
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: www.sae.org

SAE TECHNICAL
PAPER SERIES 2006-01-1357

 Executable Specs: What Makes One,
and How are They Used?

 Peter J. Schubert
 Packer Engineering, Inc.

 Lev Vitkin and Frank Winters
 Delphi Electronics & Safety

2006 SAE World Congress
Detroit, Michigan

April 3-6, 2006

The Engineering Meetings Board has approved this paper for publication. It has successfully completed
SAE's peer review process under the supervision of the session organizer. This process requires a
minimum of three (3) reviews by industry experts.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of SAE.

For permission and licensing requests contact:

SAE Permissions
400 Commonwealth Drive
Warrendale, PA 15096-0001-USA
Email: permissions@sae.org
Tel: 724-772-4028
Fax: 724-776-3036

For multiple print copies contact:

SAE Customer Service
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org

ISSN 0148-7191
Copyright © 2006 SAE International
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE.
The author is solely responsible for the content of the paper. A process is available by which discussions
will be printed with the paper if it is published in SAE Transactions.

Persons wishing to submit papers to be considered for presentation or publication by SAE should send the
manuscript or a 300 word abstract to Secretary, Engineering Meetings Board, SAE.

Printed in USA

Keywords: Executable Specifications, Systems Design,
Model-Based Development, Simulation and Modeling.

ABSTRACT

Model-based systems development relies upon the
concept of an executable specification. A survey of
published literature shows a wide range of definitions for
executable specifications [1-10]. In this paper, we
attempt to codify the essential starting elements for a
complete executable specification-based design flow. A
complete executable specification that includes a
functional model as well as test cases, in addition to a
traditional prose document, is needed to transfer
requirements from a customer to a supplier, or from a
systems engineer to electrical hardware and software
engineers. In the complete form demonstrated here,
sub-components of a functionally-decomposed system
manifest as modular reuse blocks suitable for publication
in functional libraries. The overarching definition
provided by product architecture and by software
architecture must also be harmoniously integrated with
design and implementation. Using seven specific
automotive examples, we illustrate effective ways in
which executable specifications have been used in
production-ready applications. Benefits of model-based
development are captured, including earlier and more
thorough testing, automatic document generation, and
autocode generation.

PROBLEM DESCRIPTION

Systems engineering begins with requirements. In a
traditional design approach, the systems engineer
decomposes customer-level requirements into functional
subsystems. The subsystems will derive their
requirements from the top-down, augmented by internal
standards for systems, software and hardware design,
from government regulations and from constraints
imposed by the system hardware itself. This process of
functional decomposition continues to lower levels of
abstraction (hierarchy) until each subsystem is atomic –
where an individual or small team can implement it
without further clarification.

This traditional design approach is effective, but not
necessarily the most efficient means of product design.
Inefficiencies arise from the inability to objectively verify
the design at each step of the process, thus pushing the
thorough verification of the design to the end. The
inability to electronically transfer, or re-use, any design
implementation from the previous steps in the design
flow is also inefficient. Most often, each step in the
design flow starts as a “clean sheet of paper” with written
documentation as the only entity transferred between
design steps.

To accelerate engineering productivity of the entire
design process, there is a widespread and growing
adoption of model-based development approaches that
include graphical representations of math-based
simulation methods. The use of model-based methods
enables engineers to gain a more thorough
understanding of the details of a design much earlier in
the development process. The model-based approach
also allows the verification process to occur concurrently
with the design process, thus improving the quality of the
design from the start. In this case, both the design
details and the verification methods can be electronically
transferred through the design flow, enabling better
communications and data transfer throughout the design
process.

One widely-used term used to describe model-based
development is an executable specification or
“executable spec”. The term “executable” implies that
the model can be simulated to illustrate functional
behavior. The term “specification” suggests an explicit
design intended to meet certain requirements. In
practice, it is common for the model alone to be called
an “executable spec”, but this can lead to confusion and
a loss of the intended improvement in productivity. In
this work, we present the concept of a “complete”
executable spec, which includes all the elements
necessary to realize the gains in efficiency promised by
model-based development.

2006-01-1357

Peter J. Schubert
Packer Engineering, Inc.

Lev Vitkin and Frank Winters

Delphi Electronics & Safety

Copyright © 2006 SAE International

Executable Specs:
What Makes One, and How are They Used?

