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ON COINCIDENCE AND COMMON FIXED POINT OF SIX MAPS

SATISFYING F-CONTRACTIONS

ANITA TOMAR1, GINISWAMY2, C. JEYANTHI3, MAHESHWARI P.G.4, §

Abstract. Coincidence and common fixed point of six self maps satisfying F-contractions
are established via common limit in the range property without exploiting the no-
tion of continuity or containment of range space of involved maps or completeness of
space/subspace. Our results generalize, extend and improve the analogous recent results
in literature.
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1. Introduction

Fixed point theory is a useful mechanism in mathematical economics, game theory,
dynamic optimization and stochastic games, functional analysis, variational calculus, de-
fence, statistics, medicine etc. However, for many real-world situations, the conditions in
the fixed point theorems are very strong and there is no assurance that a fixed point exists.
Over the past few decades, a number of researchers have taken interest in generalizing,
extending, and improving fixed point theorems (for instance [3], [4], [9], [11], [12] and
reference therein). Recently Wardowski [14] gave a nice generalization for single valued
map on complete metric space, introducing a new approach of contractive map, called
F-contraction.

The aim of this paper is to establish the existence and uniqueness of coincidence and
common fixed point of six self maps in non complete metric space satisfying F-contraction
without exploiting the notion of continuity or containment requirement of range space of
involved maps or completeness of space/subspace. In the process, we emphasize on the

role of common limit range property for the existence of common fixed point under Ćirić
type F-contraction and Hardy-Roger type F-contraction for six self maps, which are more
general than the contraction condition introduced by Wardowski [14].
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2. Preliminaries

We denote the set of all real numbers by R, the set of all positive real numbers by R+,
the set of all natural numbers by N and a metric space by (X, d). A pair of self map A and
S have a coincidence point at x ∈ X if Ax = Sx = w. w is called a point of coincidence of
A and S. Further, a point x ∈ X is a common fixed point of A and S if Ax = Sx = x.

Definition 2.1. [4] A self map A on X is a Ćirić type contraction for all x, y ∈ X if

d(Ax,Ay) ≤ cmax{d(x, y), d(x,Ax), d(y,Ay), d(x,Ay), d(y,Ax)}.

Definition 2.2. [7]A self map A on X is a Hardy-Rogers type contraction for all x, y ∈ X
if

d(Ax,Ay) ≤ αd(Ax, x) + βd(Ay, y) + γd(x, y) + δd(Ax, y) + Ld(Ay, x),

α+ β + γ + δ + L < 1 and α, β, γ, δ, L > 0.

Definition 2.3. [14] A self map A on X is an F-contraction if there exist τ > 0 such that

τ + F (d(Ax,Ay)) ≤ F (d(x, y)) (1)

for all x, y ∈ X with Ax 6= Ay where F : R+ → R is a function satisfying:

(F1) F is strictly increasing, i.e., for all α, β ∈ R such that α < β, F (α) < F (β).
(F2) For each sequence {αn} n ∈ N of positive numbers, the following holds:

limn→∞αn = 0 if and only if limn→∞F (αn) = −∞.
(F3) There exist k ∈ (0, 1) such that limα→0+(αkF (α)) = 0.

From (F1) and (1) it is easy to conclude that every F-contraction A is a contractive
map and hence necessarily continuous. We denote by F , the family of all F : R+ → R
satisfying the conditions (F1)-(F3). Taking different functions F, we obtain a variety of
F-contractions, some of them being already known in the literature. Some examples of
the functions belonging to F are:

(1)F (α) = lnα, (2)F (α) = lnα+ α, α > 0,

(3)F (α) =
−1√
α
, α > 0, (4)F (α) = ln(α2 + α), α > 0.

Every F-contraction A is a contractive map ,i.e., d(Ax,Ay) < d(x, y) for all x, y ∈ X,
Ax 6= Ay. The Banach contraction[1] is a particular case of F-contraction. Meanwhile
there exist F-contractions, which are not Banach contractions (Wardowski [14]).

