
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A.   Tel: (724) 776-4841  Fax: (724) 776-0790   Web: www.sae.org

PAPER SERIES 2007-01-0783

Model-based Development for Event-driven
Applications using MATLAB:

Audio Playback Case Study

Peter J. Schubert
Packer Engineering, Inc.

Lev Vitkin
Delphi Electronics & Safety

 David Braun
Purdue University

Reprinted From:  Systems Engineering, 2007
(SP-2130)

2007 World Congress
Detroit, Michigan
April 16-19, 2007

SAE TECHNICAL

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/334949683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


By mandate of the Engineering Meetings Board, this paper has been approved for SAE publication upon
completion of a peer review process by a minimum of three (3) industry experts under the supervision of
the session organizer.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of SAE.

For permission and licensing requests contact:

SAE Permissions
400 Commonwealth Drive
Warrendale, PA 15096-0001-USA
Email: permissions@sae.org
Fax: 724-776-3036
Tel: 724-772-4028

For multiple print copies contact:

SAE Customer Service
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org

ISSN 0148-7191
Copyright © 2007 SAE International
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE.
The author is solely responsible for the content of the paper. A process is available by which discussions
will be printed with the paper if it is published in SAE Transactions.

Persons wishing to submit papers to be considered for presentation or publication by SAE should send the
manuscript or a 300 word abstract of a proposed manuscript to: Secretary, Engineering Meetings Board, SAE.

Printed in USA



Keywords:  Executable Specifications, Systems Design, 
Model-Based Development, Audio Playback. 

ABSTRACT 

Audio playbacks are mechanisms which read data from 
a storage medium and produce commands and signals 
which an audio system turns into music. Playbacks are 
constantly changed to meet market demands, requiring 
that the control software be updated quickly and 
efficiently.  This paper reviews a 12 month project using 
the MATLAB/Simulink/Stateflow environment for model-
based development, system simulation, autocode 
generation, and hardware-in-the-loop (HIL) verification 
for playbacks which read music CDs or MP3 disks.  Our 
team began with a “clean slate” approach to playback 
architecture, and demonstrated working units running 
production-ready code.  This modular, layered 
architecture enables rapid development and verification 
of new playback mechanisms, thereby reducing the time 
needed to evaluate playback mechanisms and integrate 
into a complete infotainment system.  A system 
simulation environment which included a real-time 
operating system supports generic mechanism and 
behavior models, to account for functional differences in 
playback mechanism from different suppliers.  The 
execution of HIL system simulation required the design 
and implementation of a communication protocol device 
which transceives command messages passed between 
the system environment and the playback mechanism.  
With this harness, either a generic mechanism model or 
a hardware unit can be tested, allowing development of 
mechanism control software before production system 
hardware platforms are available.  Specification-derived 
test vectors are used as functional tests during 
development and results have been used during the 
verification of  auto-generated production software 
against the model. A comprehensive application of 
executable specs to audio playbacks is successfully 
demonstrated, including important considerations such 
as configuration management, model library 
management, and requirements traceability.  Limitations 
and benefits of this approach are described, along with 
lessons learned in the implementation of model-based 
design in the field of automotive electronics. 

CHALLENGES 

Audio playback mechanisms (“playbacks”) are typically 
the most complex building block in a radio.  Aggressive 
price-cutting by playback vendors, and a steady flow of 
new functions and requirements all drive rapid change.  
Despite communication standards, playbacks vary in 
their implementation of IIC, or other protocols.  On-board 
microprocessors within a playback may provide verbose 
error messages, just a modicum of information, or no 
feedback at all.   

Automotive consumers demand interoperability of their 
music media.  Despite the industry 
standard for Compact Disc Digital Audio 
(the “Red Book”, IEC 908 – see CDDA 
trademark at right), many widely-
available CD burning programs do not comply.  Thus, 
while CD playback software developers strive for 
universality, there are many radio warranty complaints 
whose root cause is a non-compliant CD format. 

