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DISTANCE MAJORIZATION SETS IN GRAPHS

R.SUNDARESWARAN 1, V.SWAMINATHAN2, §

Abstract. Let G = (V,E) be a simple graph. A subset D of V (G) is said to be a
distance majorization set (or dm - set) if for every vertex u ∈ V − D, there exists a
vertex v ∈ D such that d(u, v) ≥ deg(u) + deg(v). The minimum cardinality of a dm
- set is called the distance majorization number of G (or dm - number of G) and is
denoted by dm(G), Since the vertex set of G is a dm - set, the existence of a dm - set
in any graph is guaranteed. In this paper, we find the dm - number of standard graphs
like Kn,K1,n,Km,n, Cn, Pn, compute bounds on dm− number and dm- number of self
complementary graphs and mycielskian of graphs.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple
edges. The order and size of G are denoted by n and m respectively. For basic definitions
and terminologies we refer to [2]. The degree of a vertex v, denoted by deg(v), is the
cardinality of its adjacent vertices. Let δ(G) and ∆(G) be the minimum and maximum
degree of a vertex of G. For vertices u and v in a connected graph G, the distance d(u, v)
is the length of a shortest u− v path in G. A u− v path of length d(u, v) is called a u− v
geodesic. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices of G is the radius, rad(G)
and the maximum eccentricity is its diameter, diam(G) of G.

A vertex of a graph is said to dominate itself and all of its neighbors. A subsetD ⊆ V (G)
is a dominating set of G if every vertex of V (G)−D is dominated by at least one vertex
of D. The domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set of G.

A subset D of V (G) is said to be a distance majorization set (or dm - set) if for every
vertex u ∈ V −D, there exists a vertex v ∈ D such that d(u, v) ≥ deg(u) + deg(v). The
minimum cardinality of a dm - set is called the distance majorization number of G (or
dm - number of G) and is denoted by dm(G). A dominating set need not be a dm - set.
For example, in K1,n, the set consisting of the central vertex is a dominating set but it is
not a dm - set if n ≥ 3. A dm - set may not be a dominating set. For example, in P5, the
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set containing the pendent vertices is a dm - set but it is not a dominating set. Thus, the
concept of dm - sets is different from dominating sets.

2. Main Results

Definition 2.1. Let G = (V,E) be a simple graph. A subset D of V (G) is said to be
distance majorization set (dm - set) if for every u ∈ V − S, there exists a vertex v ∈ S
such that d(u, v) ≥ d(u) + d(v). The minimum cardinality of a dm - set is called the
distance majorization number (dm - number) and is denoted by dm(G).

Remark 2.1. For any graph G, V (G) is always a dm - set of G. Then the existence of a
dm-set is guaranteed.

Example 2.1.
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S = {u3, u4, u5, u6, u7, u9} is a dm - set of G and hence it is easily seen that dm(G) = 6.

Remark 2.2. Let u, v ∈ V (G). Then u is dm - dominated by v if d(u, v) ≥ deg(u)+deg(v).

Theorem 2.1. dm(G) = 1 if and only if G has an isolate.

Proof. If G has an isolate say u, then {u}is a dm - set of G and hence dm(G) = 1. Suppose
dm(G) = 1. Let {u} be a dm - set of G. Suppose u is not an isolate. Then there exists
v ∈ V (G) such that u and v are adjacent. Therefore, d(u, v) = 1 and deg(u)+ deg(v) ≥ 2,
a contradiction. Hence u is an isolate of G. �
Theorem 2.2. For a star graph K1,n, dm(K1,n) = 2.

Proof. Let S be a dm - set of K1,n. Let V (K1,n) = {u, v1, v2, · · · , vn}. Let u be the
central vertex of K1,n. Thus u ∈ S. u can not dm-dominate any vi, 1 ≤ i ≤ n, Since
d(vi, vj) = 2, for all i, j, 1 ≤ i, j,≤ n, vi ∈ S for some i. vi dm-dominates vj for all
j, j ̸= i, i ̸= j, 1 ≤ j ≤ n, Therefore, dm(K1,n) = 2.

�
Observation 2.1.

