
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-0790 Web: www.sae.org

PAPER SERIES 2007-01-0783

Model-based Development for Event-driven
Applications using MATLAB:

Audio Playback Case Study

Peter J. Schubert
Packer Engineering, Inc.

Lev Vitkin
Delphi Electronics & Safety

 David Braun
Purdue University

Reprinted From: Systems Engineering, 2007
(SP-2130)

2007 World Congress
Detroit, Michigan
April 16-19, 2007

SAE TECHNICAL

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/334949683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

By mandate of the Engineering Meetings Board, this paper has been approved for SAE publication upon
completion of a peer review process by a minimum of three (3) industry experts under the supervision of
the session organizer.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of SAE.

For permission and licensing requests contact:

SAE Permissions
400 Commonwealth Drive
Warrendale, PA 15096-0001-USA
Email: permissions@sae.org
Fax: 724-776-3036
Tel: 724-772-4028

For multiple print copies contact:

SAE Customer Service
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org

ISSN 0148-7191
Copyright © 2007 SAE International
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE.
The author is solely responsible for the content of the paper. A process is available by which discussions
will be printed with the paper if it is published in SAE Transactions.

Persons wishing to submit papers to be considered for presentation or publication by SAE should send the
manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA

Keywords: Executable Specifications, Systems Design,
Model-Based Development, Audio Playback.

ABSTRACT

Audio playbacks are mechanisms which read data from
a storage medium and produce commands and signals
which an audio system turns into music. Playbacks are
constantly changed to meet market demands, requiring
that the control software be updated quickly and
efficiently. This paper reviews a 12 month project using
the MATLAB/Simulink/Stateflow environment for model-
based development, system simulation, autocode
generation, and hardware-in-the-loop (HIL) verification
for playbacks which read music CDs or MP3 disks. Our
team began with a “clean slate” approach to playback
architecture, and demonstrated working units running
production-ready code. This modular, layered
architecture enables rapid development and verification
of new playback mechanisms, thereby reducing the time
needed to evaluate playback mechanisms and integrate
into a complete infotainment system. A system
simulation environment which included a real-time
operating system supports generic mechanism and
behavior models, to account for functional differences in
playback mechanism from different suppliers. The
execution of HIL system simulation required the design
and implementation of a communication protocol device
which transceives command messages passed between
the system environment and the playback mechanism.
With this harness, either a generic mechanism model or
a hardware unit can be tested, allowing development of
mechanism control software before production system
hardware platforms are available. Specification-derived
test vectors are used as functional tests during
development and results have been used during the
verification of auto-generated production software
against the model. A comprehensive application of
executable specs to audio playbacks is successfully
demonstrated, including important considerations such
as configuration management, model library
management, and requirements traceability. Limitations
and benefits of this approach are described, along with
lessons learned in the implementation of model-based
design in the field of automotive electronics.

CHALLENGES

Audio playback mechanisms (“playbacks”) are typically
the most complex building block in a radio. Aggressive
price-cutting by playback vendors, and a steady flow of
new functions and requirements all drive rapid change.
Despite communication standards, playbacks vary in
their implementation of IIC, or other protocols. On-board
microprocessors within a playback may provide verbose
error messages, just a modicum of information, or no
feedback at all.

Automotive consumers demand interoperability of their
music media. Despite the industry
standard for Compact Disc Digital Audio
(the “Red Book”, IEC 908 – see CDDA
trademark at right), many widely-
available CD burning programs do not comply. Thus,
while CD playback software developers strive for
universality, there are many radio warranty complaints
whose root cause is a non-compliant CD format.

Technology advances in consumer electronics are
expected in automobiles more rapidly each year. From
on-board vinyl record players pioneered by Delco
Electronics (the forerunner of Delphi Electronics &
Safety) in the 1950’s, today’s mobile audiophiles bring
music stored on tape, on CDs (CDDA or MP3), on flash
memory sticks, and on portable hard drives (e.g. iPod).
In addition, vehicle manufacturers continue to bundle
more features into car radios, such as navigation, safety
warnings (seat belt reminder), Bluetooth® wireless
communications, and satellite radio (e.g. XM™). These
complex devices are no longer just a “radio”, but are
more accurately called “infotainment systems”.

