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ABSTRACT 

BACKGROUND: Electroencephalographic seizures (ES) following neonatal cardiac surgery are 

often subclinical and have been associated with poor outcomes. An accurate ES prediction 

model could allow targeted continuous electroencephalographic monitoring (CEEG) for high-risk 

neonates.  

METHODS: Development and validation of ES prediction models in a multi-

center prospective cohort where all postoperative neonates with cardiopulmonary bypass (CPB) 

underwent CEEG.  

RESULTS: ES occurred in 7.4% of neonates (78 of 1053). Model predictors included 

gestational age, head circumference, single ventricle defect, DHCA duration, cardiac arrest, 

nitric oxide, ECMO, and delayed sternal closure. The model performed well in the derivation 

cohort (c-statistic 0.77, Hosmer-Lemeshow p=0.56), with a net benefit (NB) over monitoring all 

and none over a threshold probability of 2% in decision curve analysis (DCA). The model had 

good calibration in the validation cohort (Hosmer-Lemeshow, p=0.60); however, discrimination 

was poor (c-statistic 0.61) and in DCA there was no NB of the prediction model between the 

threshold probabilities of 8% and 18%. Using a cut-point that emphasized negative predictive 

value (NPV) in the derivation cohort, 32% (236 of 737) of neonates would not undergo CEEG, 

including 3.5% (2 of 58) with ES (NPV 99%, sensitivity 97%). 

CONCLUSIONS: In this large prospective cohort, a prediction model of ES in neonates 

following CPB had good performance in the derivation cohort with a NB in DCA. However, 

performance in the validation cohort was weak with poor discrimination, calibration, and no NB 

in DCA. These findings support CEEG monitoring of all neonates following CPB.  

 



Continuous electroencephalographic monitoring (CEEG) has identified postoperative 

electroencephalographic seizures (ES) in neonates following surgery with cardiopulmonary 

bypass (CPB) which are usually subclinical. 1-7 Postoperative ES are associated with worse 

neurodevelopmental outcomes, abnormal neuroimaging and neurologic examinations.1,8-11  

Based on these data, an American Clinical Neurophysiology Society’s (ACNS) guideline 

recommends performing CEEG following neonatal cardiac surgery.12 However, CEEG is 

resource intense so widespread implementation has not occurred.13 Targeting CEEG to 

neonates at high risk of ES would enable more efficient use of CEEG resources. The aim of this 

investigation was to develop and validate a prediction model for ES with the hypothesis that 

preoperative and operative characteristics would predict the probability of postoperative ES. 

 

PATIENTS AND METHODS 

Derivation and validation cohorts 

Models were developed and validated in a prospectively acquired cohort from three 

centers: Children’s Hospital of Philadelphia (CHOP), Riley Children’s Hospital (RCH), and 

University of Virginia Children’s Hospital (UVA), where postoperative neonates (≤30 days, 

corrected gestational age ≤44 weeks from June 2012 through 2018 at CHOP, May 2014 

through 2018 at RCH, and May 2016 through 2018 at UVA) underwent CEEG. The cohort was 

identified through the Society of Thoracic Surgeon’s database for the individual institution. For 

multiple operations during the neonatal period, only the index operation was included.  

Exclusion criteria were infants >30 days, no CPB and no CEEG. Each institutional review board 

approved the study with waiving informed consent as this was chart review of existing clinical 

data. 

 

Primary outcome 



The primary outcome ES was defined as an abnormal, paroxysmal EEG event different 

from the background, >10 seconds (or shorter if associated with a clinical seizure), with a 

plausible EEG field, that evolved in frequency, voltage, morphology and/or spatial distribution 

within 48 hours postoperatively.  

 

EEG Monitoring 

Postoperative CEEG was initiated within six hours of returning to the intensive care unit 

(ICU). CEEG was performed with the international 10-20 system (modified for neonates) using 

portable acquisition machines networked to the main EEG server, allowing EEG review at the 

bedside, from multiple sites in the hospital, and remotely. If an ES was identified, the ICU 

Service was alerted by the EEG technologist or electroencephalographer, and neurology 

consultation was obtained. CEEG was continued on all neonates for 48 hours. In those with ES, 

CEEG was continued for 24 hours following the termination of the last ES. Antiseizure 

medication choice was at the discretion of the treating cardiac intensivist and neurologist. 

