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DIRICHLET SERIES AND APPROXIMATE ANALYTICAL METHOD

FOR THE SOLUTION OF MHD BOUNDARY LAYER FLOW OF

CASSON FLUID OVER A STRETCHING/SHRINKING SHEET

VISHWANATH B. AWATI 1, §

Abstract. The paper presents analytical and semi-numerical solution for magnetohy-
drodynamic (MHD) boundary layer flow of Casson fluid over a exponentially permeable
shrinking sheet. The governing partial differential equations of momentum equations are
reduced to ordinary differential equations by using a classical similarity transformation
along with appropriate boundary conditions. Both nonlinearity and infinite interval de-
mand novel mathematical tools for their analysis. We use fast converging Dirichlet series
and approximate analytical solution by the Method of stretching of variables for the
solution of the nonlinear differential equation. These methods have the advantages over
pure numerical methods for obtaining the derived quantities accurately for various values
of the parameters involved at a stretch and also they are valid in much larger parameter
domain as compared with HAM, HPM, ADM and the classical numerical schemes.

Keywords: magnetohydrodynamics (MHD), boundary layer flow, Casson fluid, shrink-
ing /stretching sheet, wall mass transfer, Dirichlet series, Powells method, method of
stretching of variables.
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1. Nomenclature:

: Uw shrinking velocity
: U0 shrinking constant
: Vw mass transfer velocity
: B strength of the magnetic field [wm−2]
: f similarity function
: Py yield stress
: M2 Hartmann number
: u velocity component along the x-axis [ms−1]
: v velocity component normal to the y-axis [ms−1]
: fw suction / blowing parameter
: x coordinate along the sheet [m]
: y coordinate normal to the sheet [m]
: l characteristic length [m]

Greek symbols

: α amplification factor
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: τ stress tensor
: µ dynamic viscosity
: µB plastic dynamic viscosity
: ν kinenatic viscosity [m2s−1]
: σ electrical conductivity [mhom−1]
: ρ density[kgm−3]
: β Casson fluid parameter
: η similarity variable

2. Introduction

The MHD boundary layer flow of stretching/shrinking sheet problem has important
application in several engineering fields. The influence of magnetic field on the viscous
flow of an electrically conducting fluid is applicable in many industrial processes, such as in
magnetic material processing, purification of crude oil, MHD electrical power generation,
glass manufacturing, geophysics and paper production etc. The phenomena of velocities on
the boundary towards a fixed point are known as shrinking phenomena, as in the situation
of a rising shrinking balloon. Limited attention has been paid on the study of shrinking
phenomena [1-8]. In certain situations, the shrinking sheet solutions does not exist, since
the velocity cannot be confined in a boundary layer. Solutions exist if either the magnetic
field or the stagnation flow is taken into account. Crane [9] found an exact similarity
solution for steady two-dimensional stretching where the velocity on the boundary is away
and proportional to the distance from the fixed point. Carragher and Carane [10] studied
heat transfer on a continuous stretching sheet. Vajravelu and Rollins [11] discussed the
heat transfer in an electrically conducting fluid over a stretching surface. Other important
investigations of the stretching sheet flow have been made by Salem and Fathy [12], who
analysed the effects of variable properties on MHD heat and mass transfer flow near a
stagnation point towards a stretching sheet in a porous medium with a thermal radiation.
Bhattacharya and Layek [13] discussed the slip effects on diffusion of chemically flow over
a stretching sheet with suction or blowing. Hayat et al. [14] discussed MHD flow and heat
transfer over a permeable shrinking sheet with slip conditions. Wang [15] introduced a new
type of flow, one which is due to a shrinking sheet which is quite different from stretching
sheet flow, as the generated verticity due to shrinking does not remain inside the boundary
layer. Miklavcic and Wang [16] discussed steady flow due to a shrinking sheet, a certain
amount of wall mass suction is required to restrain the generated vorticity. Fang et al. [3,
17] analysed the MHD viscous flow of Newtonian flow over a shrinking sheet with wall mass
transfer, taking no-slip as well as slip boundary conditions. Ali et al. [18] analysed the
boundary layer flow and heat transfer due to permeable shrinking sheet with prescribed
surface heat flux by Keller-box method. Noor et al. [19] discussed simple non-perturbative
solution for MHD viscous flow due to a shrinking sheet by series solution using adomain
decomposition method (ADM). Raftari and Yildirim [20], investigated MHD viscous flow
due to a shrinking sheet by employing the homotopy perturbation method (HPM) and
Pade approximants. Bhattacharyya [21] examined the effects of heat source/sink on the
steady two dimensional MHD boundary layer flow and heat transfer over a shrinking sheet
with wall mass suction using finite difference method.

