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B-SPLINE COLLOCATION METHOD FOR NUMERICAL SOLUTION

OF NONLINEAR KAWAHARA AND MODIFIED KAWAHARA

EQUATIONS

AMIR SABOOR BAGHERZADEH1, §

Abstract. In this paper, a collocation method is applied for solving the Kawahara and
modified Kawahara equations. For the spatial discretization, we use the sextic B-spline
collocation (SBSC) method on uniform meshes, finite difference scheme is employed for
the time discretization. The stability analysis of the collocation methods are examined by
the Von Neumann approach. Numerical results demonstrate the efficiency and accuracy
of the proposed methods.
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1. Introduction

Nonlinear phenomena appear in many areas such as solid state physics, chemical physics,
plasma physics or fluid mechanics. Kawahara type equations are one of the classes of
nonlinear evolution equations which occur in many physical phenomena such as the theory
of magneto-acoustic waves in plasmas [1] and shallow water waves with surface tension
[2].
In this paper, we will focus our attention on the following nonlinear partial differential
equation

ut + µux + γ ud ux + p u3x + q u5x = 0, (x, t) ∈ Ω = [a, b]× [0, T ], (1)

with the following boundary conditions u(x, 0) = f(x) x ∈ [a, b],
ux(a, t) = g1(t), u2x(a, t) = g2(t), u3x(a, t) = g3(t), t ∈ [0, T ],
ux(b, t) = h1(t), u2x(b, t) = h2(t), t ∈ [0, T ],

(2)

where ukx = ∂k

∂xku(x, t) for k ∈ N and the nondimensional quantities µ, γ, p and q are
non-zero real constants and depend on the physical problem. When d = 1, equation (1) is
called the Kawahara equation which proposed by Kawahara [1] to make the solitary wave
propagation and when d = 2, (1) is known as the modified Kawahara equation.
Numerical methods are commonly used to solve (1). For example, Zhang presented the
doubly periodic solution of the modified Kawahara equations [4]. The existence and the
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uniqueness of the solution of (1) are studied by Shuangping et al. [5]. Khan et al. applied
the homotopy perturbation and modified Adomian decomposition method [6, 7]. A Dual-
Petrov-Galerkin method for the equation (1)–(2) was presented in [8] and Zarebnia et al.
showed the numerical solution of the modified Kawahara equation by using Chebyshev
polynomials basis functions [9].
B-spline collocation methods are economical alternative ways for solving boundary value
problems since they only require the evaluation of the unknown parameters at the grid
points. Also, this approximation of the differential equations leads to band matrices which
are solvable easily with some low cost algorithms. As is known, proper choice of the B-
spline basis functions is the success key of this method. For this reason, sextic B-splines
basis functions have been used for solving the Kawahara and modified Kawahara equations.
By replacing the time derivative with the first order finite difference scheme and the space
derivatives by the sextic B-spline relations, we will obtain an implicit spline-difference
scheme. The resulting of this scheme gives a six-diagonal system which can be solved by a
six-diagonal solver. Our main aim is to show the efficiency and sufficient accuracy of the
SBSC method and state that our method is simple, with reasonable numerical stability
and low computational cost.
The layout of this paper is the following. In Section 2, we give some preliminary results
about the construction of B-spline basis functions and in Section 3, the SBSC method
is used for the equation (1). In Section 4, we discuss theoretically about the stability
of the proposed methods and finally in Section 5 we report our numerical experiences
and demonstrate the efficiency and accuracy of proposed numerical scheme by considering
some examples.

2. Sextic B-Spline Basis Functions

In this section, a sextic spline interpolation S(x) is defined and then we derive some
relations to be used in the formulation of the SBSC method for equation (1) with the
boundary conditions (2). A detailed description of B-spline functions can be found in [10].
Let partition ∆ = {a = x0 < x1 < . . . < xm = b} be an equally-spaced knots of [a, b] with
step size h = 1

m , where xi = a+ i h for i = 0, 1, . . . ,m. We consider smooth sextic spline
S(x) as an element of

S6(∆) =
{
f(x) | f(x) ∈ C5[a, b] and deg

(
f(x)

)
≤ 6 on ∆

}
(3)

The sextic B-splines basis functions
{
Bi(x)