 

Data collection 

Data were collected and managed using REDCap (Research Electronic Data Capture), 

hosted at the CHOP Research Institute.14 Clinical data were obtained from the medical record. 

Neonates were categorized according to a classification that incorporates cardiac anatomy and 

perioperative physiology, which has been shown to predict perioperative mortality.15 A list of 

operations and comparison across centers is provided in the Supplemental Material 

(Supplemental Table 1). ES were classified as status epilepticus if any ES lasted longer than 

30 minutes or if recurrent ES lasted more than 30 minutes in any one-hour epoch (50% seizure 

burden).  ES were classified as EEG-only ES (no clinical signs observed by bedside caregivers 

or on video review) or electroclinical ES. 

 



Candidate predictors  

Candidate predictors included 23 preoperative and operative variables (Supplemental 

Table 2). In neonates with CHD seizures, brain injury and neurodevelopmental dysfunction 

have been associated with age at surgery, sex, race, gestational age, low birth weight, head 

circumference, genetic syndrome, cardiac defect, duration of deep hypothermic circulatory 

arrest (DHCA), open sternum, cardiac arrest, low hematocrit on bypass and extracorporeal 

membrane oxygenation (ECMO).1,2,4,5,7,11,16-20 Racial and ethnic disparities have also been 

observed with CHD outcomes.21-24 Regional cerebral perfusion (RCP) has been proposed as a 

neuroprotective strategy during CPB to avoid DHCA, although ES have been associated with its 

use.4,7,25 Longer duration of CPB, and inhaled nitric oxide were used as surrogates for a sicker 

postoperative neonate.  

 

Model building strategy 

Statistical analyses were performed using Stata 14.2 (College Station, TX). The 

association of each predictor with ES was examined using the chi-square or Fisher’s exact test 

for categorical variables and the Wilcoxon’s rank sum test for continuous variables. Significant 

center variation was observed in preoperative and operative variables (Supplemental Table 3). 

Therefore, the initial building strategy to derive a model in the CHOP dataset which comprised 

70% (739 of 1053) of the cohort was abandoned. These models had inadequate fit in datasets 

from RCH and UVA (Supplemental Tables 4, 5, 6 and 7).  To make the model more 

generalizabile to centers other than those in this study a combined dataset was used to 

incorporate the variability in neonatal cardiac surgery perioperative care.26-28 The cohort from 

the three centers was combined with a random 70:30 split for derivation and validation of the 

model, respectively. Variables with a p-value of <0.2 (two-sided) were entered into a model 

using either logistic regression with backward elimination or with Least Absolute Shrinkage and 

Selection Operator regression (lasso). In backward elimination, variables were sequentially 



removed based on their beta coefficients with comparison of the area under the receiver 

operating characteristic curve (AUC) until the model was deemed adequate. Lasso regression is 

a machine learning algorithm that both shrinks coefficients of variables towards zero to avoid 

overfitting and selects a subset of predictor variables into the model based on a penalty on the 

absolute value of the coefficients in the modelzero.29 

 

Model assessment and validation 

In the derivation cohort, internal validation was performed using the following: (1) 

predictive accuracy was assessed by the Brier score (variation explained by predictor, a Brier 

score of 0 indicates a perfect model whereas 0.25 indicates a non-informative model);30,31 (2) 

discrimination (ability of the model to separate neonates with ES to those without ES) was 

assessed using the discrimination slope (difference of average predictions in neonates with and 

without ES),31 sensitivity, specificity, and the AUC with the concordance statistic (c-statistic); (3) 

calibration (accuracy of predictions) was measured using the Hosmer-Lemeshow goodness of 

fit test and by a calibration plot that assessed agreement between predicted and observed ES;31 

and (4) decision curve analysis (DCA) was conducted to measure the net benefit (NB) of 

making decisions based on model predictions. In DCA, the NB of the prediction model is 

calculated across a range of threshold probabilities for ES, defined as the minimal probability of 

ES at which EEG monitoring would be warranted. In DCA the prediction model is compared to 

the default strategies of monitoring all or none. The interpretation of DCA is that the strategy 

with the highest NB at a particular threshold probability has the highest clinical value.31,32 Cross-

validation using 10-folds was performed in lasso with selection of the lasso tuning parameter 

that minimized the estimate of out of sample prediction error.  