(1) Let u ∈ V (G) be a full degree vertex of G. Then, clearly d(u, v) = 1, for all
v ∈ V (G). Thus any dm - set of G contain u.

(2) Every vertex of Kn is a full degree vertex. Therefore, dm(Kn) = n
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(3) dm(Kn) = 1, since each vertex is an isolate.
(4) For any connected graph G, 2 ≤ dm(G) ≤ n.
(5) If for any vertex u ∈ V (G) of degree greater than or equal to diam(G), then u

belongs to a dm - set of G.
(6) For any graph G, 1 ≤ dm(G) ≤ n.

Theorem 2.3. For a double star Dr,s, dm(Dr,s) = 3.

Proof. Let S be a dm− set of Dr,s. Let V (Dr,s) = {u, v, x1, x2, · · · , xr, y1, y2, · · · , ys}. Let
u, v be the central vertices of Dr,s. Clearly, d(u, xi) = 1, d(u, yj) = 2 for all i, j, 1 ≤ i ≤
r; 1 ≤ j ≤ s and d(u, v) = 1. Thus , u, v ∈ S. Since d(xi, yj) = 3, for all i, j; 1 ≤ i ≤ r; 1 ≤
j ≤ s, x1 ∈ S.Hence , dm(K1,n) ≥ 3. deg(xi)+deg(xj) < d(xi, yj), i, j, 1 ≤ i ≤ r; 1 ≤ j ≤ s,
x1 ∈ S, and hence no other xi, yj ∈ S. Therefore, dm(K1,n) ≤ 3. Hence, dm(K1,n) = 3.

�
Theorem 2.4. For a complete bipartite graph Km,n, dm(Km,n) = m+ n.

Proof. Let S be a dm - set of Km,n. Let V (Km,n) = {x1, x2, · · · , xm, y1,
y2, · · · , yn}. Since diam(Km,n) = 2 and d(xi) = n ≥ 1, d(yj) = m ≥ 1, for all i, j; 1 ≤ i ≤
m; 1 ≤ j ≤ n Hence , dm(Km,n) ≥ m + n. deg(xi) + deg(xj) < d(xi, Xj), i, j, 1 ≤ i ≤
m; 1 ≤ j ≤ n, dm(Km,n) ≤ m+ n. �

Theorem 2.5. For a path Pn , dm(Pn) =

{
2 n = 3 and n ≥ 7

3 n = 4, 5, 6

Proof. Let V (Pn) = {v1, v2, · · · , vn}. Let S be a dm - set of Pn. Let n = 3. Then P3
∼= K1,2,

dm(P3) = 2. Let n = 4. diam(P4) = 3. Since d(v1, v4) ≥ deg(v1) + deg(v4) either v1 or
v4 belongs to S. Thus dm(P4) = 3. Let n = 5. Then,clearly S contains v1, v5, v3 since v2
and v4 are dm−dominated by v1 and v5 respectively. Let n = 6. Then,clearly S contains
v1, v6, v3, since v4, v5 and v2 are dm−dominated by v1 and v6 respectively.

Let n ≥ 7. Then clearly, v1 dm− dominates the vertices vi, 4 ≤ i ≤ n− 1 and vn dm−
dominates the vertices vi, 2 ≤ i ≤ n− 3. Therefore, dm(Pn) = 2, n ≥ 7. �

Theorem 2.6. For a cycle Cn, dm(Cn) =


n n ≤ 7

4 n = 8

3 9 ≤ n ≤ 13

2 n ≥ 14

Proof. Let V (Cn) = {v1, v2, · · · , vn}. Let S be a dm - set of Cn. diam(Cn) ≤ 3, n ≤ 7.
deg(v) = 2, for all v ∈ V (Cn). Therefore, d(vi, vj) < deg(vi)+deg(vj), for all i, j, 1 ≤ i, j ≤
n. Hence dm(Cn) = n, n ≤ 7.

