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SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL

DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE

ELEMENT METHOD
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Abstract. In the last few years, it has become highly evident that fractional calculus
has been widely used in several areas of science. Because of this fact, their numerical
solutions also have become urgently important. In this manuscript, numerical solutions of
both the fractional diffusion and fractional diffusion-wave equations have been obtained
by a Petrov-Galerkin finite element method using quadratic B-spline base functions as
trial functions and linear B-spline base functions as the test functions. In those equations,
fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton
formula has been applied to fractional diffusion equation, the L2 discretizaton formula
has been applied to the fractional diffusion-wave equation. Finally, the error norms L2

and L∞ have been calculated for testing the accuracy of the proposed scheme.
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1. Introduction

Recently, it has become increasingly evident that fractional derivatives are very useful
in the analysis of a wide range of scientific areas such as engineering, physics, chemistry
and some other branches. The problems in those areas can be described very successfully
by models using mathematical tools from fractional calculus, i.e. the theory of derivatives
and integrals of fractional (non-integer) order [18]. In reality, the concept of differenti-
ation and integration to non-integer order is by no means new. Interest in this subject
was evident almost as soon as the ideas of the classical calculus were known [8]. How-
ever, in the last several years numerous authors pointed out the fact that derivatives and
integrals of non-integer order are more appropriate to describe various materials such as
polymers. In reality, they model the physical problems more appropriately and accurately
than non-integer order ones. The increasing number of fractional derivative applications
in numerous areas of science and engineering clearly shows the significant demand for a
better mathematical modelings of real objects, and it is clear that the fractional calculus
provides one possible approach on the way to more adequate mathematical modelling of
real objects and processes. For instance, the modelling of diffusion in a specific type of
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porous medium (in fractional media) can be given as one of the most significant applica-
tions of fractional-order derivatives [6], and the fractional diffusion-wave equations have
been proposed to deal with viscoelastic problems such as propagation of stress waves in
viscoelastic solids [9, 10]. Even though there have been numerous analytical methods
[1, 19, 13] for dealing with those fractional equations, as also happens with ordinary (non-
fractional) partial differential equations, in many situations the initial condition, and/or
the external force are such that the only feasible choice is to apply to numerical techniques.
However, even though we have witnessed a tremendous increase in the number of works
on the topic in recent years [15, 21, 11, 20, 17, 5], this area of applied mathematics is not
as well developed and understood as its non-fractional counterpart [16]. Even though the
number of scientific and engineering problems including fractional calculus has already
large and still growing, it can be said that there is still a long way to go in this field.

There are numerous numerical methods to solve fractional partial differential equations
and those methods differ primarily in the style in which the normal and fractional deriva-
tives are discretized [16]. In the present manuscript, the finite element method has been
applied for solving fractional diffusion and fractional diffusion-wave equations. For the
sake of simplicity, it can be summarized that the fundamental concept behind the finite
element method is to divide the entire region of the solution domain into an approximately
equivalent system of finite elements with associated nodes and to select the most suitable
element type to model most closely the actual physical behavior . Doing so converts a
huge problem into many solvable small problems. As a proposal, those elements must be
made small enough to give usable results and yet large enough to reduce computational
effort [3].

As parallel to the importance of fractional calculus, the number of recent studies about
them have also increased. For instance, Sun et al. [4] have applied a semi-analytical
finite element method for a class of time-fractional diffusion equations. Sweilam et al.
[12] have solved time-fractional diffusion equation using Crank-Nicolson finite difference
method. Monami and Odibat [18] implemented relatively new analytical techniques, the
variational iteration method and the Adomian decomposition method, to solve linear
fractional partial differential equations which are arising in fluid mechanics. Celik and
Duman [2] utilized Crank-Nicolson method for the fractional diffusion equation with the
Riesz fractional derivative and finally got numerical results by using fractional centered
difference approach.