}m+2

i=−3 are defined as (See [11])

Bi(x) =
1

h6



(x− xi + 3h)6, ; xi−3 ≤ x ≤ xi−2,
(x− xi + 3h)6 − 7(x− xi + 2h)6, ; xi−2 ≤ x ≤ xi−1,
(x− xi + 3h)6 − 7(x− xi + 2h)6 + 21(x− xi + h)6, ; xi−1 ≤ x ≤ xi,
(x− xi + 3h)6 − 7(x− xi + 2h)6 + 21(x− xi + h)6

−35(x− xi)6, ; xi ≤ x ≤ xi+1,
(x− xi − 4h)6 − 7(x− xi − 3h)6 + 21(x− xi − 2h)6, ; xi+1 ≤ x ≤ xi+2,
(x− xi − 4h)6 − 7(x− xi − 3h)6, ; xi+2 ≤ x ≤ xi+3,
(x− xi − 4h)6, ; xi+3 ≤ x ≤ xi+4,
0, ; otherwise,

(4)

see Figure 1. For numerical solution, Bi, B
′
i, B

′′′
i and B

(5)
i evaluated at the nodal points

are needed. These coefficients are summarized in Table 1.
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Figure 1. Plot of sixth degree B-spline function in [xi−3, xi+4].

Table 1. Values of Bi, B
′
i, B

′′
i , B

′′′
i , B

(4)
i and B

(5)
i in nodal points.

xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3 xi+4

Bi 0 1 57 302 302 57 1 0
hB′i 0 6 150 240 -240 -150 -6 0
h2B′′i 0 30 270 -300 -300 270 30 0
h3B′′′i 0 120 120 -960 960 -120 -120 0

h4B
(4)
i 0 360 -1080 720 720 -1080 360 0

h5B
(5)
i 0 720 -3600 7200 -7200 3600 -720 0

3. Discretization and numerical method for the Kawahara type equations

Consider the uniform mesh with grid points (xi, tj) ∈ Ω to discretize the region Ω,
where xi ∈ ∆ and tj = j∆t, j = 0, 1, . . . , n, which ∆t is the mesh size in time direction.
A global approximation u(x, t) of the analytical solution U(x, t) of (1)–(2) considered as
an expansion of B-splines basis function as

u(x, t) =
m+2∑
i=−3

ci(t)Bi(x), (5)

where ci(t) are the time dependent variables to be determined from the sextic B-spline
collocation form of the equation (1) together with boundary and initial conditions (2). 1

Now by using (2) and (5), we can obtain the nodal value u and its derivatives at the nodes
(xi, tj) in the following forms

(i) u(xi, tj) = uji := cji−3 + 57cji−2 + 302cji−1 + 302cji + 57cji+1 + cji+2, (6)

1Collocation points are selected to coincide with knots.
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(ii) ux(xi, tj) = (ux)ji := 6
h

(
− cji−3 − 25cji−2 − 40cji−1 + 40cji + 25cji+1 + cji+2

)
, (7)

(iii) uxx(xi, tj) = (uxx)ji := 30
h2

(
cji−3 + 9cji−2 − 10cji−1 − 10cji + 9cji+1 + cji+2

)
, (8)

(iv) u3x(xi, tj) = (u3x)ji := 120
h3

(
− cji−3 − c

j
i−2 + 8cji−1 − 8cji + cji+1 + cji+2

)
, (9)

(v) u4x(xi, tj) = (u4x)ji := 360
h4

(
− cji−3 + 3cji−2 − 2cji−1 + 2cji − 3cji+1 + cji+2

)
, (10)

(vi) u5x(xi, tj) = (u5x)ji := 720
h5

(
cji−3 − 5cji−2 + 10cji−1 − 10cji + 5cji+1 − c

j
i+2

)
. (11)

3.1. The Kawahara equation. Consider the following Kawahara equation

ut + uux + u3x − u5x = 0, (x, t) ∈ Ω, (12)

with initial and boundary conditions (2). At the grid point (xi, tj) equation (12) may be
discretized as the following form

∂u

∂t
(xi, tj) + u(xi, tj)

∂u

∂x
u(xi, tj) +

∂3u

∂x3
(xi, tj)−

∂5u

∂x5
(xi, tj) = 0. (13)