DEFINING THE EXECUTABLE SPEC

An executable specification captures the functional
behavior of a system. The authors contend that a
complete executable specification must first include
design documentation. There must be an executable
model, and there must be a verification environment
within which to run the model. Figure 1 captures these
three broad elements, as well as the 7 deliverable
components within them.

Executable
Model

Textual
Requirements

Data
Dictionary

“How-to”
Tutorial

Input
Stimuli

Test
Harness

Output
Responses

Design Documentation

Verification Environment

Executable
Model

Textual
Requirements

Data
Dictionary

“How-to”
Tutorial

Input
Stimuli

Test
Harness

Output
Responses

Design Documentation

Verification Environment

Figure 1. Graphical representation of a “complete”
Executable Specification

The components of a complete executable spec are: (1)
the text requirements describing the functions which
must be met; (2) the math-based executable model; (3)
a test harness to apply the inputs to the model and
produce outputs; (4) the input stimuli or test vectors; (5)
the expected or correct output responses to the input
stimuli; and further documentation including (6) a “how-
to” tutorial; and (7) a data dictionary. All of these
components should be constructed so that a moderately-
skilled practitioner can readily, and with little help,
execute the model and be able to assess the output
quality. In this way barriers to reuse are eliminated. For
users who wish to use the model as a starting point for
further development, this set of elements provides a
clearly-defined starting point, as well as an example of a
completed executable spec.

The scope of this paper is exclusively for the input
processing, algorithms, control logic, diagnostics, data
recording, high-level drivers, and communications
required for electronic control units (ECUs). This portion
of the system may be implemented as an application-
specific integrated circuit (ASIC), or as software code in
a general-purpose microcontroller. There are many
other aspects of a system that are not included in such
an executable specification. Color, size, corrosion
resistance, connector geometry, and drop-shock
resistance are important requirements, but are typically
not modeled as a part of an executable spec. Certainly

some of these characteristics can be modeled, and, at
some future date, integrated with the logic and
algorithms, but at present these are not considered.

The remainder of this section illuminates the central
issues in the creation, use, and application of executable
specs through a series of contrasts. Each pair of
comparisons is loosely related to a “traditional” versus
“model-based” development cycle. They also aim to
clearly define certain terms which are often used in an
ad hoc manner by practitioners of model-based work.

SPECIFICATIONS VS. REQUIREMENTS

A requirement is defined as a written document that
describes what is needed without defining specifics of
implementation. A specification is a written document
that describes both what is needed and some of the
details of how it is done. Complete model-based
specifications are a more effective tool than traditional
requirements mostly due to the ability to present
mathematical and behavioral information in graphical
and executable form. Table 1 shows a side-by-side
comparison of the various elements of an executable
spec between the traditional approach and the model-
based methodology.

Table 1. Comparison of traditional versus model-based
methodologies.

ELEMENT TRADITIONAL MODEL-BASED

Requirement 1. Non-
functional

2. Functional
“Thou
shalt…”

1. Links to other
documents

2. Given this input,
expect this
output.

Architecture Teamwork, Visio
or Power Point

Navigable,
hierarchical,
executable model

Design Circuits, layouts,
software, sensors
and actuators,
developed
separately

Models of sensors,
actuators, algorithms
and plant or human-
machine interaction

Documents PDF, Word, Text Auto-generated from
the model

Verification Bench test, in-
vehicle testing

Progression from
model-in-loop,
software-in-loop,
processor-in-loop,
hardware-in-loop,
human-in-loop, in-
vehicle testing.

To realize the full efficiency benefits of a model-based
approach using executable specifications, a relatively
seamless suite of tools are required. Achieving
straightforward process flow through the design cycle is
a major factor in practical utilization of executable specs.

ARCHITECTURE VS. DESIGN

By architecture, we mean a representation of the
partitioning, configuration, interfaces and hierarchy of a
given product application. By design, we mean the
completed implementation of the product application.
Thus, architecture omits details to emphasize
relationships. Ideally the design flows from the
architecture during the successive implementation of
details needed to make the architecture executable.
When complete, the design is an instantiation of the
architecture.

The value of a well-defined architecture to the
development of complicated ECU systems cannot be
overstated. It is well known that architectural decay is a
constant risk as bugs are fixed, scope creeps, or
requirements change – especially if there is pressure to
complete these tasks quickly. Through the use of
model-based design, the architecture is explicit in the
layout and hierarchy of the model. With modular
subsystems and well-defined interfaces the likelihood of
architectural decay diminishes greatly. Complete
executable specs, by nature of their test harness with
inputs and expected outputs, allow one to perform
regression testing whenever changes are made to the
design. Furthermore, adding extra functionality can be a
straightforward extension of the input and output set and
update of the documentation. Systems designed in this
way are easier to maintain, upgrade, and debug if
needed.