Following Wardowski, Minak et al. [10] and Wardowski and Dung[15] independently

introduced the concept of Ćirić type F-contraction. Minak et al. called it Ćirić type
generalized F-contraction and Wardowski and Dung called it F-weak contraction. Later
Cosentino and Vetro [6] introduced Hardy-Rogers type F-contraction. If there exists F ∈ F
and τ > 0 such that, for all x, y ∈ X,

d(Ax,Ay) > 0⇒ τ + F (d(Ax,Ay)) ≤ F (m(x, y)),

where m(x, y) = max{d(x, y), d(x,Ax), d(y,Ay), [d(x,Ay)+d(y,Ax)]/2}, is the C̀iric̀ type
F-contraction[10, 15] and if
m(x, y) = αd(x, y) + βd(x,Ax) + γd(y,Ay) + δd(x,Ay) + Ld(y,Ax),

where α+ β + γ + 2δ = 1, γ 6= 1 and L ≥ 0, is the Hardy-Rogers type F-contraction[6].

On the other hand, Batra et al.[2] introduced a F-g-contraction. If there exists F ∈ F
and τ > 0 such that τ + F (d(Ax,Ay)) ≤ F (d(gx, gy)) for all x, y ∈ X with gx 6= gy and
Ax 6= Ay.
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Note that every F-contraction A is an C̀iric̀ type F-contraction [10, 15], Hardy-Rogers
type F-contraction [6] but the reverse implication does not hold. On substituting g = I in
F-g-contraction we get F-contraction [15].

Definition 2.4. [8] A pair of self-maps (A,S) is weakly compatible if the pair commute
on the set of their coincidence points ,i.e., for x ∈ X, Ax = Sx implies ASx = SAx.

Definition 2.5. [13] A pair of self-maps (A, S) on X satisfies the common limit range
property with respect to S denoted by CLRS if there exist a sequence {xn} in X such that
limn→∞Axn = limn→∞Sxn = t where t ∈ SX.

Definition 2.6. [5] Two pairs of self maps (A, S) and (B, T) on X satisfy the com-
mon limit range property with respect to S and T denoted by CLRST if there exist two
sequences {xn} and {yn} in X such that limn→∞Axn = limn→∞Sxn = limn→∞Byn =
limn→∞Tyn = t where t ∈ SX ∩ TX.

3. Main Results

Definition 3.1. Six self maps A, B, P, Q, S and T of a metric space (X, d) satisfy C̀irić
type F-contraction if there exist F ∈ F and τ > 0 such that for all x, y ∈ X satisfying
d(Ax,By) > 0 the following holds:

τ + F (d(Ax,By)) ≤ F (max{d(SPx, TQy), d(SPx,Ax), d(TQy,By), d(SPx,By),

d(TQy,Ax)})
(2)

Theorem 3.1. Let (A, SP) and (B, TQ) be the pairs of self maps of a metric space (X,

d) satisfying CLR(SP )(TQ) property and C̀irić type F-contraction (2). Then the pairs (A,
SP) and (B, TQ) have coincidence points in X if F is continuous. Moreover, the self maps
A, B, P, Q, S and T have a unique common fixed point in X provided that the pairs (A,
S), (A, P), (S, P), (B, T), (B, Q) and (T, Q) are weakly compatible.

Proof. Let (A, SP) and (B, TQ) be the pairs of self maps satisfying CLR(SP )(TQ) property
then there exist two sequences {xn} and {yn} in X such that
limn→∞Axn = limn→∞SPxn = limn→∞Byn = limn→∞TQyn = t,
where t ∈ SPX ∩ TQX. Since t ∈ SPX there exist v ∈ X such that SPv = t. Also since
t ∈ TQX there exist u ∈ X such that TQu = t.
Using (2),

F (d(Av,Byn)) ≤ F (max{d(SPv, TQyn), d(SPv,Av), d(TQyn, Byn), d(SPv,Byn),

d(TQyn, Av)})− τ

As n→∞ and since F is continuous,

F (d(Av, t)) ≤ F (max{d(t, t), d(t, Av), d(t, t), d(t, t), d(t, Av)})− τ
= F (d(Av, t))− τ
< F (d(Av, t))
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which is a contradiction. Hence Av = SPv = t, i.e., the pair (A,SP ) have a coincidence
point in X. Now, using (2),

F (d(t, Bu)) = F (d(Av,Bu))

≤ F (max{d(SPv, TQu), d(SPv,Av), d(TQu,Bu), d(SPv,Bu), d(TQu,Av)})− τ
= F (max{d(t, t), d(t, t), d(t, Bu), d(t, Bu), d(t, t)})− τ
= F (d(Bu, t))− τ
< F (d(Bu, t)),

which is a contradiction. Hence Bu = TQu = t, i.e., the pair (B, TQ) have a coincidence
point in X. Now, since the pairs (A,S), (A,P ) and (S, P ) are weakly compatible, At =
ASPv = APSv = PASv = PSAv = PSt = SPt which implies SPt = At. Similarly, we
can show that, TQt = Bt.