By discretizing the time derivative in the usual first order finite difference method and
applying the weighted average method (σ-method) to (13) we obtain

uj+1
i − uji

∆t
+

(
σ(uux)j+1

i + (1− σ)(uux)ji
)

+
(
σ(u3x)j+1

i + (1− σ)(u3x)ji
)

−
(
σ(u5x)j+1

i + (1− σ)(u5x)ji
)

= 0, (14)

where σ ∈ (0, 1) is a parameter. To linearize the nonlinear term (uux)j+1
i in (14), we can

write

(uux)j+1
i = uj+1

i (ux)ji + uji (ux)j+1
i − uji (ux)ji , (15)

for more details about this type of linearization see [12]. Substituting (15) into (14), we
obtain

uj+1
i + ∆t σ

(
uj+1
i (ux)ji + uji (ux)j+1

i + (u3x)j+1
i − (u5x)ji

)
= uji + ∆t(2σ − 1)uji (ux)ji + ∆t (1− σ)

(
(u5x)ji + (u3x)ji

)
. (16)

By substituting (5) into (16) at the grid points and using (6)–(11), the following difference
equation with the variable c is obtained:

αi1 c
j+1
i−3 + αi2 c

j+1
i−2 + αi3 c

j+1
i−1 + αi4 c

j+1
i + αi5 c

j+1
i+1 + αi6 c

j+1
i+2

= β1 c
j
i−3 + β2 c

j
i−2 + β3 c

j
i−1 + β4 c

j
i + β5 c

j
i+1 + β6 c

j
i+2 + 6 (2σ − 1)h4 ∆tW j

i Z
j
i , (17)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n, where,

αi1 = h5 + 6σ h4 ∆t
(
Zj
i −W

j
i

)
− 120σ h2 ∆t− 720σ∆t, (18)

αi2 = 57h5 + 6σ h4 ∆t
(
57Zj

i − 25W j
i

)
− 120σ h2 ∆t+ 3600σ∆t, (19)

αi3 = 302h5 + 12σ h4 ∆t
(
151Zj

i − 20W j
i

)
+ 960σ h2 ∆t− 7200σ∆t, (20)

αi4 = 302h5 + 12σ h4 ∆t
(
151Zj

i + 20W j
i

)
− 960σ h2 ∆t+ 7200σ∆t, (21)

αi5 = 57h5 + 6σ h4 ∆t
(
57Zj

i + 25W j
i

)
+ 120σ h2 ∆t− 3600σ∆t, (22)

αi6 = h5 + 6σ h4 ∆t
(
Zj
i +W j

i

)
+ 120σ h2 ∆t+ 720σ∆t, (23)
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and

β1 = h5 + 120 (1− σ)h2 ∆t+ 720 (1− σ) ∆t (24)

β2 = 57h5 + 120 (1− σ)h2 ∆t− 3600 (1− σ) ∆t (25)

β3 = 302h5 − 960 (1− σ)h2 ∆t+ 7200 (1− σ) ∆t (26)

β4 = 302h5 + 960 (1− σ)h2 ∆t− 7200 (1− σ) ∆t (27)

β5 = 57h5 − 120 (1− σ)h2 ∆t+ 3600 (1− σ) ∆t (28)

β6 = h5 − 120 (1− σ)h2 ∆t− 720 (1− σ) ∆t, (29)

with

W j
i = cji−3 + 57 cji−2 + 302 cji−1 + 302 cji + 57 cji+1 + cji+2, (30)

Zj
i = −cji−3 − 25 cji−2 − 40 cji−1 + 40 cji + 25 cji+1 + cji+2. (31)

The system (17) has m+ 1 equations with m+ 6 unknown parameters, therefore, we need
five more equations which are obtained from boundary conditions.