Technology advances in consumer electronics are 
expected in automobiles more rapidly each year.  From 
on-board vinyl record players pioneered by Delco 
Electronics (the forerunner of Delphi Electronics & 
Safety) in the 1950’s, today’s mobile audiophiles bring 
music stored on tape, on CDs (CDDA or MP3), on flash 
memory sticks, and on portable hard drives (e.g. iPod).  
In addition, vehicle manufacturers continue to bundle 
more features into car radios, such as navigation, safety 
warnings (seat belt reminder), Bluetooth® wireless 
communications, and satellite radio (e.g. XM™).  These 
complex devices are no longer just a “radio”, but are 
more accurately called “infotainment systems”. 

To handle the rapid change of such complex products, 
radio suppliers must accelerate software development, 
testing, and implementation for playbacks.  Modular 
design within a universal architecture is a design goal, 
using customizable building blocks from a reuse library.  
The project described herein addresses these needs 
and successfully demonstrates the ability to rapidly 
create the control software to operate a new playback. 
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ARCHITECTURE

A modern radio is constructed of building blocks such as 
the AM/FM tuner, the human-machine interface (HMI), 
communications, the playback mechanism, and so forth. 
The various building blocks are run as tasks, controlled 
by the operating system (OS).  The OS calls these tasks 
based on assigned priorities and inter-dependencies, 
triggered either internally, or in response to button-
presses or media insertions on the radio faceplate.  
During and after the execution of its task, the playback  
module sends status information and error reports back 
to the OS. As a result, the OS will initiate the execution 
of other tasks, like displaying on the HMI, or sending 
communication messages to other tasks, such as 
volume control. Control of the sound profile (volume, 
equalizer, etc.) is performed on the radio main board 
(microprocessor, digital signal processing and 
power/driver chips), and is not relevant to playbacks.  
The interface between the main board and the playback 
is typically a low-end microprocessor sending and 
receiving digital communications messages in two 
directions using a protocol such as IIC (Inter Integrated 
Circuit™). Streaming digital audio is typically sent 
directly from the playback to the main board via a 
dedicated bus.  The playback controller chip may 
physically reside within the playback hardware itself 
(”smart” playback), on a separate substrate (daughter 
board), or even reside on the main board (up-
integrated).  

Architectural requirements for Radio are:  separation of 
algorithm layer, low-level drivers, and physical hardware 
with well-defined interfaces between them;  
encapsulation of the main functions (tasks); a well-
defined interaction between the tasks and OS; flexible 
task configuration based on user-requested features of 
the radio; capability for independent testing of each task; 
and the ability to perform integrated testing.  

Regardless of the location of the playback controller, the 
layering architecture should remain the same. A 
schematic view of the top-most architecture is shown in 
Figure 1. 

Figure 1. Radio Playback System Model architecture: 

Algorithm layer, Drivers Layer and Hardware layer.  

Architectural requirements for each task are different 
from the Radio requirements. These requirements are:  
layered with well-defined interfaces; independent of 
operating system and development platform; capable of 
unit testing and regression tests; amenable to code 
reuse; and capable of managing states of operation.  
Principles of architectural development include:  the use 
of contract programming (enforced interfaces) until just 
prior to production release; the use of graphical tools for 
facile communications; data and functional abstraction;  
and automated testing tools.  

Playbacks execute typical commands known to all users 
of modern audio devices, such as:  load, eject, play, 
stop/pause, scan, fast forward/reverse, seek up/down 
(track and/or folder), and options such as shuffle. The 
functionalities which are evoked in response to these 
commands are called behaviors.  In event-driven radio 
applications it is possible to receive the request for 
execution of new behavior before the completion of the 
previous behavior.  The priority and interaction of 
behaviors can be quite complex, and in many cases 
depends on specific customer requirements.  Handling 
the execution sequence falls to a task “operation layer” 
which describes what is being commanded by the user 
or the OS.  The behaviors themselves are collected in 
the task “functional layer”. Finally, a task “communication 
layer” handles two-way interface between the playback 
and the radio’s main board.  A schematic view of the 
architecture is shown in Figure 2. 

Figure 2.  Playback Task follows a 3-layer 

architecture:  Operation, Function, and 

Communication. 