FUNCTIONALITY VS. IMPLEMENTATION

In the traditional design approach, functional
decomposition is used to sub-divide complex problems
into more manageable components. The systems
engineer thus partitions functionality and imposes
hierarchy upon the design. The interfaces to each
partition and to each level of the hierarchy require
definition of the signal flow, the control flow, and the
physical segmentation. This process proceeds in an
iterative fashion until the individual components are
atomic. Thereafter, the atomic subsystems are created
by individuals or teams who must satisfy derived
requirements as well as the interface definition. During
this process, the systems engineer or product architect
is selecting between competing choices or tradeoffs.

With a model-based approach using an executable
spec, it is inevitable that the creation of the model will
lead to an initial first order implementation of the design
when describing the functionality. This approach to
system design provides an engineer the capability to
simulate and verify aspects of the functionality and

implementation of the design throughout the
development process. This ensures that the design
choices are correct, assuming a priori the correct
functionality of the sub-systems.

It is often said that the process described here should be
free of implementation details. Yet, it can be argued that
the interface definitions constitute a portion of the
implementation details, albeit at a higher level than the
atomic subsystem. Extending this argument further, we
can see that even so-called atomic subsystems can be
further reduced. Consider the example of an electrical
hardware engineer, who designs a circuit block
containing discrete elements such as a capacitor. He or
she may specify the capacitance value and tolerance,
and whether to use a tantalum or an electrolytic
capacitor. The capacitor is an “atomic” component to
the hardware engineer, however, to the capacitor
manufacturer; the capacitor is a system of its own. The
capacitor has electrode plates, a dielectric material,
leads and packaging all of which must function together
for this system to work properly in an ECU application.

The point of these arguments is to illustrate that what is
called “design” and what is called “implementation”
depend only upon the scope of the individual making the
distinction. Thus it can be seen that the functional
decomposition of a system is more than simply design
because it also contains some degree of implementation
detail. This justifies the relaxation of a specification
being “implementation free” as discussed in the
preceding section.

TESTING: PROACTIVE VS. REACTIVE

Verification is the process of assuring that the feature,
function and/or attribute does indeed satisfy the
requirement. In a traditional approach, system
requirements are verified at the conclusion of a design
cycle, typically after the atomic subsystems have been
integrated up through successive levels of abstraction
until the system is complete. In some cases, for example
when delivery schedules are compressed, the
subsystems are often verified after the design,
implementation and build process, not during. The
obvious drawback of this approach is the late discovery
of higher-level errors in either the derived requirements
or the implemented design. Figure 2 presents a
graphical contrast between the traditional approach and
the model-based approach.

In traditional development, the algorithm is a passive
component of test environment: it executes the
functionality-based input stimulus and produces the
output results. The problem is that those input stimuli are
developed to verify the correctness of the requirements.
They do not typically cover all “abnormal” behavioral
conditions. In model-based development, a model is an
active component, and a source for the generation of
model-coverage test scenarios. The combination of
functionality-based input stimulus and model-coverage

based input stimulus create a complete test environment
for rigorous validation of the model and verification of
software implementation at each step of development.

Figure 2. (a) Traditional V-chart for functional
decomposition compared to (b) model-based development
with concurrent engineering, early and rapid cycles of
verification, and shorter design cycle.

PARADIGM SHIFT

ENGINEERING: SEQUENTIAL VS. CONCURRENT

In the traditional approach to system development,
engineers are grouped by competency, typically
hardware, software and systems, in order to create
structured technical and procedural discipline. This
organizational approach engenders a serial execution of
tasks. For example, the system engineer must finish the
functional decomposition prior to any other engineers
beginning their work. Or, the software engineer cannot
fully test their work until a hardware unit is available for
bench testing. Such an inherent inefficiency is further
exacerbated by the common occurrence that a system
engineer may select design choices that may later be
found to be sub-optimal from the standpoint of software
and hardware architecture and/or design. Many small
companies or small teams avoid this drawback by
having multi-skilled individuals perform a wider range of
tasks. Yet in larger companies, and for larger more
complex projects, availability of such cross-skilled
individuals may become a limitation. With model-based
design, individuals skilled in system design, electrical
design and software programming work in a common
environment. This is the concept of co-design.