3.1.1. Development of boundary conditions. Using boundary conditions (2) and (6)-(11),
the left boundary conditions are discretized to

cj−3 + 57 cj−2 + 302 cj−1 + 302 cj0 + 57 cj1 + cj2 = g0(tj), (32)

−cj−3 − 25 cj−2 − 40 cj−1 + 40 cj0 + 25 cj1 + cj2 =
h

6
g1(tj), (33)

cj−3 + 9 cj−2 − 10 cj−1 − 10 cj0 + 9 cj1 + cj2 =
h2

30
g2(tj), (34)

and similarly, for the right boundary conditions we can write

cjm−3 + 57 cjm−2 + 302 cjm−1 + 302 cjm + 57 cjm+1 + cjm+2 = h0(tj), (35)

−cjm−3 − 25 cjm−2 − 40 cjm−1 + 40 cjm + 25 cjm+1 + cjm+2 =
h

6
h1(tj). (36)

Now using (6)-(11), (32)-(34) and (35)-(36), we can determine parameters c`−3, c
`
−2, c

`
−1, c

`
m+1

and c`m+2 for ` = j, j + 1 as follow

c`−3 = −100

9
c`0 + 10 c`1 +

19

9
c`2 −

31h

1296
g1(t`)−

h2

54
g2(t`)−

61h3

5184
g3(t`), (37)

c`−2 =
20

9
c`0 − c`1 −

2

9
c`2 −

h

1296
g1(t`) +

h2

270
g2(t`) +

5h3

5184
g3(t`), (38)

c`−1 = −−360 c`0 + 3240 c`1 + 360 c`2 − 10h g1(t`)− 6h2 g2(t`)− h3 g3(t`)
3240

, (39)

c`m+1 =
c`m−3 + 17 c`m−2 + 15 c`m−1 − 25 c`m

8
+

h

96
h1(t`)−

h2

480
h2(t`), (40)

and

c`m+2 =
−204 c`m−3 − 2700 c`m−2 − 660 c`m−1 + 3660 c`m

96
+

5h2 h2(t`)− 9hh1(t`)

96
. (41)

Therefore, by eliminating of the above parameters from (17), the six-banded linear system
of equations (17) has a unique solution.
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3.1.2. The initial state. The proposed scheme (17) is an implicit two-level scheme, for this
reason, before starting any computation, it is necessary the initial element parameters c0i
for i = 0, 1, . . . ,m. By using (6) and taking tj = 0 we have

c0i−3 + 57 c0i−2 + 302 c0i−1 + 302 c0i + 57 c0i+1 + c0i+2 = u(xi, 0) := u0i , (42)

for i = 0, 1, . . . ,m. For eliminating five-additional parameters c0−3, c
0
−2, c

0
−1, c

0
m+1 and

c0m+2, it is sufficient to use (37)-(41) by choosing ` = 0.

3.2. The modified Kawahara equation. Consider the modified Kawahara equation

ut + ux + u2 ux + p u3x + q u5x = 0, (x, t) ∈ Ω, (43)

with boundary and initial conditions (2) where p and q are real constants. Similarly, the
weighted average discretization yields

uj+1
i − uji

∆t
+
(
σ (ux)j+1

i + (1− σ) (ux)ji
)

+ (u2)ji
(
σ (ux)j+1

i + (1− σ) (ux)ji
)

+p
(
σ (u3x)j+1

i + (1− σ) (u3x)ji
)

+ q
(
σ (u5x)j+1

i + (1− σ) (u5x)ji
)

= 0, (44)

where σ ∈ (0, 1) is a parameter. Rearranging (44) with respect to time level j and j + 1,
we can obtain the following

uj+1
i + σ∆t

(
(ux)j+1

i + (u2)ji (ux)j+1
i + p (u3x)j+1

i + q (u5x)j+1
i

)
= uji − (1− σ) ∆t

(
(ux)ji + (u2)ji (ux)ji + p (u3x)ji + q (u5x)ji

)
. (45)

Substituting (5) into (45) at the grid points and using (6)-(11), the following recurrence
system of equations with the variable c is obtained:

ρi1 c
j+1
i−3 + ρi2 c

j+1
i−2 + ρi3 c

j+1
i−1 + ρi4 c

j+1
i + ρi5 c

j+1
i+1 + ρi6 c

j+1
i+2

µi1, c
j
i−3 + µi2, c

j
i−2 + µi3, c

j
i−1 + µi4, c

j
i + µi5, c

j
i+1 + µi6, c

j
i+2, (46)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n where,

ρi1 = h5 − 6σΨj
i ∆t h4 − 120 p σ∆t h2 + 720 q σ∆t, (47)