Now, to show that At = t. Let At 6= t then using (2)

F (d(At, t)) = F (d(At,Bu))

≤ F (max{d(SPt, TQu), d(SPt,At), d(TQu,Bu), d(SPt,Bu), d(TQu,At})− τ
= F (max{d(At, t), d(At,At), d(t, t), d(At, t), d(t, At)})− τ
= F (d(At, t))− τ
< F (d(At, t)),

which is a contradiction. Hence At = SPt = t. Similarly we can show that Bt = TQt = t.
Thus we have At = Bt = t, i.e., t is the common fixed point of A and B.

Now to show that this common fixed point is unique. Let w 6= t be also a common fixed
point of A and B, then Aw = w = SPw and Bw = w = TQw.

F (d(t, w)) = F (d(At,Bw))

≤ F (max{d(SPt, TQw), d(SPt,At), d(TQw,Bw), d(SPt,Bw), d(TQw,At)})− τ
= F (max{d(t, w), d(t, t), d(w,w), d(t, w), d(w, t)})− τ
= F (d(t, w))− τ
< F (d(t, w)),

which is a contradiction. Hence t = w, i.e., A and B have a unique common fixed point.

By weak compatibility of the pairs (A,S), (A,P ), (S, P ), (B, T ), (B,Q) and (T,Q), we
have ASt = SAt = St, APt = PAt = Pt, BTt = TBt = Tt, BQt = QBt = Qt, which
gives that St and Pt are also fixed point of A. Tt and Qt are also fixed point of B. By
uniqueness of the common fixed point of A and B, St = Tt = t = Pt = Qt. Therefore,
At = Bt = Pt = Qt = St = Tt = t. Hence t is the unique common fixed point of
A,B, P,Q, S and T . �

If we put Q = I in theorem 3.1 we obtain the following definition and corollary for five
maps.

Definition 3.2. Five self maps A, B, P, S and T of a metric space (X, d) satisfy C̀irić
type F-contraction if there exist F ∈ F and τ > 0 such that for all x, y ∈ X satisfying
d(Ax,By) > 0 the following holds:

τ+F (d(Ax,By)) ≤ F (max{d(SPx, Ty), d(SPx,Ax), d(Ty,By), d(SPx,By), d(Ty,Ax)})
(3)
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Corollary 3.1. Let (A, SP) and (B,T) be the pairs of self maps of a metric space (X, d)

satisfying CLR(SP )(T ) property and Ćirić type F-contraction(3). Then the pairs (A, SP)
and (B, T) have a coincidence point in X if F is continuous. Moreover, the self maps A,
B, P, S and T have a unique common fixed point in X provided that the pairs (A, S), (A,
P), (S, P), (B, T) are weakly compatible.

Now we furnish two examples in support of our main result.

Example 3.1. Let X = [1, 16) and d be the usual metric on X.
Define A,B, P,Q, S, T : X → X by

Ax =

{
3 if x = 1, 2, 3 and x ≥ 6
7 if x ∈ [1, 6)− {1, 2, 3} Bx =

{
3 if x = 1, 2, 3 and x ≥ 6
8 if x ∈ [1, 6)− {1, 2, 3}

Px =

 3 if x = 1, 2, 3
11 if x ∈ [1, 6)− {1, 2, 3}
1 if x ≥ 6

Qx =

 3 if x = 1, 2, 3
10 if x ∈ [1, 6)− {1, 2, 3}
2 if x ≥ 6

Sx =

 3 if x = 1, 2, 3
12 if x ∈ [1, 6)− {1, 2, 3}
1 if x ≥ 6

Tx =

 3 if x = 1, 2, 3
9 if x ∈ [1, 6)− {1, 2, 3}
2 if x ≥ 6

Let {xn} and {yn} be two sequences in X such that xn = 6 + 1
n and yn = 3 then

limn→∞Axn = limn→∞A(6 + 1
n) = 3, limn→∞SPxn = limn→∞SP (6 + 1

n) = 3 and
limn→∞Byn = 3, limn→∞TQyn = 3. Hence limn→∞Axn = limn→∞SPxn = limn→∞Byn
= limn→∞TQyn = 3, 3 ∈ SPX∩TQX, i.e., (A,SP ) and (B, TQ) satisfy the CLR(SP )(TQ)

