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NEW RESULTS ON CYCLIC NONLINEAR CONTRACTIONS IN

PARTIAL METRIC SPACES
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Abstract. In this paper we study the concept of non-linear cyclic Kannan and Chat-
terjea contractions in partial metric spaces and we prove some new theorems on fixed
point for these types of mappings extending some fixed point theorems in literature.
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1. Introduction and Preliminaries

In 1992, Matthews [1, 2] introduced the notion of partial metric space which is a gener-
alization of the usual metric space in which the distance between two elements is no longer
necessarily zero. After this remarkable contribution, many authors focused on partial met-
ric spaces and its topological properties (see, e.g. [3]-[9]). The existence of fixed point for
contraction type mappings on such spaces was considered by many authors [1]-[8]. In the
sequel we recall the notion of a partial metric space and some of its properties which will
be used later on.

Definition 1.1. A partial metric is a function p : X×X → [0,∞) satisfying the following
conditions

(PM1) p(x, y) = p(y, x) (symmetry).
(PM2) If p(x, x) = p(x, y) = p(y, y), then x = y (equality).
(PM3) p(x, x) ≤ p(x, y) (small self-distances).
(PM4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z) (triangularity) for all x, y, z ∈ X.

The pair (X, p) is then called a partial metric space (see, e.g. [1, 2]).
Notice that for a partial metric p on X, the function dp : X ×X → [0,∞) given by

dp (x, y) = 2p (x, y)− p (x, x)− p (y, y)

is a usual metric on X. Observe that each partial metric p on X generates a T0
topology τp on X which has the family of open p−balls {Bp (x, ε) : x ∈ X, ε > 0} , where
Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε} for all x ∈ X and ε > 0 as a base. Matthews
observed in ([2], p. 187) that a sequence (xn) in a partial metric space (X, p) converges
to some x ∈ X with respect to p if and only if p (x, x) = lim

n→∞
p (x, xn) . It is clear that, if

p (x, y) = 0, then from (PM1), (PM2), and (PM3), x = y. But if x = y, p (x, y) may not
be 0.
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of Mathematics, 2015; all rights reserved.

158

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Isik University Academic Open Access

https://core.ac.uk/display/334949538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


W.B. DOMI, S. AL-SHARIF, H. ALMEFLEH: NEW RESULTS ON CYCLIC ... 159

Example 1.1. (See, [2]). Consider X = R+ with p (x, y) = max {x, y} . Then (R+, p)
is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case
dp (x, y) = |x− y| .

Definition 1.2. ( [2],Definition 5.2). Let (X, p) be a partial metric space and (xn) be a
sequence in X. Then (xn) is called a Cauchy sequence if lim

n,m→∞
p (xn, xm) is both exists

and finite.

Definition 1.3. ( [2], Definition 5.3). A partial metric space (X, p) is said to be complete
if every Cauchy sequence (xn) in X converges, with respect to τp to a point x ∈ X, such
that p (x, x) = lim

n,m→∞
p (xm, xn) .

Example 1.2. ( See, [2]). Let X := [0, 1] ∪ [2, 3] and define p : X ×X → [0,∞) by

p (x, y) =

{
max{x, y}, {x, y} ∩ [2, 3] 6= φ
|x− y| , {x, y} ⊂ [0, 1]

Then, (X, p) is a complete partial metric space.

It is a well known fact ( see, for instance [2], p.194) that a sequence in a partial metric
space (X, p) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, dp) , and that a partial metric space (X, p) is complete if and only if the
metric space (X, dp) is complete. Furthermore,

lim
n→∞

dp (x, xn) = 0 if and only if p (x, x) = lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) .

Generalizations of the Banach contraction mapping principle [10] have been proposed in
various settings, see for example [11]-[14] and references therein. In [15], Kannan proved
a fixed point theorem which extends the well-known Banach’s contraction principle by
considering the following definition.

Definition 1.4. ( See, [15]). A mapping T : X → X where (X, d) is a metric space is
said to be a Kannan contraction if there exists α ∈

[
0, 12
)

such that for all x, y ∈ X, the
following inequality

d (Tx, Ty) ≤ α [d (x, Tx) + d (y, Ty)] ,

holds.

Kannan [15] proved that if X is complete, then every Kannan contraction has a unique
fixed point. Later on, a lot of papers were devoted to obtain fixed point theorems, following
the Kannan’s contraction, for various classes of contractive type conditions that do not
require the continuity of T. One of them, which is a sort of dual to Kannan contraction,
is presented by Chatterjea [17] as follows.

Definition 1.5. ( See, [17]). A mapping T : X → X, where (X, d) is a metric space, is
said to be a Chatterjea contraction if there exists α ∈

[
0, 12
)

such that for all x, y ∈ X, the
following inequality

d (Tx, Ty) ≤ α [d (x, Ty) + d (y, Tx)] ,

holds.

