
TWMS J. App. Eng. Math. V.6, N.2, 2016, pp. 342-353

G-(F, τ)-CONTRACTIONS IN PARTIAL RECTANGULAR METRIC

SPACES ENDOWED WITH A GRAPH AND FIXED POINT

THEOREMS

SATISH SHUKLA1, §

Abstract. In this paper, the notion of G-(F, τ)-contractions in the context of partial
rectangular metric spaces endowed with a graph is introduced. Some fixed point theorems
for G-(F, τ)-contractions are also proved. The results of this paper generalize, extend,
and unify some known results. Some examples are provided to illustrate the results
proved herein.
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1. Introduction

The famous Banach contraction principle [9] has many applications in various branches
of mathematics. Due to simplicity and usefulness, the Banach contraction principle is
generalized by several authors (see, e.g., [4, 3, 12, 6, 5, 8, 2] and the references therein). In
this sequel, Wardowski [2] introduced the notion of F -contractions (or (F, τ)-contractions)
and generalized the Banach contraction principle in metric spaces. An example of [2] shows
that this type of generalization is an actual generalization of Banach contraction principle.
Jachymski [4] introduced G-contractions and initiate the fixed point theory in the metric
spaces endowed with graphs. The results of Jachymski generalize and unify several known
results in the literature.

In 1906, the famous french mathematician M. Fréchet [7] introduced the concept of
a metric space. The concept of metric spaces is generalized by several authors. In this
sequel, Branciari [1] introduced a class of generalized (rectangular) metric spaces by re-
placing triangular inequality by a similar one which involves four or more points instead
of three and improved the Banach contraction principle. On the other hand, Matthews
[10] introduced the notion of partial metric spaces as a part of the study of denotational
semantics of dataflow network and proved the Banach contraction in this general setting.

Very recently, author [11] generalized both the concepts of rectangular metric spaces
and partial metric spaces, by introducing the partial rectangular metric spaces and proved
some extensions of Banach contraction principle.

In this paper, the notions of F -contractions ( or (F, τ)-contractions) of Wardowski [2]
and the notion of G-contractions of Jachymski [4] are combined to obtain some fixed point
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results in partial rectangular metric spaces endowed with a graph. The results of this
paper generalize the results of Wardowski [2], Jachymski [4], and Branciari [1] in a general
setting of partial rectangular metric spaces. Some examples which illustrate the results
proved herein, are provided.

2. Preliminaries

First, we recall some definitions from partial metric, rectangular metric and partial
rectangular metric spaces (see [1, 10, 11]).

Definition 2.1. [10] A partial metric on a nonempty set X is a mapping p : X ×X → R
such that, for all x, y, z ∈ X :

(P1) p(x, y) ≥ 0;
(P2) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(P3) p(x, x) ≤ p(x, y);
(P4) p(x, y) = p(y, x);
(P5) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X.

Definition 2.2. [1] Let X be a nonempty set and d : X × X → R be a mapping such
that:

(R1) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(R2) d(x, y) = d(y, x) for all x, y ∈ X;
(R3) d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) for all x, y ∈ X and for all distinct points

w, z ∈ X − {x, y} (rectangular property).

Then d is called a rectangular metric on X, and (X, d) is called a rectangular metric space.
A sequence {xn} in X is called convergent and converges to x ∈ X, if for every ε > 0 there
exists n0 ∈ N such that d(xn, x) < ε for all n > n0. Sequence {xn} is called a Cauchy
sequence if for every ε > 0 there exists n0 ∈ N such that d(xn, xm) < ε for all n,m > n0. A
rectangular metric space (X, d) is called complete if every Cauchy sequence in X converges
in X.