ρi2 = 57h5 − 150σΨj
i ∆t h4 − 120 p σ∆t h2 − 3600 q σ∆t, (48)

ρi3 = 302h5 − 240σΨj
i ∆t h4 + 960 p σ∆t h2 + 7200 q σ∆t, (49)

ρi4 = 302h5 + 240σΨj
i ∆t h4 − 960 p σ∆t h2 − 7200 q σ∆t, (50)

ρi5 = 57h5 + 150σΨj
i ∆t h4 + 120 p σ∆t h2 + 3600 q σ∆t, (51)

ρi1 = h5 + 6σΨj
i ∆t h4 + 120 p σ∆t h2 − 720 q σ∆t, (52)

and

µi1 = h5 + 6 (1− σ) Ψj
i ∆t h4 + 120 p (1− σ) ∆t h2 − 720 q (1− σ) ∆t, (53)

µi2 = 57h5 + 150 (1− σ) Ψj
i ∆t h4 + 120 p (1− σ) ∆t h2 + 3600 q (1− σ) ∆t, (54)

µi3 = 302h5 + 240 (1− σ) Ψj
i ∆t h4 − 960 p (1− σ) ∆t h2 − 7200 q (1− σ) ∆t, (55)

µi4 = 302h5 − 240 (1− σ) Ψj
i ∆t h4 + 960 p (1− σ) ∆t h2 + 7200 q (1− σ) ∆t, (56)

µi5 = 57h5 − 150 (1− σ) Ψj
i ∆t h4 − 120 p (1− σ) ∆t h2 − 3600 q (1− σ) ∆t, (57)

µi6 = h5 − 6 (1− σ) Ψj
i ∆t h4 − 120 p (1− σ) ∆t h2 + 720 q (1− σ) ∆t, (58)

with Ψj
i = 1 + Φj

i , where

Φj
i =

(
cji−3 + 57 cji−2 + 302 cji−1 + 302 cji + 57 cji+1 + cji+2

)2
, (59)



194 TWMS J. APP. ENG. MATH. V.7, N.2, 2017

The recurrence system of equation (46) has m + 1 equations with m + 6 unknown pa-
rameters, therefore, we still need five more additional equations which are obtained from
boundary conditions.

Remark 3.1. By choosing σ = 1
2 , the σ-average method in (45) becomes to the famous

Crank-Nicolson method and in this case the coefficients in recurrence system (46) have the
form ρi` = µi 7−` for ` = 1, 2, . . . , 6.

Remark 3.2. To eliminate five additional parameters c`−3, c
`
−2, c

`
−1, c

`
0, c

`
1 and c`−3 where

` = j, j + 1 in recurrence system (46), we can use relations (37)-(41), respectively. In
addition, the initial state for the implicit two-level scheme (46) is exactly the same as
Subsection 3.1.2.

4. Stability analysis

Von Neumann stability method is applied for analyzing the stability of the proposed
scheme. For this reason, consider the trial solution at a given point xi

cji = ηj exp(ıθih), (60)

where ı =
√
−1, θ is the mode number, h is the element size and η is the amplification

factor of the scheme. To investigate the stability of difference scheme (17), the nonlinear
term uux of the Kawahara equation is linearized by making the quantities u and ux locally
constants. Now substituting the Fourier mode into linearized form of equation (17), we
obtain

η =
A1 − ı B1

A2 − ıB2
, (61)

where

A1 = β1 cos(3θ h) + (β2 + β6) cos(2θ h) + (β3 + β5) cos(θ h) + β4, (62)

B1 = β1 sin(3θ h) + (β2 + β6) sin(2θ h) + (β3 + β5) sin(θ h), (63)

A2 = αi1 cos(3θ h) + (αi2 + αi6) cos(2θ h) + (αi3 + αi1) cos(θ h) + αi4, (64)

B2 = αi1 sin(3θ h) + (αi2 + αi6) sin(2θ h) + (αi3 + αi5) sin(θ h). (65)

(66)

The stability condition |η| ≤ 1 is satisfied by the following inequality:

A2
1 +B2

1 −A2
2 −B2

2 ≤ −230400∆t
(
27h9q2σ + 81h8∆tp2σ2 − 16δt

(
2(h2 − 3)

+ (6 + h2) cos(θh)
)2

sin2(
x

2
)
)
≤ 0. (67)

So we can investigate the results above in the following Theorem:

Theorem 4.1. The scheme (17) for solving equation (12) is unconditionally stable.