The model was then applied to the validation cohort to test its performance using all the 

measures above. Predicted ES probabilities were calculated from the model and sensitivity, 

specificity, positive predictive values, negative predictive values (NPV), and the proportion of 



patients undergoing CEEG were assessed at various model cutoffs assuming that those above 

the cutoff would be selected for CEEG. 

 

RESULTS  

Postoperative CEEG occurred in 739 of 745 (99.2%) neonates at CHOP, 188 of 188 

(100%) at RCH and 126 of 130 (96.9%) at UVA. ES occurred in 7.4% (78 of 1053) of neonates, 

including 8% (59 of 739) at CHOP, 9% (17 of 188) at RCH, and 1.6% (2 of 126) at UVA. Table 1 

provides summary characteristics in the derivation and validation cohorts. ES occurred in 7.9% 

(58 of 737) of the derivation cohort and 6.3% (20 of 316) of the validation cohort, p=0.38. In the 

derivation cohort, ES occurred in 8.5% (55 of 521) from CHOP, 10.4% (13 of 125) from RCH, 

and 1.1% (1 of 91) from UVA. In the validation cohort, ES occurred in 6.9% (15 of 281) from 

CHOP, 6.4% (4 of 63) from RCH, and 2.9% (1 of 35) from UVA. The final model (Table 2) was 

developed using the lasso due to its superior performance in the validation cohort (Table 3) 

when compared to backward elimination (Supplemental Tables 8 and 9). In the derivation 

cohort, the model performed well with a Brier Score of 0.06 indicating an informative prediction. 

Model discrimination was fair with the predicted probability of ES 11% higher in neonates with 

versus without ES (c-statistic of 0.77) (Figure 1 Upper left). Hosmer-Lemeshow suggested 

adequate fit (χ2 =2.27, p-value 0.56). DCA in the derivation cohort is shown in Figure 2 (left). 

Below the threshold probability of 2% there was no difference in the NB of monitoring all and 

monitoring based on the model, with a higher NB for these strategies compared to monitoring 

none. Above the threshold probability of 2% the NB of the model was higher than the NB of 

monitoring all and none.  

In the validation cohort the Brier Score was 0.06 indicating an informative prediction. 

Model discrimination was poor with the predicted probability 6% higher in neonates with versus 

those without ES (c-statistic of 0.61) (Figure 1 Upper right). Hosmer-Lemeshow suggested 

adequate fit (χ2 =6.42, p value 0.60); however, the calibration plot (Figure 1 Middle right ) 



showed that predicted probabilities of ES underestimated the observed probabilities. There 

were a number of neonates in whom the model predicted a low probability of ES, but in whom 

the actual probability was considerably higher. DCA in the validation cohort (Figure 2 right) 

showed no difference in the strategy of monitoring all and monitoring based on the model below 

a threshold probability of 5%.  Above a threshold probability of ES of 5% to a probability of 8% 

the model had a NB over monitoring all and none. Above this probability the model had no NB 

until a threshold probability of 18% above which it was beneficial till a probability of 50%.  

Tables 4 and 5 provide model characteristics in the derivation and validation cohorts at 

different cutoffs. At a cutoff of 0.03 that maximizes sensitivity and NPV, 32% (236 of 737) of 

neonates in the derivation cohort would not undergo CEEG, including 3.5% (2 of 58) of 

neonates with ES (NPV 99%, sensitivity 97%). In the validation cohort 25.6% (81 of 316) of 

neonates would not undergo CEEG, including 10% (2 of 20) of neonates with ES (NPV 97.5%, 

sensitivity 90%). 

 

COMMENT 

A predictive model based on clinical characteristics was developed and validated to 

enable efficient use of resources to target CEEG to neonates with a high probability of ES. In 

the derivation cohort the model overall had good performance with fair discrimination and good 

calibration. In the validation cohort the model was informative, however discrimination was poor, 

and although the calibration appeared adequate, the predicted probabilities underestimated the 

observed probabilities, particularly for neonates with low predicted probabilities. In DCA, the 

model had some NB in the validation cohort; however, there was no benefit observed between 

threshold probabilities of 8% to 18%. Given that the reported probability of postoperative ES is 

1.5% to 20% and >8% in most reports, centers with abundant CEEG resources would likely 

monitor neonates above the threshold probability of 8% to 10%.1-7 Given that in the validation 

cohort the model had no NB in this range it is not of clinical value in centers with abundant 