To handle the rapid change of such complex products,
radio suppliers must accelerate software development,
testing, and implementation for playbacks. Modular
design within a universal architecture is a design goal,
using customizable building blocks from a reuse library.
The project described herein addresses these needs
and successfully demonstrates the ability to rapidly
create the control software to operate a new playback.

1

2007-01-0783

Model-based Development for Event-driven Applications using
MATLAB: Audio Playback Case Study

Peter J. Schubert
Packer Engineering, Inc.

Lev Vitkin
Delphi Electronics & Safety

 David Braun
Purdue University

Copyright © 2007 SAE International

ARCHITECTURE

A modern radio is constructed of building blocks such as
the AM/FM tuner, the human-machine interface (HMI),
communications, the playback mechanism, and so forth.
The various building blocks are run as tasks, controlled
by the operating system (OS). The OS calls these tasks
based on assigned priorities and inter-dependencies,
triggered either internally, or in response to button-
presses or media insertions on the radio faceplate.
During and after the execution of its task, the playback
module sends status information and error reports back
to the OS. As a result, the OS will initiate the execution
of other tasks, like displaying on the HMI, or sending
communication messages to other tasks, such as
volume control. Control of the sound profile (volume,
equalizer, etc.) is performed on the radio main board
(microprocessor, digital signal processing and
power/driver chips), and is not relevant to playbacks.
The interface between the main board and the playback
is typically a low-end microprocessor sending and
receiving digital communications messages in two
directions using a protocol such as IIC (Inter Integrated
Circuit™). Streaming digital audio is typically sent
directly from the playback to the main board via a
dedicated bus. The playback controller chip may
physically reside within the playback hardware itself
(”smart” playback), on a separate substrate (daughter
board), or even reside on the main board (up-
integrated).

Architectural requirements for Radio are: separation of
algorithm layer, low-level drivers, and physical hardware
with well-defined interfaces between them;
encapsulation of the main functions (tasks); a well-
defined interaction between the tasks and OS; flexible
task configuration based on user-requested features of
the radio; capability for independent testing of each task;
and the ability to perform integrated testing.

Regardless of the location of the playback controller, the
layering architecture should remain the same. A
schematic view of the top-most architecture is shown in
Figure 1.

Figure 1. Radio Playback System Model architecture:

Algorithm layer, Drivers Layer and Hardware layer.

Architectural requirements for each task are different
from the Radio requirements. These requirements are:
layered with well-defined interfaces; independent of
operating system and development platform; capable of
unit testing and regression tests; amenable to code
reuse; and capable of managing states of operation.
Principles of architectural development include: the use
of contract programming (enforced interfaces) until just
prior to production release; the use of graphical tools for
facile communications; data and functional abstraction;
and automated testing tools.

Playbacks execute typical commands known to all users
of modern audio devices, such as: load, eject, play,
stop/pause, scan, fast forward/reverse, seek up/down
(track and/or folder), and options such as shuffle. The
functionalities which are evoked in response to these
commands are called behaviors. In event-driven radio
applications it is possible to receive the request for
execution of new behavior before the completion of the
previous behavior. The priority and interaction of
behaviors can be quite complex, and in many cases
depends on specific customer requirements. Handling
the execution sequence falls to a task “operation layer”
which describes what is being commanded by the user
or the OS. The behaviors themselves are collected in
the task “functional layer”. Finally, a task “communication
layer” handles two-way interface between the playback
and the radio’s main board. A schematic view of the
architecture is shown in Figure 2.

Figure 2. Playback Task follows a 3-layer

architecture: Operation, Function, and

Communication.

The design, modeling and simulation were performed
using MATLAB/Simulink/Stateflow™ (The Mathworks,
Inc.), which is widely used in automotive electronics
system design. In order to comply with the architectural
requirements and principals outlined above, we
construct each behavior in the uniform way, consisting of
three main blocks: Initialization, Run, and Finish, as
shown in Figure 3.

2

Figure 3. Behavior architecture, with Initialization,

Run, and Finish steps. The “graphical function”

defaultinit() is run upon entry into the behavior.