Let n = 8. Then,clearly S contains v1, v2, v3, v4. Since v1 dm - dominates the vertices
vi, 5 ≤ i ≤ n − 3 ,v2 dm - dominates the vertices vi, 6 ≤ i ≤ n − 2, v3 dm - dominates
the vertices vi, 7 ≤ i ≤ n− 1 and v4 dm - dominates the vertices vi, 8 ≤ i ≤ n. Therefore,
dm(Cn) = 4.

Let 9 ≤ n ≤ 13. Then S = {v1, v4, v7}, since v1 dm - dominates the vertices vi, 5 ≤
i ≤ n− 3, v4 dm - dominates the vertices vi, 8 ≤ i ≤ n, v7 dm - dominates the remaining
vertices of Cn. Therefore, dm(Cn) = 3.

For n ≥ 14. diam(Cn) ≥ ⌈n2 ⌉ , v1 dm - dominates the vertices vi, 5 ≤ i ≤ n − 3 ,v⌈n
2
⌉

dm - dominates the vertices {v1, v2, v3, v4} ∪ {vi, 12 ≤ i ≤ n}. Therefore, dm(Cn) = 2. �
Theorem 2.7. If d(u) + d(v) > diam(G) for every u, v ∈ V (G), then dm(G) = n.
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Proof. Suppose d(u) + d(v) > diam(G), for every u, v ∈ V (G). Suppose dm(G) < n. Let
S be a minimum dm - set of G. Let u ∈ V − S. Then , there exists v ∈ S such that
d(u, v) ≥ d(u) + d(v) > diam(G), a contradiction. Hence dm(G) = n.

�
Theorem 2.8. If 2δ(G) > d(u, v), for every u, v ∈ V (G), then dm(G) = n.

Proof. Suppose 2δ(G) > d(u, v), for every u, v ∈ V (G). Let S be a dm - set of G. By the
definition of dm - set, each u ∈ V − S there exists a vertex v ∈ S such that d(u, v) ≥
d(u) + d(v) ≥ δ(G) + δ(G) ≥ 2δ(G), a contradiction. Therefore, dm(G) = n. �
Theorem 2.9. For any subgraph H of G , dm(H) ≤ dm(G).

Proof. Let G be a graph. Let H be a subgraph of G. Let u, v ∈ V (G). Suppose H contains
an isolate. Then dm(H) = 1 ≤ dm(G). Suppose G does not contain an isolate. Let S be
a dm - set of G. Clearly, dG(u, v) ≥ dH(u, v) and degG(u) ≥ degH(u), degG(v) ≥ degH(v).
Hence dm(H) ≤ dm(G).

�
Theorem 2.10. For any spanning tree T of G , dm(T ) ≤ dm(G).

Proof. Let T be a spanning tree of G. Then clearly, dT (u, v) ≥ dG(u, v) ≥ degG(u) +
degG(v) ≥ degT (u) + degT (v). Therefore,dm(T ) ≤ dm(G).

�
Theorem 2.11. For any tree T, dm(T ) ≤ ⌈n2 ⌉.

Proof. Let T be a tree. Let S be a dm - set of T. Let u and v be diametrically opposite
vertices of T. Let u ∈ S. Consider T1 = T − {u, v}. Let x, y ∈ T1 and x and y are
diametrically opposite vertices of T1. Then S ∪{x}. Consider T2 = T1−{x, y}.Continuing
this process until we get either K1 or K2, since any tree has exactly either one or two
centers. Clearly, dm(T ) ≤ ⌈n2 ⌉.

�
Observation 2.2. dm(G) = n− 1 if and only if d(u) + d(v) > diam(G), for exactly one
pair of vertices u, v ∈ V (G).

Theorem 2.12. Let G be a graph. diam(G) = 2 and dm(G) = 2 if and only if G is a
star.

Proof. Let G be a graph. Let S be a dm - set of G. Suppose G is a star. Then clearly,
diam(G) = 2 and dm(G) = 2.
Conversely, if diam(G) = 2 and dm(G) = 2. Since diam(G) = 2, G is non complete.
Therefore, deg(u) ≤ n − 1,∀u ∈ V (G). Let u, v ∈ V (G). If deg(x) ≥ 2, for every x ∈
V − S, x ̸= u, v, then x ∈ S, a contradiction, dm(G) = 2. Since diam(G) = 2, G is
connected. Therefore, u and v are adjacent with at least one vertex x ∈ V − S. As
deg(x) = 1, ∀x ∈ V − S, either u or v adjacent with x. Without loss of generality, u is
adjacent with x. Suppose v is not adjacent with u. Then v is an isolate, a contradiction.
Therefore, u and v are adjacent. Hence G is a star. �
Lemma 2.1. Let G be a self complementary graph. Then G contains exactly two pendent
vertices.

