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QUADRATIC SPLINE SOLUTION OF CALCULUS OF VARIATION

PROBLEMS

REZA MOHAMMADI1, AMENEH SADAT ALAVI2 §

Abstract. In this paper, we developed numerical method of order O(h2) and based
on quadratic polynomial spline function for the numerical solution of class of two point
boundary value problems arising in Calculus of Variation. The present approach gives
better approximations over all the existing finite difference methods. Convergence anal-
ysis and a bound on the approximate solution are discussed. Numerical examples are
also given to demonstrate the higher accuracy and efficiency of our method.

Keywords: Calculus of variation, Euler-Lagrange equation, quadratic polynomial spline,
Convergence.
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1. Introduction

The calculus of variations is concerned with finding extrema and, in this sense, it can
be considered a branch of optimization. The problems and techniques in this branch,
however, differ markedly from those involving the extrema of functions of several variables
owing to the nature of the domain on the quantity to be optimized. A functional is a
mapping from a set of functions to the real numbers. The calculus of variations deals with
finding extrema for functionals as opposed to functions. The candidates in the competition
for an extremum are thus functions as opposed to vectors in Rn, and this gives the subject
a distinct character. The functionals are generally defined by definite integrals; the sets of
functions are often defined by boundary conditions and smoothness requirements, which
arise in the formulation of the problem/model.

Certainly there is an intimate relationship between mechanics and the calculus of vari-
ations, but this should not completely overshadow other fields where the calculus of vari-
ations also has applications. Aside from applications in traditional fields of continuum
mechanics and electromagnetism, the calculus of variations has found applications in eco-
nomics, urban planning, and a host of other nontraditional fields. Indeed, the theory of
optimal control is centered largely around the calculus of variations. Finally it should be
noted the calculus of variations does not exist in a mathematical vacuum or as a closed
chapter of classical analysis. Historically, this field has always intersected with geometry
and differential equations, and continues to do so.
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One might infer that the interest in this branch of Analysis is weakening and that the
Calculus of Variations is a Chapter of Classical Analysis. In fact this inference would
be quite wrong since new problems like those in control theory are closely related to the
problems of the Calculus of Variations while classical theories, like that of boundary value
problems for partial differential equations, have been deeply affected by the development
of the Calculus of Variations. Moreover, the natural development of the Calculus of Vari-
ations has produced new branches of mathematics which have assumed different aspects
and appear quite different from the Calculus of Variations [1].

Let us consider the following problem of the calculus of variations, which is the simplest
form of a variational problem as

J [y(x)] =

∫ b

a
F (x, y(x), y′(x))dx, (1)

where f is a function assumed to have at least second-order continuous partial derivatives
with respect to x, y, and y′. Given two values a, b ∈ R, the fixed endpoint variational
problem consists of determining the functions y ∈ C2[a, b] such that y(a) = α, y(b) = β,
and J has a local extremum.

The necessary condition for y(x) to extremize J [y(x)] is that it should satisfy the Euler-
Lagrange equation

∂F

∂y
− d

dx
(
∂F

∂y′
) = 0, (2)

with boundary conditions as follows:

y(a) = α, y(b) = β. (3)

The above boundary value problem, does not always have a solution and if the solution
exists, it may not be unique. Note that if the solution of Euler’s equation satisfies the
boundary conditions, it is unique.

The general form of the variational problem in Eq. (1) is

J [y1(x), y2(x), ..., ym(x)] =

∫ b

a
F (x, y1(x), y2(x), ..., ym(x), y′1(x), y′2(x), ..., y′m(x))dx, (4)

with the given boundary conditions for all functions

y1(a) = α1, y2(a) = α2, ..., ym(a) = αm, (5)

y1(b) = β1, y2(b) = β2, ..., ym(b) = βm, (6)

Here the necessary condition for the extremum of the functional in Eq. (4) is to satisfy
the following system of second-order differential equations

∂F

∂yj
− d

dx
(
∂F

∂y′j
) = 0, j = 1, 2, ...,m, (7)

with boundary conditions given in Eqs. (5)-(6). However, the above system of differential
equations can be solved easily only for simple cases. More historical comments about
variational problems are found in [1, 2, 3].