Co-design is the practice of parallel or simultaneous
product development at multiple levels of abstraction
across multiple engineering disciplines. For example,
once a system engineer has an approximate high-level
model created defining the product architecture, a
software engineer can begin at once to add into the
model the features of the software design. This stage will
be followed by auto generation or hand writing of code,
and unit and component testing. An electrical engineer
selecting sensors, capacitors, or other components can
insert models representing them into the system model
to observe the impact on performance. An IC design
engineer can work with the model to understand the

requirements, and the model can serve as a golden
reference model for the IC design and verification team.
The model can also be used in a virtual product
simulation for software test bench-like development
prior to fabrication of the chip. As the program advances,
more details are added, which improves the fidelity of
the model for other engineers. In co-design, the system
takes shape in a near-simultaneous manner.

Products designed this way are completed faster.
Certain classes of errors are far less likely to arise when
design is done this way. Many classes of errors that do
arise are discovered early where the impact to the
product development schedule is minimal. Working in
parallel allows for a greater interaction among engineers,
thereby leveraging teamwork benefits. Designing in
parallel means shorter product design duration, so there
is less time to forget details. Having three types of
engineering discipline co-developing can dramatically
impact performance metrics.

DEVELOPMENT: PROCESS VS. METHODOLOGY

For the purposes of this paper, process is defined as the
steps to build a product. A methodology is how you
choose to accomplish a given step of the process. We
therefore speak of process design versus design
methodology. Process explains what you do, and in
what sequence. Method is how you do it. Ideally, a
common process can be defined for any automotive
ECU development process, and many companies have
such a system in pace. Traditionally, methodology is
often left up to the individual, allowing creativity but
inviting proliferation and redundancy. The objective of
the executable spec methodology is to apply math-
based tools so that engineering work is more efficient
and effective. The opportunity for creative
implementation still exists, but the tools available help
assure that the “how” is sufficiently powerful to design
good products.

Applying the methodology of executable specs will
manifest somewhat differently depending on the process
to which it is applied. Vehicle systems with complex
human-machine interaction (e.g. multi-media or
navigation) are designed quite differently from
autonomous embedded systems (e.g. airbag control
module or powertrain controller). Yet, in each case there
are certain broad phases of development, often captured
within a common process or standard operating
procedure. Also, from different product areas, different
lessons are learned. Therefore, to understand what an
executable specification is and how they are used, a
number of disparate examples are required. In the next
section seven case histories are presented, representing
both a vehicle manufacturer working with a tier 1
supplier, as well as applications internal to a tier 1
systems supply house. By studying these applications
and their post-mortem accounts, answers to the
questions posed in the title of this paper can be
obtained.

a) Traditional b) Model-based

VerifyVerify Verify

Verify

Verify

Verify

Verify

Verify

CASE HISTORIES – EXECUTABLE SPECS

CASE 1. EXECUTABLE ASIC SPECIFICATION

The semiconductor industry commonly uses functional
models as a part of the IC design process. The use of
functional models is more prevalent in SOC (system-on-
chip) design, but they are often used in the design of
complex ASICs as well. These models are typically
written using C, C++, or system descriptive languages
(SDL) such as System C [13]. The functional models
are often referred to variously as executable
specifications, behavioral models, algorithmic models or
golden reference models. The models can be used to
convey functionality and/or architecture of a design to a
development and/or implementation team. They can
also be used as a feedback medium to the author of a
traditional textual specification as a means of confirming
the proper understanding of the original design intention.
If a functional model is properly developed with insight
into the entire semiconductor design process, it can be
used as a means of enabling early verification of a given
design. In this case an environment is created to allow
simulation and functional verification between the
reference model and the multiple levels of abstraction
that represent the actual design at various points in the
ASIC design process. This environment can enable
directed testing where the design is checked against
known results. It can also enable indirect or random
testing where the results are checked to ensure that the
results of the actual design matches the reference
model.

In an ideal world, the use of an executable spec could
enable substantial benefits in an ASIC development
process at the semiconductor supplier as well as at the
system design house. The most significant benefits
being: upfront specification clarification at the start of
the development process; better functional requirements
communication; early software development; and, a
more complete verification process. Of course, these are
all not realized to their full extent without expending
engineering effort in bridging the system and the IC
design environment.