Definition 2.3. [11] Let X be a nonempty set and ρ : X × X → R be a mapping such
that:

(ρ1) ρ(x, y) ≥ 0 for all x, y ∈ X;
(ρ2) x = y if and only if ρ(x, y) = ρ(x, x) = ρ(y, y) for all x, y ∈ X;
(ρ3) ρ(x, x) ≤ ρ(x, y) for all x, y ∈ X;
(ρ4) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(ρ5) ρ(x, y) ≤ ρ(x,w) + ρ(w, z) + ρ(z, y)− ρ(w,w)− ρ(z, z) for all x, y ∈ X and for all

distinct points w, z ∈ X \ {x, y}.
Then ρ is called a partial rectangular metric on X and the pair (X, ρ) is called a partial
rectangular metric space.

Remark 2.1. [11] In a partial rectangular metric space (X, ρ) if x, y ∈ X and ρ(x, y) = 0,
then x = y but the converse may not be true.

Remark 2.2. [11] It is clear that every rectangular metric space is a partial rectangular
metric space with zero self-distance. However, the converse of this fact need not hold.
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Example 2.1. Let X = {0, 1, 2, 3, 4} and define a mapping ρ : X ×X → R by

ρ(x, y) =


x, if x = y;
6 + max{x, y}, if x, y ∈ {0, 1}, x 6= y;

2 + max{x, y}, otherwise.

Then (X, ρ) is a partial rectangular metric space. But it is neither rectangular metric
space nor a partial metric space. Indeed, for any x ∈ X with x > 0 we have ρ(x, x) > 0, so
(X, ρ) is not a rectangular metric space. Also, ρ(0, 1) = 7 > 6 = ρ(0, 2) + ρ(2, 1)− ρ(2, 2),
so (X, ρ) is not a partial metric space.

Proposition 2.1. [11] For each partial rectangular metric space (X, ρ) the pair (X, ρr) is
a rectangular metric space, where

ρr(x, y) = 2ρ(x, y)− ρ(x, x)− ρ(y, y) for all x, y ∈ X.

Here (X, ρr) is called the induced rectangular metric space, and ρr is the induced
rectangular metric. In further discussion until specified, (X, ρr) will represent the induced
rectangular metric space. For more properties, examples and details of partial rectangular
metric spaces the reader is referred to [11].

Now we define the convergence of a sequence and Cauchy sequence in partial rectangular
metric spaces.

Definition 2.4. [11] Let (X, ρ) be a partial rectangular metric space, {xn} a sequence in
X and x ∈ X. Then:

(i) The sequence {xn} is said to be convergent and converges to x, if lim
n→∞

ρ(xn, x) =

ρ(x, x).
(ii) The sequence {xn} is said to be Cauchy in (X, ρ) if lim

n,m→∞
ρ(xn, xm) exists and is

finite.
(iii) (X, ρ) is said to be a complete partial rectangular metric space if for every Cauchy

sequence {xn} in X there exists x ∈ X such that

lim
n,m→∞

ρ(xn, xm) = lim
n→∞

ρ(xn, x) = ρ(x, x).

Note that in a partial rectangular metric space the limit of convergent sequence may
not be unique (see [11]).

Lemma 2.1. [11] Let (X, ρ) be a partial rectangular metric space and {xn} be a sequence
in X. Then the sequence {xn} converges in (X, ρr) and converges to x ∈ X, that is,
lim
n→∞

ρr(xn, x) = 0 if and only if lim
n→∞

ρ(xn, x) = lim
n→∞

ρ(xn, xn) = ρ(x, x).

Lemma 2.2. [11] Let (X, ρ) be a partial rectangular metric space and {xn} be a sequence
in X. Then the sequence {xn} is a Cauchy sequence in (X, ρ) if and only if it is a Cauchy
sequence in (X, ρr).

Lemma 2.3. [11] A partial rectangular metric space is complete if and only if its induced
rectangular metric space is complete.

Now we recall some basic notions from graph theory which we need subsequently (see
also [4]).

Let X be a nonempty set and ∆ denote the diagonal of the cartesian product X ×X.
Consider a directed graph G such that the set V (G) of its vertices coincides with X, and
the set E(G) of its edges contains all loops, that is, E(G) ⊇ ∆. We assume G has no
parallel edges, so we can identify G with the pair (V (G), E(G)). Moreover, we may treat
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G as a weighted graph by assigning to each edge the rectangular distance between its
vertices.