Many efforts are going on to develop efficient and high accuracy methods for solving
calculus of variation problems. Gelfand [2] and Elsgolts [3] investigated the Ritz and
Galerkin direct methods for solving variational problems. The Walsh series method is
introduced to variational problems by Chen and Hsiao [4]. Due to the nature of the Walsh
functions, the solution obtained was piecewise constant. The authors in [5, 6, 7] applied
some orthogonal polynomials on variational problems to find the continuous solutions for
these problems.
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Razzaghi and Marzban [8] introduced a new direct computational method via hybrid of
Block-Pulse and Chebyshev functions to solve variational problems. Then, Razzaghi et al.
[9, 10] presented direct methods for solving variational problems using Legendre wavelets.
The rationalized Haar functions are applied to variational problems by Razzagi and Or-
dokhani [11, 12]. Dehghan and Tatari [13] aimed at producing approximate solutions of
some variational problems, which are obtained in rapidly convergent series with elegantly
computable components by the Adomian decomposition technique. Then, in their earlier
research [14] the He’s variational iteration method is employed for solving some problems
in calculus of variations. Saadatmandi and Dehghan [15] used the Chebyshev finite dif-
ference method for finding the solution of the ordinary differential equations which arise
from problems of calculus of variations. In [16] the homotopy-perturbation method has
been intensively developed to obtain exact and approximate analytical solutions of vari-
ational problems by Abdulaziz and his co-authors. Dixit et al. [17] proposed a simple
algorithm for solving variational problems via Bernstein orthonormal polynomials of de-
gree six. In [18], the variational iteration method was implemented to give approximate
solution of the Euler-Lagrange, Euler-Poisson and Euler-Ostrogradsky equations as ordi-
nary (or partial) differential equations which arise from the variational problems. Maleki
and Mashali-Firouzi [19] proposed a direct method using nonclassical parameterization
and nonclassical orthogonal polynomials, for finding the extremal of variational problems.
Nazemi et al. [20] employed the differential transform method (DTM) for solving some
problems in calculus of variations.

The term spline in the spline function arises from the prefabricated wood or plastic curve
board, which is called spline and is used by a draftman to plot smooth curves through
connecting the known points. Spline functions can be integrated and differentiated due
to being piecewise polynomials and since they have basis with small support, many of the
integral that occur in the numerical methods are zero. Thus, spline functions are adapted
to numerical methods to get the solution of the differential equations. Numerical methods
with spline functions in getting the numerical solution of the differential equations lead to
band matrices which are solvable easily with some algorithms in the market with low cost
computation. During last four decades, there has been a growing interest in the theory of
splines and their applications (see [21, 22]). For example, Rashidinia et al. [23] used cubic
spline functions to develop a numerical method for the solution of second-order linear
two-point boundary value problems.

The aim of this paper is to construct a new spline method based on a quadratic poly-
nomial spline function for solving problems in calculus of variations. The main purpose
is to analyze the efficiency of the exponential spline-difference method for such problems
with sufficient accuracy. Application of our method is simple and in comparison with
the existing well-known methods is accurate. The resulting spline difference scheme is
analyzed for local truncation error and convergence. We have shown that by making use
of the quadratic polynomial function, the resulting exponential spline difference scheme
gives a tri-diagonal system which can be solved efficiently by using a tri-diagonal solver.

The outline of this paper is as follows: In Section 2, we derive our method. The method
is formulated in a matrix form in this Section. Convergence analysis and a bound on
the approximate solution are discussed in Section 3. Numerical results are presented to
illustrate the applicability and accuracy in Section 4. Finally, in Section 5, we concluded
the results of the proposed methods.
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2. Derivation of the methods

2.1. Formulation of the Quadratic spline approximations. We introduce a finite
set of grid points xi by dividing the interval [a, b] into n equal parts

xi = a+ ih, i = 0, 1, ..., n,

x0 = a, xn = b, h =
b− a
n

,

We also denote the function value y(xi) by yi.
Let Si(x) be the quadratic spline approximation of the function y(x) at the grid point

xi and be given by

Si(x) =

2∑
j=0

ai,j(x− xi)j , (8)

for each i = 0, ..., n, where ai,0, ai,1 and ai,2 are unknown coefficients. We first develop the
explicit expressions for the three coefficients in (8) in terms of yi+ 1

2
, mi and Mi+ 1

2
, where:

Si(xi+ 1
2
) = yi+ 1

2
, S ′i(xi) = mi, S ′′i (xi+ 1

2
) = Mi+ 1

2
. (9)

Now using (9), we can determine the three unknown coefficients in (8) as

ai,0 = yi+ 1
2
− h2

8
Mi+ 1

2
− h

2
mi,

ai,1 = mi,

ai,2 = Mi+ 1
2
.