Proof. Suppose G contains a pendent vertex say u and its support v. If v is not adjacent
with n−2 vertices ofG, then d(u, x) ≥ 3, x ∈ V (G)−{u, v}. Therefore, degG(v) = n−1. But
degG(v) = 0, a contradiction since G ∼= G. Therefore, G contains more than one pendent
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vertex. Suppose G contains more than 3 pendent vertices say u, v, w. Let u′, v′, w′ be its
support. Moreover, if x, y, z be three pendent vertices in G, then deg(x), deg(y), deg(z) is
n− 2 in G, a contradiction. Therefore, G contains exactly two pendent vertices.

�
Theorem 2.13. Let G be a self complementary graph. Then dm(G) = n or n− 1.

Proof. Every nontrivial self-complementary graph G has diameter 2 or 3 [5].
By lemma 2.1, G has exactly two pendent vertices and degree of the remaining n − 2

vertices is greater than or equal to 2. Therefore, dm(G) = n or n− 1. �
Definition 2.2. Mycielski construction to create triangle-free graphs with large chromatic
numbers. For a graph G, on n vertices V (G) = {v1, v2, · · · , vn}, let µ(G) be the graph
on vertices X ∪ Y ∪ {z} = {x1, x2, · · · , y1, y2, · · · , yn, z} with edges zyi for all i and edges
xixj , yixj for all edges vivj in G. For example, µ(K2) = C5.

Theorem 2.14. For a graph G without isolated vertices, dm(µ(G)) = max{|V (µ(G))|, 2n+
2− l},where l is the total number of pendent vertices in G.

Proof. For a graph G without isolated vertices, diam(µ(G)) = min(max(2, diam(G)), 4)
[6].
Clearly, deg(z) = n, deg(xi) = 2deg(vi), 1 ≤ i ≤ n and deg(yj) = deg(vj), 1 ≤ j ≤ n.In
µ(G), we have d(z, xi) = 2, d(xi, yi) = 2, d(yi, yj) = 2, d(xi, yj) ≤ 3 and d(xi, xj) ≤ 4, for
all i ̸= j.

case(i): diam(µ(G)) = 2.
Since deg(v) ≥ 2, v ∈ V (µ(G)), dm(µ(G)) = |V (µ(G)|.

case(ii): diam(µ(G)) = 4.
Let S be a dm - set of G. z is not dm-dominated by xi, yj , xi is not dm-dominated by

yi, yi is not dm-dominated by yj and xi is not dm-dominated by yj . diam(G) ≥ 4.
Suppose d(xi, xj) = 4. In this case, diam(µ(G)) = 4. deg(xi) = 2 (Suppose deg(xi) = 3.

Then the degree of the vertex dm-dominates xi is 1,a contradiction). deg(xi) = 2 then
deg(vi) = 1. If xi is dominated by xj , then deg(vj) = 1. Hence dm(µ(G)) = 2n+2−l,where
l is the total number of pendent vertices in G.

case(iii): diam(µ(G)) = diam(G).
In this case, if diam(G) ≥ 4, diam(µ(G)) = min(diam(G), 4) = 4. As the same lines in

case(ii), we get the result. �
Lemma 2.2. If G be a graph with α(G) = 1, then dm(L(G)) = n, where α(G) is the
vertex covering number of G.

Proof. If α(G) = 1, then G contains a spanning subgraph, that is star, then L(G) is a
complete graph. Hence dm(L(G)) = n. �
Lemma 2.3. If diam(L(G)) = 1, then dm(G) = 2 or 3.

Proof. diam(L(G)) = 1 if and only if G is either K3 or K1,n−1. Hence dm(G) = 2 or 3. �
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