By G−1 we denote the conversion of a graph G, that is, the graph obtained from G by
reversing the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction of

edges. Actually, it will be more convenient for us to treat G̃ as a directed graph for which
the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1). (1)

If x and y are vertices in a graph G, then a path in G from x to y of length l is a sequence
(xi)

l
i=0 of l + 1 vertices such that x0 = x, xl = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , l. A

graph G is called connected if there is a path between any two vertices of G. G is weakly

connected if G̃ is connected.
Throughout this paper we assume that X is nonempty set, G is a directed graph such

that V (G) = X and E(G) ⊇ ∆.

Definition 2.5. [2] Let F : R+ → R (where R+ stands for the set of positive reals) be a
mapping satisfying:

(F1) F is strictly increasing, that is, for α, β ∈ R+ such that α < β implies F (α) < F (β);
(F2) for each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn) =

−∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

For examples of function F, the reader is referred to [2]. We denote the set of all functions
satisfying properties (F1)-(F3), by F .

Motivated by [2] and [4] we give the following definitions in a partial rectangular metric
spaces.

Definition 2.6. Let (X, ρ) be a partial rectangular metric space. A mapping T : X → X
is said to be an (F, τ)-contraction if there exist τ > 0 and F ∈ F such that

Tx 6= Ty ⇒ τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)) for all x, y ∈ X. (2)

Remark 2.3. If F (α) = ln(α), α > 0, then F ∈ F with any k ∈ (0, 1). Now for any
mapping T : X → X the condition (2) reduces into the following form:

Tx 6= Ty ⇒ ρ(Tx, Ty) ≤ e−τρ(x, y) for all x, y ∈ X.
Thus, the Banach type contractions (see [11]) in partial rectangular metric spaces are a
particular case of (F, τ)-contraction. Even the above inequality is a weaker form of Banach
type contraction since it is satisfied only for those x, y ∈ X for which Tx 6= Ty.

Definition 2.7. Let (X, ρ) be a partial rectangular metric space endowed with a graph
G. A mapping T : X → X is said to be a G-(F, τ)-contraction if:

(GF1) T is edge preserving, that is, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for all
x, y ∈ X;

(GF2) there exist τ > 0 and F ∈ F such that

Tx 6= Ty ⇒ τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)) (3)

for all x, y ∈ X with (x, y) ∈ E(G).

An obvious consequence of symmetry of ρ(·, ·) and (1) is the following remark.
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Remark 2.4. If T is a G-(F, τ)-contraction then it is both a G−1-(F, τ)-contraction and

a G̃-(F, τ)-contraction.

Example 2.2. Any (F, τ)-contraction on X is a G0-(F, τ)-contraction, where E(G0) =
X ×X.

Example 2.3. Let (X, ρ) be a partial rectangular metric space, v a partial order on X
and T : X → X be a nondecreasing, ordered (F, τ)-contraction, that is, x v y implies
Tx v Ty and there exist τ > 0 and F ∈ F such that

Tx 6= Ty ⇒ τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y))

for all x, y ∈ X with x v y. Then T is a G1-(F, τ)-contraction, where E(G1) = {(x, y) ∈
X ×X : x v y}.

Remark 2.5. Let (X, ρ) be a partial rectangular metric space endowed with a graph G.
Let the mapping T : X → X be a G-(F, τ)-contraction, then

ρ(Tx, Ty) < ρ(x, y) for all x, y ∈ X with Tx 6= Ty, (x, y) ∈ E(G).

Proof. Let (x, y) ∈ E(G) and Tx 6= Ty, then since T is a G-(F, τ)-contraction, by (GF2)
we have

τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)),

that is,

F (ρ(Tx, Ty)) < F (ρ(x, y)).