In all the above investigations, the classical Newtonian fluid flows are discussed. The
non-Newtonian fluid theory is much more relevant in modern engineering and industrial
applications. Casson fluid is one such Non-Newtonian fluids, where flow occurs if the shear
stress magnitude is greater than yield shear stress. Fredrickson [22], examined the study
flow behaviour of a Casson fluid in a tube. Mustafa et al. [23], analysed the stagnation
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point flow of a Casson fluid towards a stretching sheet. Thiagarajan and Senthilkumar
[24], discussed the DTM-Pade approximants of MHD boundary layer flow of a Casson
fluid over a shrinking sheet. Nadeem et al [25], analysed the MHD flow of a Casson fluid
over an exponentially shrinking sheet. Abel et al. [26] have discussed the study of visco-
elastic fluid flow and heat transfer over a stretching sheet with variable viscosity.Prasad
et al. [27] analyzed the flow and heat transfer at a nonlinearly shrinking porous sheet:
the case of asymptotically large power law shrinking rates. Recently, Prasad et al. [28]
examined the MHD Casson nanofluid flow and heat transfer at a stretching sheet with
variable thickness.

The present paper discusses the steady MHD boundary layer of electrically conducting
Casson fluid fast a shrinking sheet. The semi-numerical and closed form analytical solution
of the resulting third order nonlinear boundary value problem with an infinite interval is
obtained using Dirichlet series method and method of stretching of variables.

We seek solution of the general equation of the type

f ′′′ +Aff ′′ +Bf ′2 + Cf ′ = 0 (1)

The relevant boundary conditions for the flow problem are

f(0) = α1 = fw, f
′(0) = β1, f

′(∞) = 0 (2)

where A, B, and C are constants and prime denotes derivative with respect to the inde-
pendent variable η. This equation admits a Dirichlet series solution; necessary conditions
for the existence and uniqueness of these solutions may be found in [29, 30]. For a specific
type of boundary conditions i.e. f ′(∞) = 0, the Dirichlet series solution is particularly
useful for obtaining the derived quantities exactly. A general discussion of the convergence
of the Dirichlet series may also be found in Riesz [31]. The accuracy as well as uniqueness
of the solution can be confirmed using other powerful semi-numerical schemes. Sachdev et
al. [32] have analysed various problems from fluid dynamics of stretching sheet using this
approach and have found more accurate solution compared with earlier numerical findings.
Recently, Vishwanath et al [33, 34] and Ramesh et al [35] have analysed the problems from
MHD boundary layer flow with nonlinear stretching sheet using the above methods and
have found more accurate results compared with the classical numerical methods. In this
article, we also present Dirichlet series solution and an approximate analytical method
called method of stretching of variables. This method is quite easy to use especially for
nonlinear ordinary differential equations and requires less computing time compared with
pure numerical methods and easy to solve compared with other approximate methods(for
example, Homotopy analysis method (HAM)).

3. Mathematical Formulation of the problem

Consider a two-dimensional incompressible flow of a Casson fluid over an exponentially
shrinking sheet. The fluid is electrically conducting in the presence of a uniform magnetic
field applied normal to the sheet. Under the approximation of small Reynolds number,
the induced magnetic field is neglected. The rheological equation of extra stress tensor
(τ) for an isotropic and incompressible flow of a Casson fluid, reported by Mustafa [23] as

τ1/n = τ
1/n
0 + µγ1/n (3)

or

τij = [µB + (
Py√
2π

)1/n]n2eij (4)

where µ is the dynamic viscosity, µB is plastic dynamic viscosity of the non-Newtonian
fluid, Py is the yield stress of fluid, π is the product component of deformation rate with
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itself (i.e. π = eijeij ), eij is the (i,j)th component of deformation rate and πc is the
critical value of π based on the non-Newtonian model. Under these conditions the MHD
boundary layer equations for the steady flow of Casson fluid over a exponentially shrinking
sheet problem is governed by the following equations