ASIC Project

Figure 3 shows a graphical representation of an
executable specification for a custom, mixed signal ASIC
developed for use in an airbag deployment module.
Three levels are overlaid: the graphical user interface

(GUI), a block diagram defining the architecture, and the
circuit layout using standard cells. The development of
this ASIC consisted of the integration of two existing
mixed signal ASICs plus additional features and
functions. In this case study, the development team
created a virtual prototype of the ASIC directly from the
system requirements and independently from the ASIC
design team.

Figure 3. Graphical Representation of an Executable
Specification and Associated Test Environment.

This executable specification was developed as a test
case for communicating the intended functionality of a
design to an ASIC supplier. The executable specification
was delivered to the supplier as three parts: a textual
specification; a C language functional model; and a test
environment which includes input stimuli, output
responses and documentation. Product-level
development teams, as well as the ASIC design team,
used the executable specification to augment their
existing development process. The model was also
written in a format that allowed compatibility with a cycle-
accurate system level simulation environment where the
production software used to configure and control the
ASIC was developed and verified.

At the semiconductor supplier the executable
specification package (model, test environment and
specification) was used to implement the ASIC design.
The test cases delivered in the executable specification,
in addition to some of the system level software code,
were manually re-written in a register transfer level
(RTL) language for compatibility with the ASIC design
and verification environment. In both cases, the re-
written code was used to verify the functionality of the
ASIC design [12].

Lessons Learned

As a result of this project, more than thirty specification
clarifications were identified and resolved early in the
design process. Three major functional issues were
identified, the first of which resulted in a design change
while the remaining two issues resulted in specification
changes. The use of an executable specification
reduced the number of silicon turns on this project by
one, saving perhaps 4 months and avoiding
considerable charges for tooling and IC fabrication. The
use of the functional model allowed the software and
systems design teams to start their development effort
six months prior to receiving the first pass silicon from
the supplier.

Going forward, it has become clear that more work is
needed in bridging the gap between the system level
verification environment and the ASIC design and
verification environment to realize the full power of this
methodology. A more seamless and automated
approach needs to be developed to ensure accurate and
efficient translation of test cases. Overall it was shown
that the use of the executable specification in a high
level graphical simulation environment could enable
earlier software development and earlier software
verification as well as improved IC design results.

CASE 2. ROLLOVER ALGORITHM

Sensing vehicle rollover requires, at a minimum, an
angular rate sensor. An algorithm to discriminate
rollovers from non-rollover events was developed
internally by a team of five engineers. The algorithm
was implemented as a model and thoroughly verified
over a wide range of rollover test events.

After verification, the floating-point model was converted
to a fixed point implementation and autocoded. The
autocoded software was then ported to a microprocessor
evaluation board which provided metrics on memory
usage and throughput. Immediately evident was a very
large usage of random access memory (RAM) and a
spike in throughput during certain times of operation. To
reduce these values, a finite impulse response (FIR)
filter was replace with an infinite impulse response (IIR)
filter, along with a slight modification to the algorithm
logic. This change reduced both RAM and throughput
by approximately 75 percent [6], as shown in Figure 4.

Integrating the autocode within the rest of the product
software required approximately 12 hours of engineering
effort. The main body of the autocode was mostly un-
changed, with one exception being the need to move
from 16-bit to 32-bit variables in the IIR filter to preserve
accuracy.

Figure 4. Improvements in RAM (in bytes) and maximum
throughput (in microseconds) for a rollover algorithm
through the use of an evaluation board.

Lessons Learned

The system engineers developing the algorithm were not
well-versed in fixed-point math. Yet the autocoding tools
make this process intuitive and fast. Of great benefit is
the rapid feedback on microprocessor resources, since
this information may sometimes takes months as
hardware is built and software is written. The simulation
environment created for the original FIR model was
instantly applicable to the IIR model, so the re-
verification took less than one day’s work. The
autocoded rollover algorithm is currently in production.

CASE 3. RADIO CD PLAYBACK

The CD playback mechanism is an important part of
modern radios. With many suppliers there are many
playback mechanisms to choose from, with new
developments occurring each year. Each new playback
deck requires interface routines that process user inputs
(button presses) and determines the proper commands
sent to the deck. In addition to implementing the desired
behavior, error handling for faulty decks or imperfect
CDs is a significant portion of this layer of control
software.

Figure 5. Car radio faceplate. The CD slot is at the top.

BEFORE AFTER

For this project no requirements existed. Therefore the
first step in development was to gather relevant
documents and interview key practitioners. A formal
architecture did not exist for the playback control layer,
so this was created as a framework within which to
develop the behaviors and error handling. Hardware-in-
the-loop (HWIL) testing is crucial for verifying the
software, so the capability to interface executable specs
to a serial message bus interface was also created.