property. Also Ax = SPx = 3, Bx = TQx = 3, where x ∈ {1, 2, 3} and x ≥ 6,
i.e., pairs (A, SP) and (B, TQ) have coincidence points in X. Also AS = SA,BT =
TB, SP = PS, TQ = QT,AP = PA,BQ = QB at the coincidence points, ,i.e., pairs
(A,S), (A,P ), (S, P ), (B, T ), (B,Q) and (T,Q) are weakly compatible. FurtherA,B, P,Q, S

and T satisfy Ćirić type F-contraction condition (2) for τ = 1
200 and F (α) = − 1√

α
. Hence

all the conditions of theorem 3.1 are satisfied and x = 3 is a unique common fixed point of
A,B, P,Q, S and T . Moreover all the self maps are discontinuous at common fixed point.

Example 3.2. Let X = (2, 20) and d be the usual metric on X.
Define A,B, P,Q, S, T : X → X by

Ax =

{
5 if x ∈ (2, 5] ∪ [8, 20)
14 if x ∈ (5, 8)

Bx =

{
5 if x ∈ (2, 5] ∪ [8, 20)
10 if x ∈ (5, 8)

Px =

 5 if x ∈ (2, 5]
11 if x ∈ (5, 8)
3 if x ∈ [8, 20)

Qx =

 5 if x ∈ (2, 5]
12 if x ∈ (5, 8)
3 if x ∈ [8, 20)

Sx =

 5 if x ∈ (2, 5]
15 if x ∈ (5, 8)
3 if x ∈ [8, 20)

Tx =

 5 if x ∈ (2, 5]
16 if x ∈ (5, 8)
3 if x ∈ [8, 20)

Let {xn} and {yn} be two sequences in X such that xn = 8 + 1
n and yn = 5 then

limn→∞Axn = limn→∞A(8 + 1
n) = 5, limn→∞SPxn = limn→∞SP (8 + 1

n) = 5 and
limn→∞Byn = 5, limn→∞TQyn = 5. Hence limn→∞Axn = limn→∞SPxn = limn→∞Byn
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= limn→∞TQyn = 5, 5 ∈ SPX∩TQX, i.e., (A,SP ) and (B, TQ) satisfy the CLR(SP )(TQ)

property. Also Ax = SPx = 5, Bx = TQx = 5, where x ∈ (2, 5]∪[8, 20), i.e., pairs (A,SP )
and (B, TQ) have coincidence points in X. Also AS = SA,BT = TB, SP = PS, TQ =
QT,AP = PA,BQ = QB at the coincidence points, i.e., pairs (A,S), (A,P ), (S, P ), (B, T ),

(B,Q) and (T,Q) are weakly compatible. Further A,B, P,Q, S and T satisfy Ćirić type
F-contraction condition (2) for τ = 0.01 and F (α) = logα. Hence all the conditions of
theorem 3.1 are satisfied and x = 5 is a unique common fixed point of A,B, P,Q, S and
T . Moreover all the self maps are discontinuous at common fixed point.

Definition 3.3. Six self maps A, B, P, Q, S and T of a metric space (X, d) satisfy
Hardy-Rogers type F-contraction if there exist F ∈ F and τ > 0 such that for all x, y ∈ X
satisfying d(Ax,By) > 0 the following holds:

τ + F (d(Ax,By)) ≤ F (αd(SPx, TQy) + βd(SPx,Ax) + γd(TQy,By) + δd(SPx,By)+

Ld(TQy,Ax))
(4)

where α+ β + γ + δ + L < 1 and α, β, γ, δ, L > 0

Theorem 3.2. Let (A, SP) and (B,TQ) be the pairs of self maps of a metric space (X,
d) satisfying CLR(SP )(TQ) property and Hardy-Rogers type F- contraction(4). Then the
pairs (A, SP) and (B, TQ) have coincidence points in X if F is continuous. Moreover,
the self maps A, B, P, Q, S and T have unique common fixed point in X provided that the
pairs (A, S), (A, P), (S, P), (B, T), (B, Q) and (T, Q) are weakly compatible.