∂u

∂x
+
∂u

∂y
= 0 (5)

u
∂u

∂x
+ v

∂u

∂y
= ν(1 +

1

β
)
∂2u

∂y2
− σB2

ρ
u (6)

The boundary conditions are defined as

u = Uw(x) = −U0exp(
x

l
) and v = Vw(x) = V0exp(

x

2l
) at y = 0;u→ 0 as y →∞

(7)
where u and v are the velocity components in the x and y directions respectively, x is the
distance along the sheet, y is the distance perpendicular to the sheet, ν is the kinematic
viscosity of the fluid, ρ is the density of the fluid, β = µB

√
2πc/Py is the non-Newtonian

Casson fluid parameter, σ is the electrical conductivity of the fluid, Uw is the shrinking
velocity with U0 (shrinking constant) and Vw is the mass transfer velocity with ( V0 > 0
for mass injection and V0 < 0 for mass suction). Let us assumed that the magnetic field
B(x) is of the form B = B0exp(

x
l ) where B0 is the constant magnetic field. Introducing

the dimensionless variables f and η as

ψ = a
√

2νlU0xf(η)exp(
x

2l
) and η = y

√
U0

2νl
exp(

x

2l
) (8)

Substituting Eqn.(8) into (5)-(8), continuity Eqn.(5) is automatically satisfied and the
momentum Eqn.(6) reduces to

(1 +
1

β
)f ′′′ + ff ′′ − 2f ′2 −M2f ′ = 0 (9)

The relevant boundary conditions (7) becomes

f(0) = fw, f ′(0) = −1, f ′(∞) = 0 (10)

where M2 = 2σB2l
ρU0

is the Hartmann number and β is the Casson fluid parameter.

4. Dirichlet Series Solution

We seek Dirichlet series solution of Eqn.(1) satisfying last boundary condition f ′(∞) = 0
automatically in the form ([29, 30])

f = γ1 +
6γ

A

∞∑
i=1

bia
ie−iγη (11)

where γ and a are parameters which are to be determined. Substituting Eqn.(11) into
Eqn.(1), we get

∞∑
i=1

{−γ2i3+Aγγ1i
2−Ci}biaie−iγη+

6γ2

A

∞∑
i=2

i−1∑
k=1

{Ak2+Bk(i−k)}bkbi−kaie−iγη = 0 (12)

for i = 1, we have

γ1 =
γ2 + C

A
. (13)
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Substituting Eqn.(13) into Eqn.(12) the recurrence relation for obtaining coefficients is
given by

bi =
6γ2

Ai(i− 1){γ2i− C}

i−1∑
k=1

{Ak2 +Bk(i− k)}bkbi−k (14)

for i=2, 3, 4,..... . If the Eqn.(11) converges absolutely when γ > 0 for some η0, this
series converges absolutely and uniformly in the half plane Reη ≥ Reη0 and represents an
analytic 2π

γ periodic function f = f(η0) such that f ′(∞) = 0 ([29]).

The Eqn.(11) contains two free parameters namely a and γ. These unknown parameters
are determined from the remaining boundary conditions of Eqn.(2) at η = 0.

f(0) =
γ2 + C

Aγ
+

6γ

A

∞∑
i=1

bia
i = α1 (15)

and

f ′(0) =
6γ2

A

∞∑
i=1

(−i)biai = β1 (16)

The solution of the above transcendental Eqn.(15) and Eqn.(16) yield constants a and
γ. The solution of the above transcendental equations is equivalent to the unconstrained
minimization of the functional

[
γ2 + C

Aγ
+

6γ

A

∞∑
i=1

bia
i − α1]

2 + [
6γ2

A

∞∑
i=1

(−i)biai − β1]2 (17)