The completed project developed a significantly faster
method of preparing new playback decks for production.
From a reuse library, behavior and error handling
routines can be added to the architectural framework to
build the application quickly. Test harnesses have been
created which allow rapid unit testing. Model coverage
tests were done to ensure that all paths are reachable.
Autocode generated from the model was placed back
into the simulation environment, which was then used to
exercise the playback deck. The complete HWIL setup
time for converting to a new deck can now be completed
in hours or days, instead of weeks or months.

Lessons Learned

Important lessons learned on this project were the
limitations of the current version of tools used for easy
implementation of a product’s architectural ideas.
Although temporary workarounds are suitable for
development, a more streamlined approach is needed in
a production setting, and we are working with tool
vendors to address these needs. Another valuable
lesson is the much greater understandability afforded by
a hierarchical model-based design. New engineers
brought into this project were able to quickly learn how
and where to make contributions, how to test and verify
their portion of the design, and how to place their work
into the reuse library using the concept of a complete
executable spec as defined above. Configuration
management (CM) was applied to all models, libraries
and tool scripts. We discovered that using CM tools
required slightly different handling compared to simply
using documents.

CASE 4. VISION ALGORITHM LIBRARY

Vision-based pattern and object recognition can be a
difficult problem. Several archives of machine vision
routines are available to perform commonly-used
operations such as histogram equalization, edge-
detection, or image binarization. However, these
routines are typically written in C++, and are not directly
suitable for implementation in low-cost automotive
microprocessors. Bridging the gap between advanced
development and production implementation involves
porting the application to the C language. Instead of
repeating this onerous task another approach is being
used where executable models of commonly-used
routines are created and placed in an on-line library. In
this way, both researchers and production teams can

use the same library, and the auto-generated code can
be ported to any target microprocessor.

Lessons Learned

This project is on-going, but has already provided
insights into important aspects of this use of executable
specs. Because vision algorithms are usually in C++,
researchers are often fluent in this language. Compiled
C++ code runs fast (compared to a model), so
researchers are reluctant to change tools. However, the
benefits to the product team are considerable, and
autocoded vision algorithms have been downloaded to a
digital signal processing (DSP) chip and run real-time in
a vehicle application. This process took just days,
compared with the C++ to C conversion which can take
weeks. As more users adopt the model-based library
approach, further benefits are expected in the time
between patents and products.

5. BODY COMPUTER

A leading European automaker initiated a project to
evaluate requirements using executable specs. This
body computer application is responsible for
wiper/washer mechanisms on the front and rear
windows of the vehicle. The goal for this project was
exclusively to validate the requirements. Towards this
end, a graphical user interface (GUI – see figure 6) was
created to allow convenient interface to the executable
model, and a batch test environment was created for
rapid evaluation of multiple scenarios.

Figure 6. GUI for a body computer controlling wipers and
washers, front and rear.

Lessons Learned

The primary focus for this project was to validate and
complete the textual requirements. Making a clear
distinction between requirements and specifications is
the primary lesson learned. The executable model is a
high-level implementation of the requirements which can
be tested and refined early in the development cycle.
Although autocode was not part of this project, the
executable model of the wiper/washer was used as a
specification to the software engineers who then wrote
code by hand.

CASE 6. ADAPTIVE CRUISE CONTROL PROJECT

The specification for the software implementation of the
adaptive cruise control (ACC) algorithm were provided
by the customer in a form of executable model
implemented in Simulink/Stateflow. The tier1 supplier
was responsible for autocoding of the model and up-
integration of the coded software with the product level
software application.

After the original evaluation of the specifications, two
additional artifacts of executable specs were requested
and received from the customer: requirements
documentation that contained a data dictionary; and a
simulation environment that contained vehicle data,
which was collected by the customer during rapid
prototyping and served as the suite of input stimuli and
output responses. In addition, using the executable spec
as an active component, model-coverage based test
vectors were automatically generated using a
commercially available software tool.

Project Benefits

During the lifetime of the ACC software project, the
supplier received more than a dozen versions of the
model. By applying autocode technology, the supplier
was able to reduce turn around time for the fixed-point
software implementation by 40% compared to traditional
handcode based software development. Quick
implementation of the changes in the algorithms allowed
the customer to check more variations of the algorithm
on the vehicle fleet and select the best one. The memory
(~80K) and the throughput consumption of the
autocoded software were on par with the handcoded
implementation of the similar algorithms. The autocoded
software was released to production.