The design, modeling and simulation were performed 
using MATLAB/Simulink/Stateflow™ (The Mathworks, 
Inc.), which is widely used in automotive electronics 
system design.  In order to comply with the architectural 
requirements and principals outlined above, we 
construct each behavior in the uniform way, consisting of  
three main blocks: Initialization, Run, and Finish, as 
shown in Figure 3. 
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Figure 3.  Behavior architecture, with Initialization, 

Run, and Finish steps.  The “graphical function” 

defaultinit() is run upon entry into the behavior. 

The behavior receives an event from the Behavior 
Controller, which is the main block of the Operation 
Layer in Figure 2. These events command the behavior 
to cycle through the Initialization, Run, and Finish states. 
Using these states allows us to clearly implement the 
functional abstraction and the concept of contract 
programming.  User requests reach the Behavior 
Controller via pre-defined messages from the OS.  The 
Behavior Controller assures that the current behavior 
completed its Finish state prior to initiating a newly-
requested behavior.  The Behavior Controller  
communicates through the Virtual Device layer which 
converts OS commands into IIC messages.  The Virtual 
Device symmetrically translates and relays incoming IIC 
messages from the behavior to the Behavior Controller.  
Only after the Behavior controller receives the 
acknowledgement that the Finish state of the current 
behavior is completed will it switch to the new behavior 
and issue the Initiation event to that behavior. 

ERROR HANDLING 

If every CD followed Red Book standards and never 
received a scratch, if every playback worked perfectly, 
and if no driver allowed their children to insert hotel 
keycards into their car radios, playback control would be 
a straightforward task. The first phase of this model-
based development project was to capture a generic set 
of requirements for a playback unit.  It was discovered 
that specifications vary considerably among the vehicle 
manufacturers (VM).  Each VM has a certain style and 
function set in their radios (infotainment systems), 
precluding standardization and complicating reusability.  
Each playback vendor has their own ideas on how to 
handle skips:  some attempt recovery while others 

remain oblivious.  The interaction between desired 
behavior and the countless ways in which a radio can be 
misused and abused make the handling of errors the 
most important feature of a playback controller.  
Developing an exhaustive set of requirements is 
believed to be intractable.  Instead, we developed a 
unique strategy for error handling. 

We adopted a hybrid error-handling strategy midway 
between competing extremes.  One the one hand, a 
global error handling unit could be created with logic 
routines for every conceivable glitch.  It would be 
memory intensive (and therefore costly) but universal; 
yet over the life of the vehicle its algorithms would 
become outdated, and require periodic upgrades.  On 
the other hand, a small-sized error handling routine can 
be developed for each behavior.  This is convenient for 
control engineers, but engenders considerable 
redundancy, since many playback Behaviors are 
affected by a given error.  Our hybrid strategy abstracts 
error handling in each layer of playback tasks with the 
goal that error-handling is processed at the lowest level 
possible.  If an error is discovered at the Communication 
Layer and can not be corrected at that layer, the 
information is “passed” to the next higher level of the 
architecture, the Function Layer. The Function layer tries 
to correct the problem, for example by repeatedly 
sending the command to the lower Communication 
layer. If the problem persists, then the error message is 
passed up to the Operation layer. The Behavior 
Controller attempts to fix the error, for example by re-
initializing the behavior. Should the problem still be 
irrecoverable, a disc eject may be initiated.  Should that 
fail, a signal is sent to the main board for final 
dispensation, and a message is passed to the HMI. 

VALIDATION AND HARDWARE-IN-THE-LOOP 

The standard practice of functional decomposition 
teaches us to break complex problems down 
hierarchically until we have “atomic” tasks, those which 
can be accomplished by an individual or small team 
without further input.  Their output is a functional “unit”, 
which can then be tested to derived requirements. 

In traditional validation, software units which comprise 
playback control are integrated and tested on a lab 
bench.  However, coding or logic errors within the units 
are difficult to debug once they have been downloaded 
to the controller.  To address this issue, we have created 
virtual test environments for the radio main board 
(including the operating system), for the playback 
controller, and for the playback mechanism itself. 

For unit testing of the Playback, we created adaptive 
virtual test fixtures which “wrap” a given behavior.  
Through this wrapper, we can apply test vectors 
(manually entered or created automatically through 
scripts) and capture the outputs.  These wrappers work 
for each level of the architecture, allowing us to perform 
unit test and integration tests in a virtual environment. 
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Figure 7.  Screen shot of Code generation / 

verification environment. The behavior under code 

generation or test inserted into this standard 

template is the large magenta rectangle at right. 