The next step in this Section is studying the stability of (46). For this reason, we must
first linearize the system (46). Set:

Ψi := 1 + Φi = 1 + (d+ 57d+ 302d+ 302d+ 57d+ d)2 = F. (68)

Then, consider again the trial solution (60) at an arbitrary point xi and substituting (60)
into (46) we get

η =
C1 − ıD1

C2 − ıD2
, (69)
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where,

C1 = µi1 cos(3θh) + (µi2 + µi6) cos(2θh) + (µi3 + µi5) cos(θh) + µi1, (70)

D1 = µi1 sin(3θh) + (µi2 + µi6) sin(2θh) + (µi3 + µi5) sin(θh), (71)

C2 = ρi1 cos(3θh) + (ρi2 + ρi6) cos(2θh) + (ρi3 + ρi5) cos(θh) + ρi1, (72)

D2 = ρi1 sin(3θh) + (ρi2 + ρi6) sin(2θh) + (ρi3 + ρi5) sin(θh). (73)

For the stability condition, we can write

C2
1 +D2

1 − C2
2 −D2

2 = −A∗ + (1− 2σ)B∗, (74)

with

A∗ = −48h5∆t
(
8140h2p+ 121080q + 2551h4F + (6200h2p− 35040q

+ 262h4F) cos(θh)
)

sin2(θh), (75)

B∗ = 288∆t2
(
3(400(11h4p2 + 168h2pq + 756q2)− 40h4(49h2p+ 276q)F + 371h8F2)

+ 5(4h2p+ 120q + 5h4F) (−20(7h2p+ 66q) + 41h4F) cos(θh)

+ 40(20h2p− 120q + h4F) (−4h2p− 30q + h4F) cos(2θh) sin2(
θh

2
)
)
. (76)

The necessary and sufficient condition for η ≤ 1 is that σ ≥ 1
2 . But for σ < 1

2 , it
is satisfied when the ∆t be sufficiently small. We investigate the results above in the
following theorem.

Theorem 4.2. The scheme (46) for solving equation (43) is unconditionally stable if
σ ≥ 1

2 , and conditionally stable if σ < 1
2 .

5. Numerical experiences

The numerical method which is described in this paper is tested for getting solution of
the Kawahara and modified Kawahara differential equations for the numerical accuracy
and demonstrate the robustness of the methods. For this reason, the L2 and L∞ norms
define as

‖E‖2 :=
(
h

m∑
j=0

|(Uj − uj)2|
) 1

2
, (77)

‖E‖∞ := max
j

∣∣Uj − uj |. (78)

The three conserved quantities for the Kawahara equation are (see [13, 14])

I1 =

∫ b

a
U dx, I2 =

∫ b

a

U2

2
dx, I3 =

∫ b

a

(U2
x + U2

xx

2
− U3

6

)
dx. (79)

5.1. Example 1. Consider the Kawahara equation (12) with initial and boundary condi-
tions (2) with the exact solution [13]

U(x, t) =
105

169
sech4

(
K(x− 36

169
t)
)
, (80)

where K = 1
2
√
13

. For numerical computation we take [a, b] = [−20, 30], h = 1 and

∆t = 0.01. The error values and conserved quantities are shown in Table 2 and compared
with other methods such as Multiquadric (MQ) and Gaussian (GA) radial basis methods
[15], polynomial based differential quadrature (PDQ) method [13] and cosine expansion
based differential quadrature (CDQ) method [13]. In Figure 2 traveling wave solution of
the Kawahara equation in different time steps plotted and the markers show the exact
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Table 2. Comparison of the error norms for Kawahara equation.