In the solution process, in place of the fractional diffusion and fractional diffusion-wave
equations, the following general form is going to be used as a model

∂γu

∂tγ
= K

∂2u

∂x2
(1)

where

∂γ

∂tγ
f(t) =

1

Γ(n− γ)

∫ t

0
(t− τ)n−γ−1∂

nf(τ)

∂tn
dτ n− 1 < γ < n (2)

is the fractional derivative in the Caputo’s sense [6, 1], K is generally known as the
diffusion coefficient and n is an integer. For all calculations in the present paper, diffusion
coefficient K is going to be taken as 1. Eq. (1) is called the fractional diffusion equation or
sub-diffusion equation for 0 < γ ≤ 1, and it is called the fractional diffusion-wave equation
for 1 < γ ≤ 2. In this manuscript, for diffusion equation, we will take the boundary
conditions of the model problem (1) given in the interval 0 ≤ x ≤ π as

u(0, t) = 0, u(π, t) = 0 (3)
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and the initial condition as

u(x, 0) = sinx (4)

and for diffusion-wave equation, together with the above boundary and the initial condi-
tions, the following additional initial condition

∂u(x, t)

∂t
|t=0 = 0 (5)

is going to be used. The exact solution of both the above problems which are obtained by
Adomian Decomposotion Method is found as follows [19]

u(x, t) = Eγ(−tγ) sinx (6)

where Eγ is the Mittag-Leffler function [6].
As has been used by Ref. [7] in his explicit finite difference method, in order to obtain

a finite element scheme to solve the fractional diffusion equation (0 < γ ≤ 1), we will also
discretize the Caputo derivative in terms of the so-called L1 formula [8]

∂γf

∂tγ

∣∣∣∣
tn

=
(∆t)−γ

Γ(2− γ)

n−1∑
k=0

bγk [f(tn−k)− f(tn−1−k)] +O (∆t)

where

bγk = (k + 1)1−γ − k1−γ

and to solve the fractional diffusion-wave equation (1 < γ ≤ 2), we will discretize the
Caputo derivative in terms of the so-called L2 formula [8]

∂γf

∂tγ

∣∣∣∣
tn

=
(∆t)−γ

Γ(3− γ)

n−1∑
k=0

bγk [f (tn−k)− 2f (tn−1−k) + f (tn−2−k)] +O (∆t)

where

bγk = (k + 1)2−γ − k2−γ .

2. Quadratic B-spline Petrov-Galerkin Finite Element Solutions

To be able to continue solving Eq. (1) together with the given boundary conditions (3)
and the initial conditions (4)-(5) using Petrov-Galerkin finite element method, firstly, we
define quadratic B-spline base functions. Let’s assume that the solution domain [a, b] is
divided into N finite elements of uniformly equal length by the nodes xm, m = 0, 1, 2, ..., N
such that a = x0 < x1 · · · < xN = b and h = xm+1 − xm. The quadratic B-splines Qm(x)
, (m = −1(1)N), at the nodes xm are described over the solution domain [a, b] by [14]

Qm(x) = 1
h2


(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2 x ∈ [xm−1, xm],
(xm+2 − x)2 − 3(xm+1 − x)2 x ∈ [xm, xm+1],
(xm+2 − x)2 x ∈ [xm+1, xm+2],
0 otherwise.

(7)

Over the solution domain [a, b], the set of splines {Q−1(x), Q0(x), . . . , QN (x)} constitutes
a basis for the functions described on this domain. Therefore, an approximation solution
UN (x, t) over the domain can be given in terms of those quadratic B-spline trial functions
as follows
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UN (x, t) =

N∑
m=−1

δm(t)Qm(x) (8)

where δm(t)’s are unknown, time dependent parameters to be determined from the bound-
ary and weighted residual conditions. Due to the fact that each quadratic B-spline func-
tions covers three consecutive elements, each element [xm, xm+1] is covered by three qua-
dratic B-spline functions. In this manuscript, the finite elements are identified with the
interval [xm, xm+1] and the elements nodes xm, xm+1. Using the nodal values Um and U

′
m

given in terms of the parameter δm(t)

UN (xm) = Um = δm−1 + δm,

U
′
N (xm) = U

′
m = (2/h)(−δm−1 + δm)

(9)

the variation of UN (x, t) over the typical element [xm, xm+1] is given by

UN =

m+1∑
j=m−1

δjQj . (10)

The weight function Ψ is taken a linear B-spline Lm. Linear B-spline Lm at the knots xm
are defined over the interval [a, b] by

Lm(x) =
1

h

 (xm+1 − x)− 2(xm − x) [xm−1, xm],
(xm+1 − x) [xm, xm+1],
0 otherwise.