The environment for code generation and software unit 
tests for every Behavior is similar to the environment for 
the model’s unit testing. The same functional test 
vectors, which were use in model’s unit tests, were re-
used for verification of generated code against the 
model. In addition to functional test vectors, the suite of 
model-coverage based test vectors were generated by 
employing the automatic test vector generation tool 
Reactis™  (Reactive Systems). A comparator function, 
which is part of the TargetLink code generation tool, 
captured any discrepancies between the model behavior 
and the behavior of auto generated code.  When all 
discrepancies are identified and resolved, and all tests 
pass, the units are released.  Finally, the generated files 
were linked with hand-implemented OS and HWIO 
drivers to run on hardware. A comparison between 
autocoded software development times and manually-
generated playback control software is shown in Table 1. 

Coding 
(hours) 

Testing
(hours) 

TOTAL
(hours) 

TOTAL
(bytes) 

Hand-
code 

Not
available 

Not
available

Not
available

14903 

Auto-code 6 8 14 12437 

5

Table 1.  Comparison of development times in hours 

and bytes for hand-code versus autocode (including 

Stateflow modeling). 

LESSONS LEARNED 

Near the project endpoint, a new playback unit was 
being considered.  As a test case, we adapted the 
interfaces to the new unit in only four hours.  This 
demonstrates the considerable time savings possible 
with a modular architecture, reusable building blocks and 

customizable, adaptive interfaces.  Production-intent 
code was validated virtually, on the lab bench, and has 
undergone a full peer review per corporate procedures.  

LIMITATIONS

Software developers accustomed to the C language 
expect pointers, which MATLAB lacks.  The long list of 
tools used in this work is obviously a detriment to 
training.  Coding the OS in Java was our second choice, 
since modeling a pre-emptive OS in MATLAB is difficult.  
Capturing communications logic in Stateflow is not 
suited to the lowest level of detail (“bit-banging”), and is 
not “cycle-accurate”, so that very low level operations do 
not gain from its use.  We realized that only a very well- 
defined development environment and process would 
allow efficient use of MATLAB/Simulink/Stateflow for 
production event-driven applications. Creation of such 
an environment is not a trivial task and requires 
advanced knowledge of modeling tools, and sufficient 
time away from the typical pressure of production 
schedules. 

BENEFITS

We found that the visual nature of the architecture made 
it accessible to high-level managers and less-technical 
supervisors, as well as facilitated technical discussions 
amongst our team.  We found legacy code easy to 
integrate with either Stateflow or TargetLink.  Code was 
generated and tested just in fraction of time that is 
typically required for hand-code implementation of the 
same algorithm. Our test bench works for unit testing, 
integration testing, and can even work with the entire 
radio.  Re-use is quick and convenient, as evidenced by 
our 4 hour swap-over. The use of HIL allowed us to 
validate not only the developed algorithm, but the 
playback mechanism from new supplier. We discovered 
the features of this mechanism, that were not described 
in the supplied documentation, and adjusted our control 
algorithm accordingly. 

CONCLUSIONS   

Using a suite of engineering automation tools centered 
around MATLAB, we have established a playback 
architecture with distinct building blocks and well-defined 
interfaces.  This architecture supports re-usable building 
blocks drawn from on-line libraries.  The simulation 
environment created allows testability of units and 
integration within the playback functionality.  We are able 
to develop and evaluate control algorithms which 
operate in a virtual environment, and we have created 
the capability to run these tests on the playback device 
in a HIL configuration.  From the behaviors and error 
handling implemented in the model environment, we 
have generated autocode, compiled this on the host, and 
used it to communicate and operate a playback 
mechanism through the HIL interface.  Throughout this 
exercise, we have learned to more clearly identify where 
the tools and methodologies are helpful in product 
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development, as well as learning their limitations so that 
we can apply them where the greatest benefit can be 
obtained.  A number of auxiliary tasks were completed 
that were not originally anticipated, but which need be 
performed only once.  The use of model-based 
development provides a platform which facilitates rapid 
turn-around on playback control development. 
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