Now the result follows from the property (F1). �

Definition 2.8. Let (X, ρ) be a partial rectangular metric space and T : X → X be a
mapping. Then for x0 ∈ X, a Picard sequence with initial value x0 is defined by {xn},
where xn = Txn−1 for all n ∈ N. The mapping T is called a Picard operator on X if T has
a unique fixed point in X and for all x0 ∈ X the Picard sequence {xn} with initial value
x0 converges to the fixed point of T. The mapping T is called weakly Picard operator, if
for any x0 ∈ X, the limit of Picard sequence {xn} with initial value x0, exists (it may
depend on x0) and it is a fixed point of T.

3. Main Results

Let (X, ρ) be a partial rectangular metric space endowed with a graph G and T : X → X
be a mapping. We denote the set of all fixed points of T by Fix(T ), that is, Fix(T ) = {x ∈
X : Tx = x}, also we use the notation XT = {x ∈ X : (x, Tx), (x, T 2x) ∈ E(G)}. The set
of all periodic points of T in XT is denoted by PX(T ), that is, PX(T ) = {x ∈ XT : T kx =
x for some k ∈ N}. The space (X, ρ) is said to have the property (P) if:

whenever a sequence {xn} in X converges to x with (xn, xn+1) ∈ E(G) for all n ∈ N,
then there is a subsequence {xnk

} with (xnk
, x) ∈ E(G) for all k ∈ N. (P)

The following proposition will be useful in the further discussion.

Proposition 3.1. Let (X, ρ) be a partial rectangular metric space endowed with a graph
G. Let T : X → X be a G-(F, τ)-contraction. If x, y ∈ Fix(T ) are such that (x, y) ∈ E(G),
then x = y.

Proof. Let x, y ∈Fix(T ) be such that (x, y) ∈ E(G). Suppose, Tx 6= Ty, then since T is a
G-(F, τ)-contraction, by (GF2) we have

τ + F (ρ(x, y)) = τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)).
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Since τ > 0, we obtain from the above inequality that F (ρ(x, y)) < F (ρ(x, y)). This
contradiction shows that Tx = Ty, that is, x = y. �

Theorem 3.1. Let (X, ρ) be a partial rectangular metric space endowed with a graph G.
Let T : X → X be a G-(F, τ)-contraction and XT 6= ∅, then:

(I) XT is invariant under T.

Suppose, Tnx 6= Tn+1x for all x ∈ XT and n ∈ N, then:

(II) for any x ∈ XT and n ∈ N we have F (ρ(Tnx, Tn+1x)) ≤ F (ρ(x, Tx))− nτ ;
(III) T has no periodic point in XT , that is, PX(T ) = ∅;
(IV) for x0 ∈ XT all the terms of a Picard sequence {xn} with initial value x0, are

distinct.

Proof. (I) Let x ∈ XT , that is, (x, Tx) ∈ E(G). Since T is a G-(F, τ)-contraction by (GF1)
we have (Tx, TTx) ∈ E(G), that is, Tx ∈ XT .

(II) If x ∈ XT then by (I) we have Tnx ∈ XT , that is, (Tnx, Tn+1x) ∈ E(G) for all n ∈ N,
also, by assumption, Tnx 6= Tn+1x for all n ∈ N. Therefore by (GF2) we have

τ + F (ρ(Tnx, Tn+1x)) = τ + F (ρ(TTn−1x, TTnx)) ≤ F (ρ(Tn−1x, Tnx)),

that is,

F (ρ(Tnx, Tn+1x)) ≤ F (ρ(Tn−1x, Tnx))− τ.
Repetition of this process gives

F (ρ(Tnx, Tn+1x)) ≤ F (ρ(x, Tx))− nτ.

(III) Suppose PX(T ) 6= ∅ and x ∈ PX(T ). Then, there exists k ∈ N such that T kx = x.
By (II) we have

F (ρ(x, Tx)) = F (ρ(T kx, TT kx))

= F (ρ(T kx, T k+1x))

≤ F (ρ(x, Tx))− kτ
< F (ρ(x, Tx)).

This contradiction shows that PX(T ) = ∅.