The behavior receives an event from the Behavior
Controller, which is the main block of the Operation
Layer in Figure 2. These events command the behavior
to cycle through the Initialization, Run, and Finish states.
Using these states allows us to clearly implement the
functional abstraction and the concept of contract
programming. User requests reach the Behavior
Controller via pre-defined messages from the OS. The
Behavior Controller assures that the current behavior
completed its Finish state prior to initiating a newly-
requested behavior. The Behavior Controller
communicates through the Virtual Device layer which
converts OS commands into IIC messages. The Virtual
Device symmetrically translates and relays incoming IIC
messages from the behavior to the Behavior Controller.
Only after the Behavior controller receives the
acknowledgement that the Finish state of the current
behavior is completed will it switch to the new behavior
and issue the Initiation event to that behavior.

ERROR HANDLING

If every CD followed Red Book standards and never
received a scratch, if every playback worked perfectly,
and if no driver allowed their children to insert hotel
keycards into their car radios, playback control would be
a straightforward task. The first phase of this model-
based development project was to capture a generic set
of requirements for a playback unit. It was discovered
that specifications vary considerably among the vehicle
manufacturers (VM). Each VM has a certain style and
function set in their radios (infotainment systems),
precluding standardization and complicating reusability.
Each playback vendor has their own ideas on how to
handle skips: some attempt recovery while others

remain oblivious. The interaction between desired
behavior and the countless ways in which a radio can be
misused and abused make the handling of errors the
most important feature of a playback controller.
Developing an exhaustive set of requirements is
believed to be intractable. Instead, we developed a
unique strategy for error handling.

We adopted a hybrid error-handling strategy midway
between competing extremes. One the one hand, a
global error handling unit could be created with logic
routines for every conceivable glitch. It would be
memory intensive (and therefore costly) but universal;
yet over the life of the vehicle its algorithms would
become outdated, and require periodic upgrades. On
the other hand, a small-sized error handling routine can
be developed for each behavior. This is convenient for
control engineers, but engenders considerable
redundancy, since many playback Behaviors are
affected by a given error. Our hybrid strategy abstracts
error handling in each layer of playback tasks with the
goal that error-handling is processed at the lowest level
possible. If an error is discovered at the Communication
Layer and can not be corrected at that layer, the
information is “passed” to the next higher level of the
architecture, the Function Layer. The Function layer tries
to correct the problem, for example by repeatedly
sending the command to the lower Communication
layer. If the problem persists, then the error message is
passed up to the Operation layer. The Behavior
Controller attempts to fix the error, for example by re-
initializing the behavior. Should the problem still be
irrecoverable, a disc eject may be initiated. Should that
fail, a signal is sent to the main board for final
dispensation, and a message is passed to the HMI.

VALIDATION AND HARDWARE-IN-THE-LOOP

The standard practice of functional decomposition
teaches us to break complex problems down
hierarchically until we have “atomic” tasks, those which
can be accomplished by an individual or small team
without further input. Their output is a functional “unit”,
which can then be tested to derived requirements.

In traditional validation, software units which comprise
playback control are integrated and tested on a lab
bench. However, coding or logic errors within the units
are difficult to debug once they have been downloaded
to the controller. To address this issue, we have created
virtual test environments for the radio main board
(including the operating system), for the playback
controller, and for the playback mechanism itself.

For unit testing of the Playback, we created adaptive
virtual test fixtures which “wrap” a given behavior.
Through this wrapper, we can apply test vectors
(manually entered or created automatically through
scripts) and capture the outputs. These wrappers work
for each level of the architecture, allowing us to perform
unit test and integration tests in a virtual environment.

3

Figure 7. Screen shot of Code generation /

verification environment. The behavior under code

generation or test inserted into this standard

template is the large magenta rectangle at right.

The environment for code generation and software unit
tests for every Behavior is similar to the environment for
the model’s unit testing. The same functional test
vectors, which were use in model’s unit tests, were re-
used for verification of generated code against the
model. In addition to functional test vectors, the suite of
model-coverage based test vectors were generated by
employing the automatic test vector generation tool
Reactis™ (Reactive Systems). A comparator function,
which is part of the TargetLink code generation tool,
captured any discrepancies between the model behavior
and the behavior of auto generated code. When all
discrepancies are identified and resolved, and all tests
pass, the units are released. Finally, the generated files
were linked with hand-implemented OS and HWIO
drivers to run on hardware. A comparison between
autocoded software development times and manually-
generated playback control software is shown in Table 1.