Chatterjea [17] proved that if X is complete, then every Chatterjea contraction has a
unique fixed point.

The cyclical extensions for these fixed point theorems were obtained at a later time,
by considering non-empty closed subsets {Ai}mi=1 of a complete metric space X and a
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cyclical operator T :
m⋃
i=1

Ai →
m⋃
i=1

Ai, i.e., satisfies T (Ai) ⊆ Ai+1 for all i ∈ {1, 2, ...,m} ,

where Am+1 = A1. In [16], Rus presented the cyclical extension for the Kannan’s theorem,
and Petric in [18] presented cyclical extensions for Chatterjea theorem using fixed point
structure arguments.

Redefining the concept of Chatterjea contraction was introduced by Choudhury in [19]
as follows.

Definition 1.6. (See, [19]). A mapping T : X → X , where (X, d) is a metric space, is
said to be a weak Chatterjea contraction if for all x, y ∈ X, the following inequality

d (Tx, Ty) ≤ 1

2
[d (x, Ty) + d (y, Tx)]− ψ (d (x, Ty) , d (y, Tx)) ,

holds, where ψ : [0,∞)2 → [0,∞) is a continuous function such that ψ (x, y) = 0 if and
only if x = y = 0.

Choudhury [19] proved the following theorem.

Theorem 1.1. (See, [19]). If X is a complete metric space, then every weak Chatterjea
contraction T has a unique fixed point.

A new category of fixed point problems with the help of a control function in terms
of altering distances was addressed by Khan et. al. [20]. Altering distances have been
used in metric fixed point theory in many papers, see for example [21]-[23] and references
therein.

We define in what follows, an altering distance function which will be used throughout
the paper to get new fixed point theorems.

Definition 1.7. The function φ : [0,∞)→ [0,∞) is called an altering distance function,
if the following properties are satisfied.

1. φ is continuous and non-decreasing,
2. φ (t) = 0 if and only if t = 0.

The aim of this paper is to present a new general fixed point theorems of cyclic nonlinear
contractions that extend some theorems in the literature, by the use of the continuous
function ψ given in Definition 1.6 and the altering distance function φ given in Definition
1.7.

2. Main results

We begin this section by giving definitions of what we call a cyclic (φ− ψ)-Kannan
type contraction and a cyclic (φ− ψ)-Chatterjea type contraction.

Definition 2.1. Let {Ai}mi=1 be non-empty closed subsets of a partial metric space (X, p) ,

and suppose T :
m⋃
i=1

Ai →
m⋃
i=1

Ai is a cyclical operator. Then T is said to be

(1) a cyclic (φ− ψ)-Kannan type contraction if there exists nonnegative constants α, β
with 0 < α+ β ≤ 1, α > 0 such that for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ..., m, we have

φ (p (Tx, Ty)) ≤ φ (αp (x, Tx) + βp (y, Ty))− ψ (p (x, Tx) , p (y, Ty)) ,
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(2) a cyclic (φ− ψ)-Chatterjea type contraction if there exists constants α, β with
0 < α ≤ β and 0 < α+ β < 1, such that for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, we have

φ (p (Tx, Ty)) ≤ φ (αp (x, Ty) + βp (y, Tx))− ψ (p (x, Ty) , p (y, Tx)) ,

where φ : [0,∞) → [0,∞) is an altering distance function, and ψ : [0,∞)2 → [0,∞) is
a continuous function with ψ (t, s) = 0 if and only if t = s = 0.

Theorem 2.1. Let {Ai}mi=1 be non-empty closed subsets of a complete partial metric space

(X, p) and T :
m⋃
i=1

Ai →
m⋃
i=1

Ai be at least one of the following:

1. a cyclic (φ− ψ)-Kannan type contraction,
2. a cyclic (φ− ψ)-Chatterjea type contraction.

Then T has a unique fixed point z ∈
m⋂
i=1

Ai.

Proof. Take x0 ∈ X and consider the sequence given by xn+1 = Txn, n ≥ 0. If there exists
n0 ∈ N such that xn0+1 = xn0 , then the point of existence of the fixed point is proved. So,
suppose that xn+1 6= xn for any n = 0, 1, .... Then there exists in ∈ {1, ...,m} such that
xn−1 ∈ Ain and xn ∈ Ain+1 . Now, assume first that T is a cyclic (φ− ψ)-Kannan type
contraction. Then, we have

φ (p (xn, xn+1)) = φ (p (Txn−1, Txn))

≤ φ (αp (xn−1, Txn−1) + βp (xn, Txn))

−ψ (p (xn−1, Txn−1) , p (xn, Txn))

= φ (αp (xn−1, xn) + βp (xn, xn+1))

−ψ (p (xn−1, xn) , p (xn, xn+1))

≤ φ (αp (xn−1, xn) + βp (xn, xn+1)) .