(IV) Let x0 ∈ XT , then by (I) XT is invariant under T and Tnx0 = xn ∈ XT for all n ∈ N.
If xn = xm for some n,m ∈ N, m > n. Then we have

Tm−nTnx0 = Tmx0 = Tnx0.

Thus, Tnx0 ∈ PX(T ), which contradicts the result (III). Therefore, all the terms of the
Picard sequence {xn} are distinct. �

In the next theorem we show that the Picard sequence generated by aG-(F, τ)-contraction
is a Cauchy sequence.

Theorem 3.2. Let (X, ρ) be a partial rectangular metric space endowed with a graph G.
Let T : X → X be a G-(F, τ)-contraction then for every x0 ∈ XT the Picard sequence {xn}
with initial value x0, is a Cauchy sequence.

Proof. Let x0 ∈ XT and {xn} be the Picard sequence with initial value x0 ∈ X. Then
by (I) of Theorem 3.1, the set XT is invariant under T therefore Tnx0 ∈ XT , that is,
(xn, xn+1) ∈ E(G) for all n ≥ 0.
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If xn0 = xn0+1 for any n0 ∈ N, then by definition of Picard sequence we have xn0+r =
xn0+r+1 for all r ∈ N, and so, xn0 = xn0+p for all p ∈ N. Therefore {xn} is a Cauchy
sequence. Suppose, xn 6= xn+1 for all n ∈ N. For notational convenience, let ρn =
ρ(xn, xn+1) for all n ≥ 0. Since xn 6= xn+1 for all n ∈ N, form (II) of Theorem 3.1
we have

F (ρn) ≤ F (ρ0)− nτ for all n ∈ N. (4)

Letting n→∞ in the above inequality we obtain lim
n→∞

F (ρn) = −∞, which together with

(F2) yields

lim
n→∞

ρn = 0. (5)

From (F3) there exists k1 ∈ (0, 1) such that

lim
n→∞

ρk1n F (ρn) = 0. (6)

By (4) we have

ρk1n F (ρn)− ρk1n F (ρ0) ≤ ρk1n [F (ρ0)− nτ ]− ρk1n F (ρ0)

= −ρk1n nτ.

Letting n → ∞ in the above inequality and using (5) and (6) we obtain lim
n→∞

nρk1n = 0.

Therefore, there exists n1 ∈ N such that nρk1n < 1 for all n > n1. Thus,

ρn <
1

n1/k1
for all n > n1. (7)

Due to (IV) of Theorem 3.1, we can assume that all the terms of the sequence {xn}
are distinct. Since x0 ∈ XT we have (x0, T

2x0) = (x0, x2) ∈ E(G). By (GF1) we have
(Tx0, Tx2) = (x1, x3) ∈ E(G), which by induction gives (xn, xn+2) ∈ E(G) for all n ≥ 0.
Therefore, by (GF2) we have

τ + F (ρ(xn, xn+2)) = τ + F (ρ(Txn−1, Txn+1))

≤ F (ρ(xn−1, xn+1)),

that is, F (ρ(xn, xn+2)) ≤ F (ρ(xn−1, xn+1))− τ. Repeating this process we obtain

F (ρ(xn, xn+2)) ≤ F (ρ(x0, x2))− nτ for all n ∈ N. (8)

Letting n → ∞ in the above inequality we obtain lim
n→∞

F (ρ(xn, xn+2)) = −∞, which

together with (F2) yields

lim
n→∞

ρ(xn, xn+2) = 0. (9)

From (F3) there exists k2 ∈ (0, 1) such that

lim
n→∞

[ρ(xn, xn+2)]
k2F (ρ(xn, xn+2)) = 0. (10)

By (8) we have

[ρ(xn, xn+2)]
k2F (ρ(xn, xn+2)) − [ρ(xn, xn+2)]

k2F (ρ(x0, x2))

≤ [ρ(xn, xn+2)]
k2 [F (ρ(x0, x2))− nτ ]

−[ρ(xn, xn+2)]
k2F (ρ(x0, x2))