The continuity of the quadratic polynomial spline Si(x) and it’s first derivative S ′i(x)
at the point (xi, yi) yield the following consistency relations for i = 2, 3, ..., n− 1:

yi− 3
2
− 2yi− 1

2
+ yi+ 1

2
=
h2

8

[
Mi− 3

2
+ 6Mi− 1

2
+Mi+ 1

2

]
. (10)

For the direct computation of Si 1
2
, i = 1, 2, ..., n, we need two more equations, one at

each end of the range of integration. The two end conditions can be derived by Taylor
series and the method of undetermined coefficients for each kind of boundary conditions
[24]:

y0 − 3y 1
2

+ y 3
2

=
h2

8

[
5M 1

2
+M 3

2

]
, (11)

and

yn− 3
2
− 3yn− 1

2
+ 2yn =

h2

8

[
Mn− 3

2
+ 5Mn− 1

2

]
. (12)

Now, for analyzing the truncation error of the equation (10)-(12), we present the fol-
lowing lemma.

Lemma 2.1. Suppose y(x) ∈ C4[a, b]. Then [24]

Ti(h) =


− 1

64
h4y(4)(ξ1) +O(h5),

− 1

24
h4y(4)(ξi) +O(h5), i = 2, 3, ..., n− 1,

− 1

64
h4y(4)(ξn) +O(h5).

(13)

Proof. See [25]. �
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2.2. Numerical method. In this subsection, we give the quadratic polynomial spline
method for the following nonlinear boundary value problem which is general form of equa-
tions (2) as follow

y′′ = f(x, y, y′), a < x < b, (14)

subjected to boundary conditions

y(a) = α, y(b) = β. (15)

At the grid point (xi), we may write differential equation (14) as

y′′i = f(xi, yi, y
′
i). (16)

By using moment of spline in (16) we obtain

Mi = f(xi, yi, y
′
i). (17)

Now using Taylor series and the method of undetermined coefficients we introduce the
following approximations for first derivative of y:

3hy′1
2

= −4y0 + 3y 1
2

+ y 3
2

+O(h4),

3hy′3
2

= 4y0 − 9y 1
2

+ 5y 3
2

+O(h4),
(18)

2hy′
i− 3

2

= −3yi− 3
2

+ 4yi− 1
2
− yi+ 1

2
+O(h4),

2hy′
i− 1

2

= −yi− 3
2

+ yi+ 1
2

+O(h4),

2hy′
i+ 1

2

= yi− 3
2
− 4yi− 1

2
+ 3yi+ 1

2
+O(h4),

(19)

and
3hy′

n− 3
2

= −5yn− 3
2

+ 9yn− 1
2
− 4yn +O(h4),

3hy′
n− 1

2

= −yn− 3
2
− 3yn− 1

2
+ 4yn +O(h4).

(20)

Now applying the difference formulas (10)-(12) to the nonlinear equations (14)-(15) and
using (18)-(20), we obtain

y0 − 3y 1
2

+ y 3
2

= h2

8 [5f(x 1
2
, y 1

2
,
−4y0+3y 1

2
+y 3

2
3h ) + f(x 3

2
, y 3

2
,
4y0−9y 1

2
+5y 3

2
2h )],

yi− 3
2
− 2yi− 1

2
+ yi+ 1

2
= h2

8 [f(xi− 3
2
, yi− 3

2
,
−3y

i− 3
2
+4y

i− 1
2
−y

i+1
2

2h )+

6f(xi− 1
2
, yi− 1

2
,
−y

i− 3
2
+y

i+1
2

2h ) + f(xi+ 1
2
, yi+ 1

2
,
y
i− 3

2
−4y

i− 1
2
+3y

i+1
2

2h )], i = 2, 3, ..., n− 1,

yn− 3
2
− 3yn− 1

2
+ 2yn = h2

8 [f(xn− 3
2
, yn− 3

2
,
−5y

n− 3
2
+9y

n− 1
2
−4yn

3h )+

5f(xn− 1
2
, yn− 1

2
,
−y

n− 3
2
−3y

n− 1
2
+4yn

3h )].