Method Time ‖E‖2 ‖E‖∞ I1 I2 I3
Present 0 0 0 5.97359 1.27250 -0.16458

5 3.28879E-5 1.54883E-5 5.97358 1.27250 -0.16458
15 3.29411E-5 1.55451E-5 5.97366 1.27250 -0.16458
25 3.31971E-5 1.56284E-5 5.97367 1.27250 -0.16458

MQ 0 0 0 5.97359 1.27250 -0.16458
5 9.468E-5 4.6697E-5 5.97348 1.27250 -0.16458
15 1.5362E-4 5.9394E-5 5.97343 1.27250 -0.16458
25 1.6818E-4 4.6602E-5 5.97355 1.27250 -0.16458

GA 0 0 0 5.973599 1.27250 -0.16458
5 1.0075E-4 3.4297E-5 5.973662 1.272502 -0.16458
15 1.0113E-4 3.8304E-5 5.973675 1.272502 -0.16458
25 1.3160E-4 3.9907E-5 5.973532 1.272502 -0.16458

PDQ 0 0 0 5.97357 1.27250 -0.16458
5 1.986E-3 9.21E-4 5.97060 1.27250 -0.16458
15 2.453E-3 1.045E-3 5.97014 1.27250 -0.16458
25 2.851E-3 8.635E-4 5.97353 1.27250 -0.16458

CDQ 0 0 0 5.97357 1.27250 -0.16458
5 1.51E-4 4.3E-5 5.97372 1.27250 -0.16458
15 1.56E-4 4.9E-5 5.97364 1.27250 -0.16458
25 1.59E-4 7.6E-5 5.97350 1.27250 -0.16458

solution. Error between the numerical and analytical solutions is depicted in different
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Figure 2. The solution of the Kawahara equation in different time steps.

time steps in Figure 3.
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Figure 3. The errors (|numerical solution−analytical solution|) at t = 10, t =
20 and t = 30.

5.2. Example 2. Consider modified Kawahara equation (43) with boundary and initial
conditions (2). The exact solution of this equation is

U(x, t) =
3p√
−10q

sech2
(
K(x− δt)

)
, (81)

where δ = 25q−4p2
25q and K = 0.5

√
−p
5q . For the numerical analysis, we assume the parame-

ters p = 0.001 and q = −1. Furthermore, let [a, b] = [−100, 100], T = 100 and h = ∆t = 1.
In Table 3, we observed the errors in our method in some grid points for different time
steps. In Table 4, we compare our results with standard radial basis methods such as Mul-

Table 3. Absolute error values in grid points for different time steps.

Time x = −75 x = −25 x = 20 x = 40 x = 60 x = 80
10 5.12466E-6 3.02662E-6 9.89115E-7 2.72163E-6 4.0583E-6 4.87119E-6
20 5.16457E-6 3.7101E-6 4.74912E-8 1.8924E-6 3.45159E-6 4.53408E-6
40 4.95896E-6 4.68791E-6 1.80594E-6 4.75529E-8 1.89363E-6 3.4536E-6
60 4.49171E-6 5.12952E-6 3.38775E-6 1.80706E-6 4.76148E-8 1.89485E-6

tiquadratic (MQ), Gaussian (GA), Inversequadric (IQ) and Inverse Multiquadric (IMQ)
(13). In Figure 4, the numerical values of traveling wave solution for modified Kawahara
equation and the corresponding errors are plotted, respectively.
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Table 4. Comparison of the error norms at time t = 100 for modified
Kawahara equation.

Method ‖E‖2 ‖E‖∞ I1 I2 I3
Present 5.17073E-6 5.49144E-5 0.119189 4.16631E-5 -9.13258E-9

MQ 3.120253E-5 4.94228E-4 0.119171 4.16550E-5 -9.13256E-9
GA 3.120140E-5 4.95053E-4 0.119168 4.16552E-5 -9.13256E-9
IQ 3.367458E-5 4.95159E-4 0.119185 4.16550E-5 -9.13256E-9

IMQ 3.248706E-5 5.99387E-4 0.119182 4.16550E-5 -9.13256E-9
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Figure 4. (Left) Traveling wave solution for modified Kawahara equation.
(Right) The errors (|numerical solution−analytical solution|) at t = 20, t =
40, t = 60 and t = 80.

6. Conclusion

The sixth degree B-spline functions tested on Kawahara and modified Kawahara partial
differential equation. The numerical results show that the errors are reasonable and the
computed results are in agreement with the reported results in other literatures.
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