= −[ρ(xn, xn+2)]
k2nτ



S.SHUKLA: G-(F, τ)-CONTRACTIONS IN PARTIAL RECTANGULAR METRIC SPACES 349

Letting n→∞ in the above inequality and using (9) and (10) we obtain lim
n→∞

n[ρ(xn, xn+2)]
k2 =

0. Therefore, there exists n2 ∈ N such that n[ρ(xn, xn+2)]
k2 < 1 for all n > n2. Thus,

ρ(xn, xn+2) <
1

n1/k2
for all n > n2. (11)

Now we consider the quantity ρ(xn, xn+p) in two cases:
If p is even, say 2m, then since all the terms of the sequence {xn} are distinct, using (ρ5),
(7) and (11) we have

ρ(xn, xn+2m) ≤ ρn+2 + ρn+3 + · · ·+ ρn+2m−1 + ρ(xn, xn+2)

−[ρ(xn+2, xn+2) + ρ(xn+3, xn+3) + · · ·+ ρ(xn+2m−1, xn+2m−1)]

≤ ρn+2 + ρn+3 + · · ·+ ρn+2m−1 + ρ(xn, xn+2)

≤
n+2m−1∑
i=n+2

1

i1/k1
+

1

n1/k2
,

that is,

ρ(xn, xn+2m) ≤
∞∑
i=n

1

i1/k
, (12)

where k = max{k1, k2}.
If p is odd, say 2m+ 1, then with similar reason we have

ρ(xn, xn+2m+1) ≤ ρn + ρn+1 + · · ·+ ρn+2m

−[ρ(xn+1, xn+1) + ρ(xn+2, xn+2) + · · ·+ ρ(xn+2m, xn+2m)]

≤ ρn + ρn+1 + · · ·+ ρn+2m

≤
n+2m∑
i=n

1

i1/k1
,

that is,

ρ(xn, xn+2m+1) ≤
∞∑
i=n

1

i1/k
. (13)

Since k = max{k1, k2} < 1, by the convergence of series
∑∞

i=1

(
1
i1/k

)
, (12) and (13) we

have lim
n→∞

ρ(xn, xn+p) = 0 for all p > 0, or equivalently lim
n,m→∞

ρ(xn, xm) = 0. Therefore

{xn} is a Cauchy sequence. �

In the next theorem, a sufficient condition for a G-(F, τ)-contraction to be a weakly
Picard operator is provided.

Theorem 3.3. Let (X, ρ) be a complete partial rectangular metric space endowed with
a graph G and has the property (P). Let T : X → X be a G-(F, τ)-contraction such that
XT 6= ∅, then T |XT

is a weakly Picard operator.

Proof. Suppose XT 6= ∅. Let x0 ∈ XT , then by Theorem 3.2, the Picard sequence {xn}
with initial value x0, is a Cauchy sequence. By completeness of X and Theorem 3.2, there
exists x∗ ∈ X such that

lim
n,m→∞

ρ(xn, xm) = ρ(xn, x
∗) = ρ(x∗, x∗) = 0. (14)

We shall show that x∗ is a fixed point of T. Without loss of generality we can assume
that xn 6= xn+1 for all n ∈ N and so by (IV) of Theorem 3.1, all the terms of sequence
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{xn} are distinct and (xn, xn+1) ∈ E(G) for all n ∈ N. Since the property (P ) is satisfied,
there exists a subsequence {xnk

} such that (xnk
, x∗) ∈ E(G) for all k ∈ N. Without loss

of generality, we can assume that there exists j ∈ N such that x∗ 6= xnk
, Tx∗ 6= xnk

for
all k > j. Note that such a j exists because the terms of the sequence {xn} are distinct.
Thus, for all k > j, by Remark 2.5 we have

ρ(x∗, Tx∗) ≤ ρ(x∗, xnk
) + ρ(xnk

, xnk+1) + ρ(xnk+1, Tx
∗)

= ρ(x∗, xnk
) + ρnk

+ ρ(Txnk
, Tx∗)

< ρ(x∗, xnk
) + ρnk

+ ρ(xnk
, x∗).