(21)

The application of (21) at the points xi, i = 1, ..., n gives the n× n nonlinear system

AY − F(Y) = T (h), (22)

where

A =


−3 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −3

 , Y =



y 1
2

y 3
2
...

yn− 3
2

yn− 1
2

 ,
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G(Y) =



g 1
2

g 3
2
...

gn− 3
2

gn− 1
2

 , T (h) =


t1(h)
t2(h)

...
tn−1(h)
tn(h)


and

g 1
2
(y 1

2
, y 3

2
) = h2

8 [5f(x 1
2
, y 1

2
, y′1

2

) + f(x 3
2
, y 3

2
, y′3

2

)],

gi− 1
2
(yi− 3

2
, yi− 1

2
, yi+ 1

2
) = h2

8 [f(xi− 3
2
, yi− 3

2
, y′

i− 3
2

) + 6f(xi− 1
2
, yi− 1

2
, y′

i− 1
2

) + f(xi+ 1
2
, yi+ 1

2
, y′

i+ 1
2

)],

i = 2, 3, ..., n− 1,

gn− 1
2
(yn− 3

2
, yn− 1

2
) = h2

8 [f(xn− 3
2
, yn− 3

2
, y′

n− 3
2

)
+ 5f(xn− 1

2
, yn− 1

2
, y′

n− 1
2

)].

3. Convergence Analysis

We next discuss the convergence of the method (21). In actual practice we use (13) and
get

AY̆ − F(Y̆) = 0, (23)

where Y̆ is an approximation of the solution vector Y.
Subtracting (23) from (22), we get

AE − (F(Y)−F(Y̆)) = T (h), (24)

where E = Y − Y̆ = (e1, e2, ..., en)T . Using the mean-value theorem we write (24) as

(A+ B)E = T (h), (25)

where B is the n × n tri-diagonal matrix. It is easy to see that for sufficiently small h,
(A+B) is irreducible and monotone, and B ≥ 0. Therefore, (A+B)−1 exists, (A+B)−1 ≥ 0
and (A+ B)−1 ≤ A−1. Suppose

Ωi =
n∑

j=1

A−1i,j , and Ω = (Ω1,Ω2, ...,Ωn)T . (26)

If ‖E‖ = maxi|ei|, then, for sufficiently small h, we have from (25),

‖E‖ ≤ ‖Ω‖‖T (h)‖. (27)

From (13), ‖T (h)‖ = O(h4) and since ‖Ω‖ = O(h−2), ([26]), from (27) it follows that for
sufficiently small h,

‖E‖ = O(h2). (28)

4. Illustrative computations

To illustrate the efficiency and applicability of our presented method computationally,
we consider five examples of linear and nonlinear equations arising in calculus of variations,
which their exact solutions are known. We solve these examples for various values of h
and compare the results with some other methods. The Maximum absolute errors and
classical convergence rates in the solutions are tabulated in tables. The numerical examples
presented in this section confirm that our algorithm is numerically stable.

The Maximum absolute errors are measured by using following formula

L∞(h) = max1≤i≤N−1|Yi − yi|,
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Table 1. The maximum absolute errors and classical convergence rates
with various values of n for Example 4.1.

n = 4 n = 8 n = 16 n = 32 n = 64
L∞(h) 1.7835× 10−3 2.4162× 10−4 3.1299× 10−5 3.9784× 10−6 5.0133× 10−7

R(h) — 2.8839 2.9485 2.9759 2.9883

where Y and y represent the exact and approximate solutions, respectively, we calculate
the classical convergence rate

R(h) =
ln(L∞(h))− ln(L∞(h/2))

ln 2
.

Example 4.1. At first we consider the problem of finding the extremal of the functional
[15, 19, 20]

min J [y(x)] =

∫ 1

0

1 + (y(x))2

(y′(x))2
dx, (29)

subjected to given boundary conditions

y(0) = 0, y(1) = 0.5. (30)

The corresponding Euler-Lagrange equation is

y′′(x) + y′′(x)
(
y(x)

)2 − y(x)
(
y′(x)

)2
= 0, (31)

with boundary conditions (33). The exact solution of this problem is:

Y (x) = sinh
(
0.4812118250x

)
.

This example has been solved by using our scheme (21) with different values of n =
4, 8, 16, 32, 64 and the maximum absolute errors and classical convergence rates are given
in Table 1. From Table 1, it can be seen that the numerical solutions are in excellent
agreement with the exact solution. Also, the results for the scheme (21) clearly confirm
the theoretical result stated in previous section.