Proof. Proof follows on the same lines of Theorem 3.1 �

Now an Example in support of Theorem 3.2 is furnished.

Example 3.3. Let X = [1, 13) and d be the usual metric on X.
Define A,B, P,Q, S, T : X → X by

Ax =

{
2 if x ∈ [1, 2] ∪ [5, 13)
3 if x ∈ (2, 5)

Bx =

{
2 if x ∈ [1, 2] ∪ [5, 13)
4 if x ∈ (2, 5)

Px =

 2 if x ∈ [1, 2]
9 if x ∈ (2, 5)
7 if x ∈ [5, 13)

Qx =

 2 if x ∈ [1, 2]
8 if x ∈ (2, 5)
6 if x ∈ [5, 13)

Sx =

 2 if x ∈ [1, 2]
12 if x ∈ (2, 5)
11 if x ∈ [5, 13)

Tx =

 2 if x ∈ [1, 2]
10 if x ∈ (2, 5)
11 if x ∈ [5, 13)

Let {xn} and {yn} be two sequences in X such that xn = 1 + 1
n and yn = 2 then

limn→∞Axn = limn→∞A(1 + 1
n) = 2, limn→∞SPxn = limn→∞SP (1 + 1

n) = 2 and
limn→∞Byn = 2, limn→∞TQyn = 2. Hence limn→∞Axn = limn→∞SPxn = limn→∞Byn
= limn→∞TQyn = 2, 2 ∈ SPX∩TQX, i.e., (A,SP ) and (B, TQ) satisfy the CLR(SP )(TQ)

property. Also Ax = SPx = 2, Bx = TQx = 2, where x ∈ [1, 2], i.e., pairs (A,SP )
and (B, TQ) have coincidence points in X. Also AS = SA,BT = TB, SP = PS, TQ =
QT,AP = PA,BQ = QB at the coincidence points ,i.e., pairs (A,S), (A,P ), (S, P ), (B, T ),
(B,Q) and (T,Q) are weakly compatible. Further A,B, P,Q, S and T satisfy Hardy -
Rogers type F-contraction condition (4) for τ = 1

10 and F (x) = logx, α = 1
5 ,β = 1

6 ,γ = 1
10 ,

δ = 1
6 ,L = 1

10 . Hence all the conditions of theorem 3.2 are satisfied and x = 2 is a unique
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common fixed point of A,B, P,Q, S and T . Moreover all the self maps are discontinuous
at common fixed point.

Remark 3.1. (i) If we put Q = I in theorem 3.2, we obtain the corollary for five
maps satisfying Hardy Rogers type F- contraction.

(ii) By choosing A, B, P, Q, S and T suitably, we get corollaries for two, three and

four self maps both for Ćirić type and Hardy Rogers type F-contractions.
(iii) It is known that some commutative conditions for self maps are essential to es-

tablish common fixed point for more than four maps satisfying contractive type
condition. In this paper we have replaced commutative conditions by weak compat-
ibility.

Remark 3.2. In all the above results we have neither assumed continuity nor containment
of the range space of the involved maps nor completeness of space/subspace. Moreover
maps are discontinuous even at the common fixed point. Whereas Batra et al.[2] established
coincidence point of a pair of self maps by taking containment of range space of involved
maps, completeness of space along with continuity and commutativity of both the maps.
Weak compatibility used is indeed a weaker than commutativity of a pair of map.

Remark 3.3. Since F-contraction is proper generalization of ordinary contraction hence
our results generalize, extend and improve the results of Wardowski [14] and others exist-
ing in literature (for instance Minak et al.[10], Wardowski and Dung[15], Cosentino and

Vetro [6], Ćirić[4], Hardy-Rogers[7], Kannan[9], Chatterjee[3], Reich[12], Batra et al.[2])
without exploiting the notion of continuity, containment of range space of involved maps
and completeness of space/subspace.
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