(11)

Using the local coordinate transformation for the finite element [xm, xm+1] , linear B-spline
shape functions can be defined as

Lm = 1− ξ

h

Lm+1 =
ξ

h
(12)

Before proceeding with the application of Petrov-Galerkin method to the Eq. (1) with
the appropriate boundary conditions, we initially need to construct the weak form of the
Eq. (1). To do this, all terms in Eq. (1) are taken to one side of the equation and then
multiplied by the weight function Ψ(x) . Then, by taking the integral of the resulting
equation over the region [0, π] and setting it to zero, we get∫ π

0

(
∂γU

∂tγ
− ∂2U

∂x2

)
Ψdx = 0 (13)

where Ψ(x) is the weighted function taken as linear B-spline function Lm. If we use
integration by parts for distributing the degree of dependent variable between itself and
test function, we obtain ∫ π

0

(
∂γU

∂tγ
Ψ+

∂U

∂x

∂Ψ

∂x

)
dx = Ψ

∂U

∂x

∣∣∣∣π
0

. (14)

If we consider the fact that the weak form (14) is valid for the whole region of the problem,
particularly, it is also valid over the typical element [xm, xm+1], therefore Eq. (14) can be
particularly be written as follows
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∫ xm+1

xm

(
∂γU

∂tγ
Ψ+

∂U

∂x

∂Ψ

∂x

)
dx = Ψ

∂U

∂x

∣∣∣∣xm+1

xm

. (15)

By using the transformation ξ = x− xm, the weak form (15) transforms into the form∫ h

0

(
∂γU

∂tγ
Ψ+

∂U

∂ξ

∂Ψ

∂ξ

)
dξ = Ψ

∂U

∂ξ

∣∣∣∣h
0

. (16)

The newly obtained Eq. (16) is the element equation for a typical element “e”. Now,
Eqs. (7) can be rewritten as follows

Qm−1

Qm

Qm+1

= 1
h2

 (h− ξ)2

h2 + 2hξ − 2ξ2

ξ2
(17)

Inserting Eqs. (7) into Eq. (16), we have

Aeδ̇(t) +Beδ(t) = Ceδ(t) (18)

where dot denotes γth fractional derivative with respect to time and Ae
ij , B

e
ij and Ce

ij are
element matrices given by the following statements:

Ae
ij =

∫ h
0 LiQjdξ,

Be
ij =

∫ h
0 L

′
iQ

′
jdξ,

Ce
ij = LiQ

′
j

∣∣∣h
0
,

where i, j = m− 1,m,m+ 1. The element matrices are calculated as follows

Ae
ij =

∫
LiQjdξ = h

12

[
3 8 1
1 8 3

]
Be

ij =
∫
L

′
iQ

′
jdξ = 1

h

[
1 0 −1

−1 0 1

]
Ce
ij = LiQ

′
j

∣∣∣h
0
= 2

h

[
1 −1 0
0 −1 1

]
.

Assembling all contributions coming from all the elements, Eq. (18) yields the system

Aδ̇(t) +Bδ(t) = Cδ(t) (19)

where δ(t)’s are unknown parameters and A, B and C are (N+2)×(N+2) global matrices
with generalized mth row as follows, respectively

A : h
12 (1 11 11 1),

B : 1
h (−1 1 1 −1 ),

C : (0 0 0 0 ).
For the fractional diffusion equation (0 < γ ≤ 1), if time parameters δ(t)’s and its frac-

tional time derivatives δ̇(t)’s in Eq. (19) are discretized by the Crank-Nicolson formula
and L1 formula, respectively:

δm =
1

2
(δnm + δn+1

m ) (20)

and

δ̇m =
dγδ

dtγ
=

(∆t)−γ

Γ(2− γ)

n−1∑
k=0

[
(k + 1)1−γ − k1−γ

] [
δn−k
m − δn−k−1

m

]
,



160 TWMS J. APP. ENG. MATH. V.4, N.2, 2014

we obtain a recurrence relationship between successive time levels relating unknown pa-
rameters δn+1

m (t)