Coding
(hours)

Testing
(hours)

TOTAL
(hours)

TOTAL
(bytes)

Hand-
code

Not
available

Not
available

Not
available

14903

Auto-code 6 8 14 12437

5

Table 1. Comparison of development times in hours

and bytes for hand-code versus autocode (including

Stateflow modeling).

LESSONS LEARNED

Near the project endpoint, a new playback unit was
being considered. As a test case, we adapted the
interfaces to the new unit in only four hours. This
demonstrates the considerable time savings possible
with a modular architecture, reusable building blocks and

customizable, adaptive interfaces. Production-intent
code was validated virtually, on the lab bench, and has
undergone a full peer review per corporate procedures.

LIMITATIONS

Software developers accustomed to the C language
expect pointers, which MATLAB lacks. The long list of
tools used in this work is obviously a detriment to
training. Coding the OS in Java was our second choice,
since modeling a pre-emptive OS in MATLAB is difficult.
Capturing communications logic in Stateflow is not
suited to the lowest level of detail (“bit-banging”), and is
not “cycle-accurate”, so that very low level operations do
not gain from its use. We realized that only a very well-
defined development environment and process would
allow efficient use of MATLAB/Simulink/Stateflow for
production event-driven applications. Creation of such
an environment is not a trivial task and requires
advanced knowledge of modeling tools, and sufficient
time away from the typical pressure of production
schedules.

BENEFITS

We found that the visual nature of the architecture made
it accessible to high-level managers and less-technical
supervisors, as well as facilitated technical discussions
amongst our team. We found legacy code easy to
integrate with either Stateflow or TargetLink. Code was
generated and tested just in fraction of time that is
typically required for hand-code implementation of the
same algorithm. Our test bench works for unit testing,
integration testing, and can even work with the entire
radio. Re-use is quick and convenient, as evidenced by
our 4 hour swap-over. The use of HIL allowed us to
validate not only the developed algorithm, but the
playback mechanism from new supplier. We discovered
the features of this mechanism, that were not described
in the supplied documentation, and adjusted our control
algorithm accordingly.

CONCLUSIONS

Using a suite of engineering automation tools centered
around MATLAB, we have established a playback
architecture with distinct building blocks and well-defined
interfaces. This architecture supports re-usable building
blocks drawn from on-line libraries. The simulation
environment created allows testability of units and
integration within the playback functionality. We are able
to develop and evaluate control algorithms which
operate in a virtual environment, and we have created
the capability to run these tests on the playback device
in a HIL configuration. From the behaviors and error
handling implemented in the model environment, we
have generated autocode, compiled this on the host, and
used it to communicate and operate a playback
mechanism through the HIL interface. Throughout this
exercise, we have learned to more clearly identify where
the tools and methodologies are helpful in product

6

development, as well as learning their limitations so that
we can apply them where the greatest benefit can be
obtained. A number of auxiliary tasks were completed
that were not originally anticipated, but which need be
performed only once. The use of model-based
development provides a platform which facilitates rapid
turn-around on playback control development.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge participation on this
project by Greg Kuhlman, Gary Mitchell, Doug Srail, BC
Manjunath, Jim Costa, Jason Molenda, Kirk Bailey, Jill
Hersberger and Becky Cobb. We also extend our
thanks to the champions and sponsors of this project:
Randy Brunts, Jeff Jones and Michael Neuhalfen.

REFERENCES

1. “Model Based Systems Development in Automotive,”
M. Mutz, M. Huhn, U. Goltz, C. Kromke, SAE World
Congress 2002, paper 03B-128.

2. “Model-Based Tools Update,” The Hansen Report
on Automotive Electronics, June 2001, vol. 14, no. 5.

3. “Incorporating Autocode Technology into Software
Development Process”, L.Vitkin, T.K.Jestin, ICSE
2004, pp.51-57.

4. “Managing the Challenges of Automotive Embedded
Software Development Using Model-Base Methods
for Design and Specification”, M Yeaton, SAE 2004-
01-0720

5. “Automotive Software development: A model Based
Approach”, M.Rappl, P. Braun, M.von der Beek, C.
Schroder, SAE 2002-01-0875

Contact information:
Peter J. Schubert, Ph.D.
Packer Engineering, Inc.
1950 N. Washington St.
Naperville, IL 60566-0353
800-323-0114
pschubert@packereng.com