Figure 7. High-level view of the design layout for the
adaptive cruise control project. Selected subsystems are
displayed to the right.

Lessons Learned

The use of executable specification and autocode for the
production project involves the creation of the
development environment that accommodates changes
in the specifications and autocode in an easy and
repeatable way. It dictates the existence of supporting
tools like configuration management, model differences,
model merging, and a universal data dictionary.
Currently not all these tools are available on the market.
Therefore, additional time should be reserved in the
production schedule for the development of the
supporting tools. Secondly, the modeling and autocode
guidelines should be developed prior to the start of a
large project. Both engineering teams, the algorithm
developers and autocode software engineers should
follow the same common guidelines. If will help assure
the maintainability of the model and efficiency of the
generated code.

CASE 7. NOTIFY VEHICLE OP (SEAT BELT
REMINDER)

The National Highway Traffic and Safety Administration
(NHTSA) within the US Department of Transportation
regulates that vehicles sold in the US have a seat belt
reminder (SBR) system, also called “notify vehicle
operator”. This functionality was implemented as an
executable spec and had three primary objectives:

1. Assess and implement the SBR requirements
received from a vehicle manufacturer.

2. Generate autocode for production.

3. Perform verification testing to the requirements
as well as worst-case scenarios.

The GUI created to interface with the state diagram of
the SBR system is shown in figure 8.

Project Results

The verification plan included a total of 75 scenarios
which were generated and run across the model.
Results were captured automatically in a spreadsheet for
review. A total of seven requirement discrepancies were
found through the verification process. Near the end of
this project, the customer changed the system
requirements in several areas. The needed changes
were made and verified within 2 days. The final model
was placed in a re-use library for future development
work.

Figure 8. GUI for Notify Vehicle Operator, giving access
to configuration settings and system inputs. Outputs are
graphical, visual and auditory, and results can be saved in
text format.

Lessons Learned

The testing performed on the SBR functions allowed the
discovery of requirement errors very early in the project.
Both the interactive real-time GUI and the off-line batch
simulation capabilities provided the ability to test a wide
range of scenarios, even going beyond the
requirements, without adding much time to the project
completion.

Autocode generated from the model was reviewed, but
not used in production. The product team did not have
sufficient confidence to use the autocode, even though
the host-compiled code was directly tested against the
same scenarios as the model (golden reference).
Introducing new implementation methods within the
engineering community commonly meets with
resistance. Even when clear benefits in accuracy,
thoroughness and cycle time are evident, the natural
human inertia to change, and inherent skepticism
towards new ideas, must not be ignored.

BENEFITS OF MODEL-BASED DEVELOPMENT

PRIMARY BENEFITS

A. Specification Discovery – language-independent
system behavior can be demonstrated to global
customers, clearly conveying the expected
performance.

B. Golden Reference (Single-source of information)
– a central golden model can be used for

documentation, calibration, source code, and
interactive graphical user interfaces, plus
regression testing when changes are made.

C. Architectural Exploration – using either cycle-
accurate simulation (IC example), a
microprocessor evaluation board (rollover
example), or HWIL (audio example) along with
reuse libraries, design choices such as
hardware/software partitioning can be evaluated
to determine resource needs, allowing early and
accurate estimates of manpower and
components.

D. Design Quality – automated checking catches
certain errors, and the visibility of the
architecture supports a methodology conducive
to high quality designs.

E. Verification and Testability – models allow for
batch testing at many levels of details, so that
many more test cases can be explored
compared to traditional bench or field testing.
The functional test cases are used (sometimes
with added detail) for the model as well as the
fully implemented product.

F. Autocode – tools to generate embedded code
from executable models avoid certain coding
errors, reduce development time and help
ensure congruency throughout implementation.

SECONDARY BENEFITS

G. Co-simulation tools can be interfaced so that each
element of the design process can be developed
using other elements as a test bed.

H. Continuity – the use of models from concept to
development to production reduces waste and
shortens the time from patents to products.

I. Graphical Representation – many modeling tools
allow for graphical system creation, facilitating ease
of understanding and communication.

DISCUSSION

The traditional method to capture customer requirements
is a written document. These written specifications
typically contain charts, tables, graphs, and diagrams in
addition to the textual language to convey product or
system specifications. In some cases, important
examples might be included to ensure the desired
functionality and performance. What follows is a
summary of the sources of inefficiency in a traditional
approach:

1. Written requirements are subject to
misinterpretation, and derived requirements

may not anticipate all interactions between
components.