(2− α) δn+1
m−2 + (22 + α) δn+1

m−1 + (22 + α) δn+1
m + (2− α) δn+1

m+1
= (2 + α) δnm−2 + (22− α) δnm−1 + (22− α) δnm + (2 + α) δnm+1

−2
n∑

k=1

[
(k + 1)1−γ − k1−γ

] [
(δn−k+1

m−2 − δn−k
m−2) + 11(δn−k+1

m−1 − δn−k
m−1)

+11(δn−k+1
m − δn−k

m ) + (δn−k+1
m+1 − δn−k

m+1)
] (21)

where

α =
24(∆t)γΓ(2− γ)

h2
.

Next, for fractional diffusion-wave equation (1 < γ ≤ 2), if time parameters δm(t)’s and

its fractional time derivatives δ̇m(t)’s in Eq. (18) are discretized by the Crank-Nicolson
formula and L2 formula, respectively

δm =
1

2
(δnm + δn+1

m ) (22)

and

δ̇ =
dγδ

dtγ
=

(∆t)−γ

Γ(3− γ)

n−1∑
k=0

[
(k + 1)2−γ − k2−γ

] [
δn−k − 2δn−k−1

m + δn−k−2
m

]
,

we obtain a recurrence relationship between successive time levels relating unknown pa-
rameters δn+1

m (t)

(2− α) δn+1
m−2 + (22 + α) δn+1

m−1 + (22 + α) δn+1
m + (2− α) δn+1

m+1
= (4 + α) δnm−2 + (44− α) δnm−1 + (44− α) δnm + (4 + α) δnm+1

−2(δn−1
m−2 + 11δn−1

m−1 + 11δn−1
m + δn−1

m+1)− 2
n∑

k=1

[
(k + 1)2−γ − k2−γ

]
×
[
(δn−k+1

m−2 − 2δn−k
m−2 + δn−k+1

m−2 ) + 11(δn−k+1
m−1 − 2δn−k

m−1 + δn−k+1
m−1 ) + 11(δn−k+1

m − 2δn−k
m + δn−k+1

m )

+(δn−k+1
m+1 − 2δn−k

m+1 + δn−k+1
m+1 )

]
(23)

where

α =
24(∆t)γΓ(3− γ)

h2
.

It is seen that both of the systems (21) and (23) consist of N + 2 linear equations
involving N +2 unknown parameters (δ−1, . . . , δN )T . If we apply the boundary conditions
(3) to the system (19), we easily obtain an N ×N penta-diagonal matrix system.

2.1. Initial state. The initial vector d0 = (δ−1, δ0, δ1, . . . , δN−2, δN−1, δN )T is deter-
mined from the initial condition U (x, 0) by interpolating using quadratic splines. If
we use the relations at the knots UN (xi, 0) = U (xi, 0), (i = 0, . . . , N) together with

U
′
N (xN , 0) = U

′
(xN , 0), initial vector d0 can be obtained from the following matrix equa-

tion
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1 1
1 1

1 1
. . .

1 1
−2
h

2
h





δ0−1

δ00
δ01
...
δ0N−1

δ0N


=



U0
0

U0
1

U0
2

...
U0
N

U
′

N


.

3. Numerical examples and results

In this section, the approximate solutions of the diffusion and diffusion-wave prob-
lems are numerically obtained by Petrov-Galerkin finite element method using quadratic
B-spline base functions as element shape functions and linear B-spline functions as the
weighted functions. The accuracy of the method is measured by the error norm L2

L2 =
∥∥U exact − UN

∥∥
2
≃

√√√√h

N∑
j=0

∣∣∣U exact
j − (UN )j

∣∣∣2 (24)

and the error norm L∞

L∞ =
∥∥U exact − UN

∥∥
∞ ≃ max

j

∣∣∣U exact
j − (UN )j

∣∣∣ . (25)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

u(
,t)

t

 =0.25
 =0.50
 =0.75
 =1.0

Figure 1. Numerical solutions of u (π/ 2, t) for ∆t = 0.00007 and N = 40 at
different time levels.