Example 4.2. Consider the following problem [15]

min J [y(x)] =

∫ 1

0
(y(x) + y′(x)− 4 exp(3x))2dx, (32)

subjected to given boundary conditions

y(0) = 1, y(1) = exp(3). (33)

The corresponding Euler-Lagrange equation is

y′′(x)− y(x)− 8 exp(3x) = 0, (34)

with boundary conditions (33). The exact solution of this problem is Y (x) = exp(3x).
The maximum absolute errors and the numerical rates of convergence are determined

as in Example 4.1 and the results are shown in Table 2. As one clearly observes, the
magnitude of the errors using the quadratic polynomial spline method becomes significantly
smaller and remains uniform throughout the unit interval.

Example 4.3. In this example, consider the following variational problem [8, 9, 11, 19]:

min J [y(x)] =

∫ 1

0
((y′(x))2 + xy′(x) + (y(x))2)dx, (35)
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Table 2. The maximum absolute errors and classical convergence rates
with various values of n for Example 4.2.

n = 4 n = 8 n = 16 n = 32 n = 64
L∞(h) 1.16563× 10−1 3.25408× 10−2 8.44844× 10−3 2.13378× 10−3 5.34845× 10−4

R(h) — 1.84079 1.94550 1.98527 1.99622

Table 3. The maximum absolute errors and classical convergence rates
with various values of n for Example 4.3.

n = 4 n = 8 n = 16 n = 32 n = 64
L∞(h) 8.67532× 10−5 2.44226× 10−5 6.24253× 10−6 1.56640× 10−6 3.92283× 10−7

R(h) — 1.82870 1.96801 1.99468 1.99749

with given boundary conditions

y(0) = 0, y(1) =
1

4
. (36)

The exact solution of this problem is

Y (x) =
1

2
+

2− e
4(e2 − 1)

ex +
e(1− 2e)

4(e2 − 1)
e−x.

The Euler-Lagrange equation of this problem is

y′′(x)− y(x) +
1

2
= 0, (37)

with boundary conditions (36).
This example has been solved by using our scheme (21) with different values of N =

4, 8, 16, 32, 64. The maximum absolute errors in solution and the numerical convergence
rates are tabulated in Tables 3. According to Table 3, we can see that the computational re-
sults are getting better as h become smaller. From this Table one can see that the presented
method is more applicable and efficient for solving such calculus of variations equations.

Example 4.4. Consider the problem of finding the extremal of the functional [3, 14, 15, 19]

J [y(x), z(x)] =

∫ π
2

0
(
(
y′(x))2 + (z′(x)

)2
+ 2y(x)z(x))dx, (38)

let the boundary conditions be

y(0) = 0, y(
π

2
) = 1, z(0) = 0, z(

π

2
) = −1, (39)

which has the following analytical solution

Y (x) = sinx, and Z(x) = − sinx.

In this case the Euler-Lagrange equations are written in the following form:

y′′(x)− z(x) = 0, and z′′(x)− y(x) = 0, (40)

with boundary conditions (39).
Tables 4 and 5 give the maximum absolute errors and the numerical convergence rates

of the quadratic polynomial spline solution at all grid points for different n. Table 3 shows
that as we increase the grid points the numerical solutions approach to the exact solutions.
Hence, the proposed scheme is stable and numerical solutions are convergent.
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Table 4. The maximum absolute errors and classical convergence rates
for y(x) with various values of n in Example 4.4.

n = 4 n = 8 n = 16 n = 32 n = 64
L∞(h) 1.55679× 10−3 4.38554× 10−4 1.11821× 10−4 2.81217× 10−5 7.03727× 10−6

R(h) — 1.82775 1.97155 1.99145 1.99860

Table 5. The maximum absolute errors and classical convergence rates
for z(x) with various values of n in Example 4.4.

n = 4 n = 8 n = 16 n = 32 n = 64
L∞(h) 1.55679× 10−3 4.38554× 10−4 1.11821× 10−4 2.81217× 10−5 7.03727× 10−6

R(h) — 1.82775 1.97155 1.99145 1.99860

5. Concluding Remarks

New method for solving calculus of variation problems is developed using quadratic
polynomial spline method. This method is shown to be a second ordered convergent
method. Convergence analysis for this method is discussed. The obtained numerical
results show that the presented method maintain a remarkable high accuracy which make
it encouraging for dealing with the solution of calculus of variation problems.
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