CEEG resources.17,33,34In centers with limited CEEG resources where higher threshold 

probabilities for seizures may be used e.g. 50% the model again had no NB in the validation 

cohort therefore would not be of clinical value. Therefore, although this model performed well in 

the derivation cohort, validation was poor indicating the model should not be used for targeting 

CEEG. These data support the current recommended practice of performing CEEG for all 

neonates following surgery with CPB.12 

Despite the current ACNS guideline, the data on the incidence of postoperative ES, and 

the association of ES with worse outcomes, CEEG in postoperative neonates has not been 

widely implemented given the resource requirements. 1-12,17 Many centers monitor neonates 

considered to be at the highest risk of ES, including those on ECMO support or following a 

cardiac arrest.35,36 Therefore, a prediction model could allow targeted CEEG. However, although 

there was a similar ES incidence in 2 of 3 the centers, significant center variation was observed 

in the timing of surgery, the use of open sternum, intraoperative strategies for neuroprotection 

including DHCA and RCP, and other factors associated with neurological injury including the 

lowest hematocrit on CPB, cardiac arrest, and ECMO. The model was therefore developed in a 

multicenter cohort to enable generalizability. 

There are limitations to these data. First, exclusion of CEEG background may have led 

to information bias. As the goal of this study was to develop a prediction model based on 

preoperative and operative variables, background CEEG variables were not included. Initial 

CEEG background has been shown to be useful when incorporated into an ES prediction model 

in children admitted with acute encephalopathy to the pediatric ICU.37 Second, perioperative 

brain injury evident on neuroimaging is an important variable that was not included in the 

prediction model as all neonates did not have routine perioperative neuroimaging. Third, given 

the multicenter nature of study misclassification of ES and differences in EEG interpretation may 

have occurred. A standard definition of ES and ES identification was used which is known to be 

reliable across encephalographers.38,39 Fourth, the study was designed to for a sample size of 



750 neonates in the validation cohort with 60 ES to achieve a sensitivity of 98% (anticipated 

95% CI 92-100%) and specificity of 50% (anticipated 95% CI of 47-53%).  The total sample size 

was achieved, and the number of ES (57) approached the target value. However, in the 

derivation dataset, while a sensitivity of 97% was obtained for the lower cutoff of the receiver 

operating characteristics curve (Table 4), the specificity was only 34.5%, well outside the 

specified range, and which drove down the NPV. Alternatively, in order to achieve a specificity 

near 50%, the sensitivity dropped to 85%. This suggests that key predictors needed to achieve 

these levels of accuracy were missing even from the derivation model. Not surprisingly this 

resulted in poor performance in the validation cohort.  

In conclusion, ES in neonates following surgery with CPB were not accurately predicted 

by a model using preoperative and operative variables. These findings support continued CEEG 

in all neonates following surgery with CPB. 
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Table 1. Comparison of variables in the derivation and validation cohorts 
 
Variable 

Derivation 
(n=737) 

Validation 
(n=316) 

 
p value* 

Age at surgery median (IQR) 6 (4,9) 6 (4,11) 0.27 
Male sex n (%) 444 (60.2) 198 (62.7) 0.46 
Race n (%) 
White 
Black 
Other 

 
451 (61.0) 
94 (12.7) 

 192 (26.1) 

 
196 (62.0) 
35 (11.1) 
85 (26.9) 

 
0.64 

 
 

Gestational age at birth (weeks) median 
(IQR) 

39 (38,39) 39 (37,39) 0.07 

Birth weight (kg) median (IQR) 3.2 (2.8,3.5) 3.1 (2.8,3.5) 0.07 
Head circumference (cm) median (IQR) 33.5 (32,34.5) 33.5 (32,34.5) 0.25 
Prenatal diagnosis n (%) 537 (72.8) 233 (73.7) 0.77 
Genetic diagnosis n (%) 144 (19.5) 74 (23.4) 0.16 
Cardiac defect n (%)    
Single ventricle 254 (34.5) 102 (32.3) 0.49 
Two ventricles without arch obstruction  315 (42.7) 150 (47.5) 0.16 
Two ventricles with arch obstruction  168 (22.8) 64 (20.3) 0.36 
Single ventricle without arch obstruction  54 (7.3) 24 (7.6) 0.88 
Single ventricle with arch obstruction  200 (27.1) 78 (24.7) 0.41 
CPB duration (minutes) median (IQR) 60 (42,109) 60 (41,101) 0.47 
DHCA n (%) 355 (48.2) 145 (45.9) 0.50 
DHCA duration (minutes) median (IQR) 37 (24, 47) 40 (25,47) 0.30 
RCP n (%) 103 (14.0) 34 (10.8) 0.16 
RCP duration (minutes) median (IQR) 62 (39,98) 52 (29,72) 0.09 
Lowest hematocrit on CPB (%) median 
(IQR) 