In Fig. 1, numerical solutions of the fractional diffusion problem at the midpoint for
various values of γ and N = 40 have been presented. The numerical and analytical
solutions are so similar toeach other that they are indistinguishable. Table 1 compares
the analytical solution and numerical solutions obtained for diffusion equation for values of
γ = 0.25, γ = 0.50 and γ = 0.75. Table 1 clearly shows that the analytical and numerical
solutions obtained by the present scheme are in good agreement with each other. As it is
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Table 1. The comparison of the exact solutions with the numerical solu-
tions of the diffusion problem with N = 40, ∆t = 0.00007 and tf = 0.35
for different values of γ and the error norms L2 and L∞.

x
γ = 0.25 γ = 0.50 γ = 0.75

Numerical Exact Numerical Exact Numerical Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.164109 0.164109 0.176628 0.176627 0.194624 0.194621
0.628319 0.312153 0.312153 0.335966 0.335965 0.370197 0.370192
0.942478 0.429642 0.429642 0.462418 0.462416 0.509532 0.509525
1.256637 0.505075 0.505074 0.543605 0.543602 0.598991 0.598983
1.570796 0.531067 0.531066 0.571580 0.571577 0.629816 0.629808
1.884956 0.505075 0.505074 0.543605 0.543602 0.598991 0.598983
2.199115 0.429642 0.429642 0.462418 0.462416 0.509532 0.509525
2.513274 0.312153 0.312153 0.335966 0.335965 0.370197 0.370192
2.827433 0.164109 0.164109 0.176628 0.176627 0.194624 0.194621
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.000614 0.003551 0.010828
L∞ × 103 0.000490 0.002833 0.008639

Table 2. The comparison of the exact solutions with the numerical solu-
tions of the diffusion problem with γ = 0.5, ∆t = 0.00007 and tf = 0.35
for different values of N and the error norms L2 and L∞.

x N=10 N=20 N=40 N=80 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.176631 0.176628 0.176628 0.176628 0.176627
0.628319 0.335973 0.335967 0.335966 0.335966 0.335965
0.942478 0.462427 0.462419 0.462418 0.462418 0.462416
1.256637 0.543615 0.543606 0.543605 0.543605 0.543602
1.570796 0.571591 0.571581 0.571580 0.571580 0.571577
1.884956 0.543615 0.543606 0.543605 0.543605 0.543602
2.199115 0.462427 0.462419 0.462418 0.462418 0.462416
2.513274 0.335973 0.335967 0.335966 0.335966 0.335965
2.827433 0.176631 0.176628 0.176628 0.176628 0.176627
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.017156 0.004349 0.003551 0.003501
L∞ × 103 0.013689 0.003470 0.002833 0.002793

seen from the table, as the values of γ increase, so the values of the error norms L2 and
L∞ increase. Table 2 shows the numerical results for γ = 0.5, ∆t = 0.00007 and tf = 0.35
and for different values of N . It is obvious from Table 2 that as the number of division
increases, the obtained numerical results become more accurate. The decreasing values of
the error norms L2 and L∞ shows this fact clearly. In Fig. 2, the graphs of numerical
solutions obtained for γ = 0.50 and N = 40 at different time levels are illusrated. Table
3 obviously indicates the fact that as the values of time steps become smaller, the level
of agreement between the approximate solutions and analytical solutions also becomes
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better, resulting in the decrease of the values of the error norms L2 and L∞. Table 4
shows the error norms L2 and L∞ for γ = 0.25, γ = 0.50 and γ = 0.75 at several time
levels. Moreover, it is clearly seen from the table that for each value of γ as the time
increases, the values of error norms L2 and L∞ decease.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

u(
x,t

)

x

 t=0.007
 t=0.035
 t=0.14
 t=0.35

Figure 2. Numerical solutions of the diffusion problem for γ = 0.50 and N = 40
at different time levels.