Using (14) in the above inequality we obtain ρ(x∗, Tx∗) = 0, that is, Tx∗ = x∗. Thus,
x∗ ∈ Fix(T ) and T is a weakly Picard operator. �

The following example shows that a G-(F, τ)-contraction in the above theorem may not
be a Picard operator on XT .

Example 3.1. Let Sn = 1 + 2 + · · · + n = n(n+1)
2 , n ∈ N, and X = {Sn : n ∈ N}. Define

ρ : X ×X → R and a graph G by

ρ(x, y) =

 7, if x = y;
21 + |x− y|, if x, y ∈ {S1, S2}, x 6= y;
7 + |x− y|, otherwise

and V (G) = X, E(G) = ∆ ∪ {(Sn, Sm) : n > m,m ≥ 3} ∪ {(Sn, S2) : n > 2}. Then (X, ρ)
is a partial rectangular metric space endowed with the graph G. Note that (X, ρ) is not
a rectangular metric space since ρ(x, x) = 7 > 0 for all x ∈ X. Also, it is not a partial
metric space, because it lacks the property (P5). Indeed,

ρ(S1, S2) = 23 > ρ(S1, S3) + ρ(S3, S2)− ρ(S3, S3) = 12 + 10− 7 = 15.

Define a mapping T : X → X by

TSn =

{
Sn, if n = 1, 2;
Sn−1 if n ≥ 3.

Then XT = X 6= ∅ and T is a G-(F, τ)-contraction with τ = 1 and F (α) = ln(α) + α.
Note that all the conditions of Theorem 3.3 are satisfied and Fix(T ) = {S1, S2}. Thus, the
fixed point of T is not unique. Moreover, T |XT

is not a Picard operator.

In the next theorem a necessary and sufficient condition for the uniqueness of fixed
point of a G-(F, τ)-contraction is provided.

Theorem 3.4. Let (X, ρ) be a complete partial rectangular metric space endowed with a
graph G and has the property (P ). Let T : X → X be a G-(F, τ)-contraction such that
XT 6= ∅, then T |XT

is a weakly Picard operator. In addition, the subgraph GFix(T ) defined
by V (GFix(T )) = Fix(T ) is weakly connected if and only if T |XT

is a Picard operator.

Proof. By Theorem 3.3, we obtain that T |XT
is a Picard operator. If V (GFix(T )) = Fix(T )

is weakly connected then proof of uniqueness of fixed point follows from Proposition 3.1
and Remark 2.4. Thus T |XT

is a Picard operator. Conversely, if T |XT
is Picard operator

then fixed point of T is unique, that is, Fix(T ) is singleton and so GFix(T ) it is weakly
connected. �

Following corollary is a partial rectangular metric version of the results of Wardowski
[2].

Corollary 3.1. Let (X, ρ) be a complete partial rectangular metric space and T : X → X
be an (F, τ)-contraction. Then T is a Picard operator.
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Proof. Define a graph G0 by V (G0) = X and E(G0) = X × X, then (X, ρ) is a partial
rectangular metric space endowed with the graph G0 and T is a G0-(F, τ)-contraction.
Note that E(G0) = X ×X, therefore XT = X and the condition (P) is satisfied trivially.
Now the proof follows from Theorem 3.4. �

The following example illustrate the utility of the Theorem 3.4.

Example 3.2. Let X = {0, 1, 2, 3, 4} and define ρ : X ×X → R and a graph G by

ρ(x, y) =

 x, if x = y;
6 + max{x, y}, if x, y ∈ {0, 1}, x 6= y;
2 + max{x, y}, otherwise.

V (G) = X and E(G) = ∆∪{(0, 2), (2, 0), (2, 3), (3, 2)}. Then (X, ρ) is a partial rectangular
metric space endowed with the graph G. Define a mapping T : X → X by

T0 = T1 = T2 = 0, T3 = 2, T4 = 1.