2. Testing at the end of integration implies long
and repeated cycles of learning, inability to
adapt to changing needs and severe impact
to time-to-market.

3. Weaknesses in the specifications tend to be
discovered late in the process, and delivery
pressures often favor the quick fix.

A graphics-based executable model with the seven
elements of completion described above allows full
realization of the benefits of model-based development.

CONCLUSIONS

Math-based development through the methodology of
executable specs can be applied to a wide variety of
applications. While the tools used may change, and the
process flows may have different emphases, we have
seen improvements in time-to-market, product quality
and overall development cost. The examples above
illustrate some of the details needed to understand how
executable specs can be used, where to expect benefits,
and how to understand the limitations.

Executable specs do not solve all problems. Good
engineering practices are essential. An informed
management is essential. Benefits may not be realized
on the first introduction due to the front loading and
learning of the design process. A disciplined, methodical
campaign of training, mentoring and execution is needed
for implementation, sustained by long-term vision.

In order to gain the maximum entitlement to using
executable specifications, engineering organization will
need to start shifting away from sequential development
flows toward concurrent development flows. Engineering
skills need to broaden across the typical boundaries of
hardware, software and systems. Design methodologies
will need to augment the standard development
processes already in place. This combination will ensure
that both the “what’s and the how’s” are defined for
developing new products using executable specs.

Further consolidation of math-based development will
eventually see greater coordination with electrical
design, EMI modeling, package process and tolerancing,
test development and artificial intelligence optimization.
Through early adoption of math-based methods, an
engineering organization positions itself to reap benefits
in efficiency and design quality as further technical
development become available. Those companies
aggressively developing these capabilities now will be
those which prosper in the future.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge contributions to the
content and intent of this paper from Randy Brunts,
Everett Lumpkin, Michael Gabrick, Rick Nicholson,
Nambi Ganesh, David Braun, Chad Aeschliman, BC
Manjunath, Jason Molenda, Branislav Kisacanin, Imran
Ahmed A, and Manoj Dwivedi.

REFERENCES

1. “Model Based Systems Development in Automotive,”
M. Mutz, M. Huhn, U. Goltz, C. Kromke, SAE World
Congress 2002, paper 03B-128.

2. “Zero Hand Coding Approach for Controller
Development,” G. Saikalis, S. Oho, S. Zunft, “SAE
2002 World Congress, paper 2002-01-0142.

3. “Trends of Future Powertrain Development and the
Evolution of Powertrain Control Systems,” T. Ueda,
A. Ohata, SAE Convergence 2004, 2004-21-0063.

4. “Model-Based Tools Update,” The Hansen Report
on Automotive Electronics, June 2001, vol. 14, no. 5.

5. “A System-Design Methodology: Executable-
Specification Refinement,” D. Gajski, F. Vahid, S.
Narayan, European Design and Test Conference,
1994 Proceedings, March 1994.

6. “Systematic Model-Based Testing of Embedded
Automotive Software”, M.Conrad, I.Frey,
S.Sadeghipour, Electronics Notes in Theoretical
Computer science 111 (2005) pp.13-26.

7. “Incorporating Autocode Technology into Software
Development Process”, L.Vitkin, T.K.Jestin, ICSE
2004, pp.51-57.

8. “Managing the Challenges of Automotive Embedded
Software Development Using Model-Base Methods
for Design and Specification”, M Yeaton, SAE 2004-
01-0720

9. “Integration of the Code Generation Approach in the
Model-Based Development Process by Means of
Tool Certification”, I.Sturmer, Journal of Integrated
Design and Process Science, Vol. 8(2), pp.1-11,
2004.

10. “Automotive Software development: A model Based
Approach”, M.Rappl, P. Braun, M.von der Beek, C.
Schroder, SAE 2002-01-0875.

11. “Design and Implementation of a Rollover Algorithm
in Production,” P. Schubert, dSPACE User
Conference, 2004.

12. “Design Process Changes Enabling Rapid
Development”, F Winters, C Mielenz, G Hellestrand,
Convergence 2004-21-0085

13. “Reuse Methodology Manual For System On Chip
Designs”, M. Keating, P. Bricaud

Peter J. Schubert, Ph.D.
Packer Engineering, Inc.
1950 N. Washington St.
Naperville, IL 60566-0353
630-505-5722 or 800-323-0114