Table 3. The comparison of the exact solutions with the numerical so-
lutions of the diffusion problem with γ = 0.5, N = 40 and tf = 0.35 for
different values of ∆t and the error norms L2 and L∞.

x ∆t = 0.0035 ∆t = 0.0007 ∆t = 0.00035 ∆t = 0.00007 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 0.176676 0.176636 0.176632 0.176628 0.176627
0.628319 0.336057 0.335982 0.335973 0.335966 0.335965
0.942478 0.462543 0.462439 0.462427 0.462418 0.462416
1.256637 0.543751 0.543630 0.543616 0.543605 0.543602
1.570796 0.571734 0.571607 0.571592 0.571580 0.571577
1.884956 0.543751 0.543630 0.543616 0.543605 0.543602
2.199115 0.462543 0.462439 0.462427 0.462418 0.462416
2.513274 0.336057 0.335982 0.335973 0.335966 0.335965
2.827433 0.176676 0.176636 0.176632 0.176628 0.176627
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.196542 0.036649 0.018010 0.003551
L∞ × 103 0.156818 0.029242 0.014370 0.002833

Fig. 3 shows the numerical solutions of the fractional diffusion wave problem at the
midpoint for various values of γ and N = 40. The graphs of the numerical and analytical
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Table 4. The comparison of the exact solutions with the numerical solu-
tions of the diffusion problem with N = 40, ∆t = 0.00007 and tf = 0.35
for different values of N and the error norms L2 and L∞.

t
γ = 0.25 γ = 0.50 γ = 0.75

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

0.07 0.010430 0.008322 0.035735 0.028512 0.043847 0.034984
0.14 0.003757 0.002998 0.016264 0.012977 0.028503 0.022742
0.21 0.001868 0.001491 0.009175 0.007320 0.020136 0.016067
0.28 0.001047 0.000836 0.005619 0.004483 0.014681 0.011714
0.35 0.000614 0.000490 0.003551 0.002833 0.010828 0.008639
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Figure 3. Numerical solutions of u (π/ 2, t) for ∆t = 0.0015 and N = 40 at
different time levels.

solutions are indiscriminately similar to each other. Table 5 presents the comparison of
the analytical solution and numerical solutions obtained by the scheme for diffusion-wave
equation for values of γ = 1.25, γ = 1.50 and γ = 1.75. It is clearly demonstrated in the
table that the obtained numerical results are satisfactorily in good agreement with the
analytical ones. As the value of γ increases, so the values of the error norms L2 and L∞
increase. Table 6 gives the numerical results for γ = 1.5, ∆t = 0.00075 and tf = 3.75 for
various values of N . As it is seen from the table, as the number of division of the problem
domain increases, the values of error decrease. It is shown in Table 7 that as the values
of time steps decrease, the agreement between the approximate solutions and analytical
solutions becomes better, and the values of the error norms L2 and L∞ become smaller.
Fig. 4 illusrates the numerical solutions for the values of γ = 1.50 and N = 40 at various
time levels. Table 8 shows the error norms L2 and L∞ for N = 40, ∆t = 0.00075 and
tf = 3.75 for various values of γ and t.
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Table 5. The comparison of the exact solutions with the numerical so-
lutions of the diffusion-wave problem with N = 40, ∆t = 0.00075 and
tf = 3.75 for different values of γ and the error norms L2 and L∞.

x
γ = 1.25 γ = 1.50 γ = 1.75

Numerical Exact Numerical Exact Numerical Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 -0.030452 -0.030452 -0.073478 -0.073478 -0.137937 -0.137943
0.628319 -0.057923 -0.057923 -0.139763 -0.139763 -0.262371 -0.262384
0.942478 -0.079724 -0.079724 -0.192367 -0.192367 -0.361123 -0.361140
1.256637 -0.093721 -0.093721 -0.226141 -0.226141 -0.424525 -0.424546
1.570796 -0.098545 -0.098545 -0.237779 -0.237779 -0.446372 -0.446394
1.884956 -0.093721 -0.093721 -0.226141 -0.226141 -0.424525 -0.424546
2.199115 -0.079724 -0.079724 -0.192367 -0.192367 -0.361123 -0.361140
2.513274 -0.057923 -0.057923 -0.139763 -0.139763 -0.262371 -0.262384
2.827433 -0.030452 -0.030452 -0.073478 -0.073478 -0.137937 -0.137943
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.000081 0.000632 0.027269
L∞ × 103 0.000065 0.000504 0.021758