We use Powell’s method of conjugate directions (Press et al [36]) which is one of the
most efficient techniques for solving unconstrained optimization problems. This helps in
finding the unknown parameters a and γ uniquely for different values of the parameters
A,B,C, α1 and β1. Alternatively, Newton’s method is also used to determine the unknown
parameters a and γ accurately. The shear stress at the surface of the problem is given by

f ′′(0) =
6γ

A

∞∑
i=1

bia
i(iγ)2 (18)

The velocity profiles of the problem is given by

f ′(η) =
6γ2

A

∞∑
i=1

(−i)biaie−iγη (19)

5. Method of Stretching of Variables

Many nonlinear ODEs arising in MHD problems are not amenable for obtaining ana-
lytical solutions. In such situations, attempts have been made to develop an approximate
method for the solution of these problems. The numerical approach is always based on the
idea of stretching of variables of the flow problems. Method of stretching of variables is
used here for the solution of such problems. In this method, we choose suitable derivative
function H ′ such that the derivative boundary conditions are automatically satisfied and
integration of H ′ will satisfy the remaining boundary condition. Substituting the resulting
function into the given equation we get the residual of the form R(ξ, α) which is called
defect function. Using Least squares approximation method, the residual of the defect
function can be minimized. For details see (Ariel, [37]).
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Using the transformation f = fw + F into Eqn.(1), we get

F ′′′ +A(fw + F )F ′′ +BF ′2 + CF ′ = 0, ′ =
d

dη
(20)

The boundary conditions (2) become

F (0) = 0, F ′(0) = −1, F ′(∞) = 0 (21)

We introduce two variables ξ and G in the form

G(ξ) = αF (η) and ξ = αη (22)

where α > 0, is an amplification factor. In view of Eqn.(22), the system (20-21) are
transformed to the form

α2G′′′ +A(fwα+G)G′′ +BG′2 + CG′ = 0, ′ =
d

dη
(23)

and the boundary conditions in Eqn.(21) become

G(0) = 0, G′(0) = −1, G′(∞) = 0 (24)

We choose a trail velocity profile

G′ = −exp(−ξ) (25)

Which satisfies the derivative conditions in Eqn.(24). Integrating Eqn.(25) with respect
to ξ from 0 to ξ using conditions (24), we get

G = exp(−ξ)− 1 (26)

Substituting Eqn.(26) into Eqn.(23), we get the residual of defect function

R(ξ, α) = (−α2 +Afwα−A− C)exp(−ξ) + (A+B)exp(−2ξ) (27)

By using the least squares approximation method as discussed in Ariel [37], the Eqn.(27)
can be minimized for which

∂

∂α

∫ ∞
0

R2(ξ, α)dξ = 0 (28)

Substituting Eqn.(27) into Eqn.(28) and solving cubic equation in α for a positive root,
we get

α =
1

6
(3Afw ±

√
3
√
−4A+ 8B − 12C + 3A2f2w) (29)

Once the amplification factor is calculated, then using Eqn.(20), original function f can
be written as

f = fw +
1

α
(exp(−αη)− 1) (30)

with α defined in Eqn.(29). Thus Eqn.(30) gives the solution of Eqn.(1) for all A,B,C, fw
and β1.
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6. Results and Discussion

In the present paper we discuss the semi-numerical solution of MHD boundary layer
flow of a Casson fluid over an exponentially permeable shrinking sheet. The governing
equations are simplified by suitable similarity transformations and the reduced third order
nonlinear boundary value problems with infinite domain are solved semi-numerically using
an elegant powerful technique which are Dirichlet series method and an approximate an-
alytical method by the method of stretching of variables. We have given exact analytical
solution of the nonlinear boundary value problem in more general form. In this method
it is important that the edge boundary layer η → ∞ automatically satisfied. Numerical
computations are performed for various values of the physical parameters involved in the
equation viz. the Hartmann number M2, Casson fluid parameter β and the wall mass
transfer parameter α1 = fw. The present solution is also validated by comparing it with
the previously published work of Thiagarajan and Senthilkumar [24] and Nadeem et al.
[25].