Then:

(i) T is not an (F, τ)-contraction in usual metric space (X, | · |);
(ii) T is not an (F, τ)-contraction in partial rectangular metric space (X, ρ);
(iii) T is not a G-(F, τ)-contraction in the induced rectangular metric space (X, ρr);
(iv) T is a G-(F, τ)-contraction in the partial rectangular metric space (X, ρ) and
all the conditions of Theorem 3.4 are satisfied.

Proof. (i) To see this, take x = 2, y = 3, then |Tx − Ty| = 2 and |x − y| = 1. Therefore
there exist no F ∈ F and τ > 0 such that τ + F (|Tx− Ty|) ≤ F (|x− y|) for all x, y ∈ X.
Therefore, T is not an (F, τ)-contraction in usual metric space (X, | · |).

(ii) For this, take x = 0, y = 4, then ρ(Tx, Ty) = ρ(0, 1) = 6+1 = 7 and ρ(x, y) = 2+4 = 6.
Therefore there exist no F ∈ F and τ > 0 such that τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)) for
all x, y ∈ X. Therefore, T is not an (F, τ)-contraction in partial rectangular metric space
(X, ρ).

(iii) Note that, the rectangular metric induced by ρ is given by

ρr(x, y) =

 0, if x = y;
12 + |x− y|, if x, y ∈ {0, 1}, x 6= y;
4 + |x− y|, otherwise.

Now take the point x = 2, y = 3, then (2, 3) ∈ E(G), ρr(Tx, Ty) = ρr(0, 2) = 6
and ρr(x, y) = ρr(2, 3) = 5. Therefore there exist no F ∈ F and τ > 0 such that
τ + F (ρr(Tx, Ty)) ≤ F (ρr(x, y)) for all x, y ∈ X with (x, y) ∈ E(G). Therefore, T is
not a G-(F, τ)-contraction in the induced partial rectangular metric space (X, ρr).

(iv) For this, note that (Tx, Ty) ∈ E(G) for all (x, y) ∈ E(G), so (GF1) is satisfied. By
easy calculations one can see that (GF2) is satisfied with F (α) = ln(α) and τ = ln(5/4).
Since the induced rectangular metric space (X, ρr) is complete therefore (X, ρ) is complete.
Note that, the property (P) is satisfied trivially and XT = {0, 2, 3} 6= ∅ therefore all the
conditions of Theorem 3.4 are satisfied and Fix(T ) = {0}. �

Remark 3.1. (i) of the above example shows that the result from usual metric spaces
(that is, the result of [2]) is not applicable. Also, (ii) of the above example shows that the
non-graphical version of the Theorem 3.4, that is, the Corollary 3.1 of this paper is not
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applicable. As well as, by (iii) shows that the rectangular metric version of Theorem 3.4
is not applicable. But the Theorem 3.4 is applicable.

The following corollary is the fixed point theorem for an ordered (F, τ)-contraction in
partial rectangular metric spaces.

Corollary 3.2. Let (X, ρ) be a complete partial rectangular metric space endowed with a
partial order v . Let T : X → X be an ordered (F, τ)-contraction such that the following
conditions hold:

(A) there exists x0 ∈ X such that x0 v Tx0;
(B) T is nondecreasing with respect to v;
(C) if {xn} is a nondecreasing sequence in X and converging to some z ∈ X then
xn v z.

Then T is a weakly Picard operator. In addition, Fix(T ) is well ordered (that is, all the
elements of Fix(T ) are comparable) if and only if T is a Picard operator.

Proof. Define a graph G1 by V (G1) = X and E(G1) = {(x, y) ∈ X × X : x v y}. Then
(X, ρ) is a partial rectangular metric space endowed with the graph G1 and T is a G1-
(F, τ)-contraction. By (A) and (B), we have XT 6= ∅ and by (C) the condition (P) is
satisfied. Note that Fix(T ) is well ordered implies that the subgraph GFix(T ) is weakly
connected. Now the proof follows from Theorem 3.2. �
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