Table 6. The comparison of the exact solutions with the numerical so-
lutions of the diffusion-wave problem with γ = 1.5, ∆t = 0.00075 and
tf = 3.75 for different values of N and the error norms L2 and L∞.

x N=10 N=20 N=40 N=80 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 -0.073482 -0.073478 -0.073478 -0.073478 -0.073478
0.628319 -0.139771 -0.139763 -0.139763 -0.139763 -0.139763
0.942478 -0.192378 -0.192368 -0.192367 -0.192367 -0.192367
1.256637 -0.226154 -0.226142 -0.226141 -0.226141 -0.226141
1.570796 -0.237792 -0.237780 -0.237779 -0.237779 -0.237779
1.884956 -0.226154 -0.226142 -0.226141 -0.226141 -0.226141
2.199115 -0.192378 -0.192368 -0.192367 -0.192367 -0.192367
2.513274 -0.139771 -0.139763 -0.139763 -0.139763 -0.139763
2.827433 -0.073482 -0.073478 -0.073478 -0.073478 -0.073478
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.017421 0.001616 0.000632 0.000570
L∞ × 103 0.013900 0.001290 0.000504 0.000455
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Table 7. The comparison of the exact solutions with the numerical solu-
tions of the diffusion-wave problem with γ = 1.5, N = 40 and tf = 3.75 for
different values of ∆t and the error norms L2 and L∞.

x ∆t = 0.015 ∆t = 0.0075 ∆t = 0.0015 ∆t = 0.00075 Exact
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.314159 -0.073491 -0.073482 -0.073478 -0.073478 -0.073478
0.628319 -0.139788 -0.139771 -0.139764 -0.139763 -0.139763
0.942478 -0.192401 -0.192379 -0.192368 -0.192367 -0.192367
1.256637 -0.226181 -0.226155 -0.226142 -0.226141 -0.226141
1.570796 -0.237821 -0.237793 -0.237780 -0.237779 -0.237779
1.884956 -0.226181 -0.226155 -0.226142 -0.226141 -0.226141
2.199115 -0.192401 -0.192379 -0.192368 -0.192367 -0.192367
2.513274 -0.139788 -0.139771 -0.139764 -0.139763 -0.139763
2.827433 -0.073491 -0.073482 -0.073478 -0.073478 -0.073478
3.141593 0.000000 0.000000 0.000000 0.000000 0.000000
L2 × 103 0.053002 0.018505 0.001677 0.000632
L∞ × 103 0.042289 0.014765 0.001338 0.000504
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Figure 4. Numerical solutions of the diffusion-wave problem for γ = 1.50 and
N = 40 at different time levels.

Table 8. he comparison of the exact solutions with the numerical solutions
of the diffusion problem with N = 40, ∆t = 0.00075 and tf = 3.75 for
different values of N and the error norms L2 and L∞.

t
γ = 1.25 γ = 1.50 γ = 1.75

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.5 0.000317 0.000253 0.002959 0.002361 0.001341 0.001070
3.0 0.000018 0.000015 0.001633 0.001303 0.053247 0.042485
4.5 0.000084 0.000067 0.001882 0.001502 0.016787 0.013394
6.0 0.000035 0.000028 0.001059 0.000845 0.053487 0.042677
7.5 0.000005 0.000004 0.000473 0.000378 0.009466 0.007553
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4. Conclusion

In the present study, a Petrov-Galerkin finite element method has been successfully
used to obtain the numerical solutions of diffusion and diffusion-wave equations. In these
equations, the fractional derivative is considered of the Caputo form. The fractional deriv-
ative appearing in the fractional diffusion and diffusion-wave equations is approximated,
respectively, by means of the so-called L1 and L2 formulae the same as used by Ref. [7] in
the explicit finite difference method solution. One can easily conclude from the presented
results that the applied method is a highly good one to obtain numerical solutions of this
kind fractional partial differential equations.
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