Table 1 shows that f ′′(0) for various values of the Casson fluid parameter β is obtained
by Dirichlet series, Method of stretching of variables for fw = 1 and M = 2 and the results
are compared with the numerical solutions which are comparable. Table 2 and Table 3
shows the f ′′(0) for different values of Casson fluid parameter β, shrinking parameter
fw, magnetic parameter and the results are compared with DTM-Pade and Numerical
methods, the results are comparable. Table 4 presents the f ′′(0) for the case of β = 1
for different values of the shrinking parameter fw and different values of the Hartmann
number M which are compared with those of DTM-Pade and Nadeem [25].

Fig. 1 shows the dimensionless velocity profiles f ′(η) for different values of the Casson
fluid parameter β when fw = 1 and M = 2. It is observed that the Casson fluid parameter
increases the velocity profiles decreases. Fig. 2 displays the dimensionless velocity profiles
f ′(η) for various values of the shrinking parameter fw when M = 2 and β = 1. The effect
of the shrinking parameter decreases and the velocity profiles are also decreases. The Fig.
3 demonstrate the dimensionless velocity profiles f ′(η) for various values of the Hartmann
number M when fw = 1 and β = 3. It shows that the Hartmann number increase, velocity
profiles decreases.

7. Conclusions

In this article, we describe the analysis of boundary value problem for third order
nonlinear ordinary differential equation over an infinite domain arising in MHD boundary
layer flow of Casson fluid over a exponentially permeable shrinking sheet. The semi-
numerical schemes described here offer advantages over solutions obtained by DTM and
numerical methods etc. The convergence of the Dirichlet series method and approximate
analytical solution is given. The results are presented in Tables and graphically, the effects
of the emerging parameters are discussed semi-numerically.
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Table 1. Various values of Casson fluid parameter β , f ′′(0) is obtained
by Dirichlet series, Method of stretching of variables and its numerical
solutions for fw = 1 and M=2 .

β Dirichlet Series method MSV DTM-Pade [24] Numerical
a γ f ′′(0) f ′′(0) f ′′(0) f ′′(0)

1 0.0410778 1.4905952 1.3553910 1.35867789 1.3666795 1.3666779
2 0.0384806 1.7758458 1.6193250 1.62432778 1.6350828 1.6350794
3 0.0371173 1.9110404 1.7565830 1.75000000 1.7620987 1.7620938
5 0.0360615 2.0414439 1.8801230 1.87202076 1.8854407 1.8854341

Table 2. Various values of shrinking parameter fw, f ′′(0) is obtained by
Dirichlet series, Method of stretching of variables and its numerical solu-
tions for β = 1 and M=2

fw Dirichlet Series method MSV DTM-Pade [24] Numerical
a γ f ′′(0) f ′′(0) f ′′(0) f ′′(0)

0 0.0659299 1.2090263 1.0319460 1.0801234 1.0777210 1.0777204
1 0.0410778 1.4905952 1.3553910 1.3586779 1.3666795 1.3666779
2 0.0270015 1.8164093 1.6987860 1.6902381 1.7051154 1.7051124
3 0.0183583 2.1819218 2.0780220 2.0649778 2.0833004 2.0832948

Table 3. Various values of magnetic parameter M ,f ′′(0) is obtained by
Dirichlet series, Method of stretching of variables and its numerical solu-
tions for fw = 1 and β = 3 .

M Dirichlet Series method MSV DTM-Pade [24] Numerical
a γ f ′′(0) f ′′(0) f ′′(0) f ′′(0)

2 0.0371173 1.9110404 1.7565830 1.7500000 1.7620987 1.7620938
3 0.0159199 2.8504119 2.7531100 2.7500000 2.75465746 2.7546363

3.5 - - - 3.2172043 3.22055648 3.2205252

Table 4. Comparison of values of f ′′(0) for β = 1, f ′′(0) is obtained by
Dirichlet series, Method of stretching of variables and DTM-Pade.

fw M Dirichlet Series method MSV DTM-Pade Numerical
a γ f ′′(0) f ′′(0) f ′′(0) f ′′(0)

0.5 2.0 0.05156954 1.344266 1.193946 1.2123324 1.2155035 1.2155025
1.0 2.0 0.04107781 1.490595 1.355393 1.3586779 1.3666795 1.3666779
1.0 3.0 0.01688239 2.263239 2.179553 2.1811050 2.1841832 2.1841832
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Figure 1. Velocity profiles for various values of Casson fluid parameter β for
fw = 1 and M = 2.