28 (26,31) 28 (26,31) 0.89 

Nitric oxide in OR n (%) 153 (20.8) 64 (20.3) 0.85 
Cardiac arrest in OR n (%) 6 (1) 1 (0) 0.36 
ECMO in OR n (%) 30 (4) 9 (3) 0.34 
Open chest in OR n (%) 205 (27.8) 92 (29.1) 0.67 
Electrographic seizures n (%) 58 (7.9) 20 (6.3) 0.38 
Abbreviations: n, number; IQR, interquartile; kg, kilogram; cm, centimeters; CPB, 
cardiopulmonary bypass; DHCA, deep hypothermic circulatory arrest; RCP, regional cerebral 
perfusion; ECMO, extracorporeal membrane oxygenation; OR, operating room 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Prediction model* coefficients 
Parameter Coefficient 

Intercept 6.802 
Gestational age (weeks) -0.117 
Head circumference (cm) -0.181 
Single ventricle (yes versus No) 0.555 
DHCA duration (minutes) 0.018 
Nitric oxide in OR (yes versus no) 0.710 
Cardiac arrest in OR (yes versus 
no) 

1.645 

ECMO in OR (yes versus no) 1.114 
Open chest in OR (yes versus no) 0.580 
*The final prediction model in the derivation dataset was derived from LassoLogit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Model performance in the derivation and validation cohorts 
Statistic  Derivation Validation 
Likelihood Ratio 59.99  
Pseudo-R-square 0.148  
C-statistic  0.7678 0.606 
Brier Score 0.064 0.058 
Hosmer-Lemeshow χ2 (p value) 2.27 (0.56) 6.42 (0.60) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Model characteristics at various cutoffs in derivation dataset 
Model cutoff  
Predicted 
probability of 
ES 

Sensitivity Specificity PPV NPV Proportion 
with CEEG 

0.02 96.6 15.9 8.9 98.2 85.1 
0.03 96.6 34.5 11.2 99.2 68.0 
0.04 89.7 44.9 12.2 98.1 57.8 
0.05 84.5 53.8 13.5 97.6 49.3 
0.06 74.1 61.1 14.0 96.5 41.7 
0.07 67.2 67.2 14.9 96.0 35.6 
0.08 58.6 72.5 15.4 95.3 30.0 
0.09 55.2 76.6 16.8 95.2 25.9 
0.10 53.4 80.4 18.9 95.3 22.5 
0.20 31.0 94.7 33.3 94.1 7.3 
Abbreviations: ES, electrographic seizures; PPV, positive predictive value; NPV, negative 
predictive value 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Model characteristics at various cutoffs in validation dataset 
Model cutoff  
Predicted 
probability of 
ES 

Sensitivity Specificity PPV NPV Proportion 
with CEEG 

0.02 95.0 11.5 6.8 97.1 88.9 
0.03 90.0 26.7 7.7 97.5 74.4 
0.04 70.0 42.2 7.6 95.4 58.5 
0.05 65.0 50.7 8.2 95.5 50.3 
0.06 50.0 59.5 7.7 94.6 41.1 
0.07 45.0 66.2 8.3 94.7 34.5 
0.08 40.0 71.3 8.6 94.6 29.4 
0.09 35.0 74.7 8.5 94.4 26.0 
0.10 30.0 76.4 7.9 94.2 24.1 
0.20 20.2 95.3 22.2 94.6 5.7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure Legends 

Figure 1. Characteristics for the derivation (left) and validation (right) cohorts. Top Receiver 

operating characteristic curve. Middle Scatter plots of predicted compared to observed 

probabilities showing model calibration. Bottom Box plots of predicted probabilities showing 

model discrimination.  

  

Figure 2. Decision curve analysis of the prediction model for the derivation (left) and validation 

(right) cohorts.  

 
  
 
 
 

 

 

 

 








