

There are two key assessments of robustness in this
context.  The first is the absolute magnitude of the
robustness value, which should be as close to 1.0 as

possible.  The second is the change in robustness value
from the training set to the evaluation set.  As can be
seen in Figure 5, the GA-optimized calibrations for both
the Scaled Data and Interpolated Data sets actually
experience an increase in robustness when exposed to
the new data in the Evaluation Data set (which also
included the Original Data set).  This is highly desirable,
and was actually not anticipated in this case, and is not
expected in general.  However, Evaluation Data sets are
sometimes less difficult than Training Data sets, so such
a result is not impossible.  Using only the Original Data
for the training phase with the GA provided a calibration
which diminished slightly in performance on the
Evaluation Data set.

Taking the final robustness value on the Evaluate Data
set, the GA-optimized calibration using the Interpolated
Data set gave superior results to all other methods.  Of
great significance here is that the robustness value on
the Interpolated Data set was low, compared to the
results on the Scaled Data or Original Data sets.  This
implies that the Interpolated Data is more challenging for
the algorithm.  Yet, the dramatic increase in robustness
value on the Evaluation Data set from the Interpolated
Data also implies that the interpolated data provides
rigorous test cases that ultimately result in a more robust
calibration.  This is the result we have been seeking.

CONCLUSION

Using the automated tools for extending the crash
library, for the calibration process, and for peer review
greatly accelerates the turnaround time.  These tasks,
which might take one to two weeks for a calibration
engineer, can now be accomplished in two days.  Using
interpolation for crash library extension allows more
robust calibrations with fewer expensive crash tests
required.  And with the power of Artificial Intelligence,
complex algorithms can be optimized to realize their full
potential.  The use of expert systems reduces errors, and
helps codify experiential knowledge, so that it can be
further built upon.  These tools have become
indispensable aids to the design and optimization of
advanced airbag modules, and provide a strong
foundation for further advances in technology and
requirements.
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