Figure 2. Velocity profiles for different values of shrinking parameter fw for
β = 1 and M=2.

Figure 3. Effect of increasing magnetic field intensity on velocity profile for
fw = 0.1.

References

[1] Sajid,M., and Hayat,T., (2009),The application of homotopy analysis method for MHD viscous flow
due to shrinking sheet, Chaos Solitons and Fractals, 39, pp.1317-1323.



352 TWMS J. APP. ENG. MATH. V.7, N.2, 2017

[2] Hayat,T., Abbas,Z., Javed,T., and Sajid,M., (2009),Three-dimensional rotating flow induced by a
shrinking sheet for suction, Chaos Solitons and Fractals, 39(4), pp.1615-1626.

[3] Fang,T.,and Zhang,J., (2009), Closed-form exact solutions of MHD viscous flow over a shrinking sheet,
Commun Nonlinear Sci. Neumer Simulat, 14(7), pp.2853-2857.

[4] Fang,T., (2008),Boundary layer flow over a shrinking sheet with power-law velocity, Int. J. Heat Mass
Tran, 51(25-26), pp.5838-5843.

[5] Nadeem,S., and Awais,M., (2008), Thin film flow of an unsteady shrinking sheet through porous
medium with variable viscosity, Phys. Lett. A, 372(30), pp.4965-4972.

[6] Hayat,T., Javed,T., and Sajid,M., (2008), Analytic solution for MHD rotating flow of a second grade
fluid over a shrinking surface, Phys. Lett. A., 372(18), pp.3264-3273.

[7] Wang C.Y., (2008), Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech, 43(5), pp.377-
382.

[8] Hayat,T., Abbas,Z., and Ali,N., (2008), MHD flow and mass transfer of an upper-convected Maxwell
fluid past a porous shrinking sheet with chemical reaction species, Phys. Lett.A., 732(26), pp.4698-
4704.

[9] Crane,L.J., (1970), Flow past a stretching plate, Z Angew Math. Mech., 21, pp.645-647.
[10] Carragher,P., and Carane,L.J., (1982), Heat transfer on a continuous stretching sheet, Z Angew Math.

Mech., 62, pp.564-565.
[11] Vajravelu,K., and Rollins,D.,(1992), Heat transfer in an electrically conducting fluid over a stretching

surface, Int. J. Nonlinear Mech., 27, pp.265-277.
[12] Salem,A.M., and Fathy,R., (2012), Effects of variable properties on MHD heat and mass transfer near

a stagnation point towards a stretching sheet in a porous medium with thermal radiation, Chin Phys.
B, 21, 054701.

[13] Battacharyya,K., and Layek,G.C.,(2011), Slip effects on diffusion of chemically reactive species in
boundary layer flow over a vertical stretching sheet with suction and blowing, Chem. Eng. Commun.,
198, pp.1354-1365.

[14] Hayat,T., Qasim,M., and Mesloub,S., (2011),MHD flow and heat transfer over permeable stretching
sheet with slip conditions, Int. J. Numer. Methods Fluids, 66, pp.963-975.

[15] Wang,C.Y., (1990), Liquid film on an unsteady stretching sheet, Quart Appl Math , 48, pp.601-610.
[16] Miklavcic,M., and Wang,C. Y.,(2006), Viscous flow due to a shrinking sheet, Quart. Appl. Math. 64,

pp.283-290.
[17] Fang,T., Zhang,J.,and Yao,S., (2010), Slip magnetohydrodynami viscous flow over a permeable shrink-

ing sheet, Chin. Phys. Lett. 27, 124702.
[18] Ali,F., Nazar,R., Arifin,N., (2010), MHD viscous flow and heat transfer induced by permeable shrink-

ing sheet with prescribed surface heat flux, WSAS Trans Math, 5(9), pp.365-375.
[19] Noor,N.F.M., Kechil,S.A.,and Hashim,I., (2010), Simple non-perturbative solution for MHD viscous

flow due to a shrinking sheet, Commun Nonlinar Sci. Numer Simulat , 15, pp.144-148.
[20] Raftari,B., Yildirim,A.,(2011), A series solution of nonlinear ODE arising in MHD by HPM-Pade

technique, Comp. Math. Appl., 61, pp.1676-1681.
[21] Bhattacharyya, K., (2011),Effects of heat source/ sink on MHD flow and heat transfer over a shrinking

sheet with mass suction, Chem. Eng. Res. Bull 15, pp.12-17.
[22] Fredrickson,A.G., (1964), Principles and applications of rheology, (1964) (Englewood Cliffs, N.J;

Prentice-Hall).
[23] Mustafa,M., Hayat,T., Pop,I. and Hendi,A., (2012), Stagnation point flow and heat transfer of a

Casson fluid towards a stretching, Z. Naturforsch, 67a, pp.70-76.
[24] Thiagarajan,M., and Senthilkumar,K., (2013), DTM-Pade approximants of MHD boundary layer flow

of a Casson fluid over a shrinking sheet, United States of America Research Journal (USARJ), Vol.1,
No.1, pp.1-7.

[25] Nadeem, S., Haq, R. U., and Lee, C.,(2013), MHD flow of a Casson fluid over an exponentially
shrinking sheet, Scientia Iranica B, 19(6), pp.1550-1553.

[26] Abel,M.S., Sujit Kumar Khan, and Prasad,K.V.,(2002), Study of visco-elastic fluid flow and heat
transfer over a stretching sheet with variable viscosity, International journal of non-linear mechanics,
37(1), pp.81-88.

[27] Prasad,K.V., Vajravelu,K., and Pop,I., (2013) ,Flow and heat transfer at a nonlinearly shrinking
porous sheet: the case of asymptotically large power law shrinking rates, IJAME, 18(3), pp.779-791.

[28] Prasad,K.V., Vajravelu,K., and Vaidya,H., (2016), MHD Casson Nanofluid Flow and Heat Transfer
at a Stretching Sheet with Variable Thickness, Journal of Nanofluids, 5(3), pp.423-435.



V.B. AWATI: DIRICHLET SERIES AND APPROXIMATE ANALYTICAL METHOD ... 353

[29] Kravchenko,T.K., and Yablonskii,A.I., (1965), Solution of an infinite boundary value problem for third
order equation, Differentialnye Uraneniya. 327, 1.

[30] Kravchenko,T.K., and Yablonskii,A.I., (1972), A boundary value problem on a semi-infinite interval,
DifferentialnyeUraneniya, 8(12), pp.2180-2186.

[31] Riesz,S., (1957), Introduction to Dirichlet series, Camb. Univ. Press.
[32] Sachdev,P.L., Bujurke,N.M., and Awati,V.B.,(2005), Boundary value problems for third order non-

linear ordinary differential equations, Stud. Appl. Math, 115, pp.303-318.
[33] Awati,V.B., Bujurke,N.M., and Kudenatti,R.B., (2011), An exponential series method for the solution

of the free convection boundary layer flow in a saturated porous medium. AJCM , 1, pp.104-110.
[34] Awati,V.B., Bujurke,N.M., and Kudenatti,R.B., (2011), Dirichlet series method for the solution of

MHD flow over a nonlinear stretching sheet. IJAMES, 5(1), pp.07-12.
[35] Kudenatti,R.B., Awati,V.B., and Bujurke,N.M.,(2011), Exact analytical solutions of class of boundary

layer equations for a stretching surface, Appl Math Comp, 218, pp.2952-2959.
[36] Press,W.H.H., Flannery,B.P., Teulosky,S.A., and Vetterling,W.T., (1987), Numerical Recipes in C,

Camb. Univ. Press, UK.
[37] Ariel,P.D., (1994), Stagnation point flow with suction; an approximate solution, Journal of Applied

Mechanics, 61(4), pp.976-978.

Dr. Vishwanath B. Awati was born in Bijapur District, Karnataka state. He
graduated from Karnatak University, Dharwad and obtained his M.Sc. degrees in
Mathematics from Karnatak University, Dharwad. He obtained his Ph.D. degree
in Mathematics from the same University. He is working as an associate professor
in the Mathematics Department at Rani Channamma University, Belagavi. His
research interest includes the MHD boundary layer flows of a stretching/ shrinking
sheet problems.