Since φ is a non-decreasing function, we get that

p (xn, xn+1) ≤ αp (xn−1, xn) + βp (xn, xn+1) ,

which implies

p (xn, xn+1) ≤
(

α

1− β

)
p (xn−1, xn) ,∀n.

Now if α+ β < 1, by induction we get

p (xn, xn+1) ≤
(

α

1− β

)n
p (x0, x1)

and hence lim
n→∞

p (xn, xn+1) = 0. If α+ β = 1 and since α > 0, we get

p (xn, xn+1) ≤ p (xn−1, xn) .

Consequently {p (xn, xn+1)} is a non-increasing sequence of nonnegative real numbers.
Hence, there is r ≥ 0 such that

lim
n→∞

p (xn, xn+1) = r.

Using the continuity of φ and ψ, we get

φ (r) ≤ φ (r)− ψ (r, r) ,

which implies that ψ (r, r) = 0, and hence, r = 0.
Similarly, if T is a cyclic (φ− ψ)-Chatterjea type contraction, then we have
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φ (p (xn, xn+1)) = φ (p (Txn−1, Txn))

≤ φ (αp (xn−1, Txn) + βp (xn, Txn−1))

−ψ (p (xn−1, Txn) , p (xn, Txn−1))

= φ (αp (xn−1, xn+1) + βp (xn, xn))

−ψ (p (xn−1, xn+1) , p (xn, xn))

≤ φ (αp (xn−1, xn+1) + βp (xn, xn)) .

Since φ is a non-decreasing function, we get

p (xn, xn+1) ≤ αp (xn−1, xn+1) + βp (xn, xn) ,

and by triangular inequality, we have

p (xn, xn+1) ≤ αp (xn−1, xn+1) + βp (xn, xn)

≤ α [p (xn−1, xn) + p (xn, xn+1)− p (xn, xn)] + βp (xn, xn)

= α [p (xn−1, xn) + p (xn, xn+1)] + (β − α) p (xn, xn)

≤ α [p (xn−1, xn) + p (xn, xn+1)] + (β − α) p (xn, xn−1) (by PM3)

= βp (xn−1, xn) + αp (xn, xn+1)

which implies

p (xn, xn+1) ≤
(

β

1− α

)
p (xn−1, xn) .

Since 0 < α+ β < 1, then β
1−α < 1, and by induction, we have

p (xn, xn+1) ≤
(

β

1− α

)n
p (x0, x1) ,

and hence, limn→∞ p (xn, xn+1) = 0.
In the sequel, we show that (xn) is a Cauchy sequence in X. To do so, we need to

prove first, the claim that for every ε > 0, there exists n ∈ N such that if p, q ≥ n with
p− q ≡ 1 (m) , then p (xp, xq) < ε. Suppose the contrary case, i.e., there exists ε > 0 such
that for any n ∈ N, we can find pn > qn ≥ n with pn−qn ≡ 1 (m) satisfying p (xpn , xqn) ≥ ε.
Now, we take n > 2m. Then corresponding to qn ≥ n, we can choose pn in such a way
that it is the smallest integer with pn > qn satisfying pn− qn ≡ 1 (m) and p (xpn , xqn) ≥ ε.
Therefore, p

(
xqn , xpn−m

)
< ε. Using the triangular inequality,

ε ≤ p (xpn , xqn)

≤ p
(
xqn , xpn−m

)
+

m∑
i=1

p
(
xpn−i , xpn−i+1

)
−

m∑
j=1

p
(
xpn−j , xpn−j

)
≤ p

(
xqn , xpn−m

)
+

m∑
i=1

p
(
xpn−i , xpn−i+1

)
< ε+

m∑
i=1

p
(
xpn−i , xpn−i+1

)
.
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Letting n→∞ in the the last inequality, and taking into account that lim
n→∞

p (xn, xn+1) =

0, we obtain limn→∞ p (xpn , xqn) = ε. Again, by triangle inequality, we have

ε ≤ p (xqn , xpn)

≤ p
(
xqn , xqn+1

)
+ p

(
xqn+1 , xpn+1

)
+ p

(
xpn+1 , xpn

)
−p
(
xpn+1 , xpn+1

)
− p

(
xqn+1 , xqn+1

)
≤ p

(
xqn , xqn+1

)
+ p

(
xqn+1 , xqn

)
+ p (xqn , xpn)

+p
(
xpn , xpn+1

)
+ p

(
xpn+1 , xpn

)
− p

(
xpn+1 , xpn+1

)
−p
(
xqn+1 , xqn+1

)
− p (xqn , xqn)− p (xpn , xpn)

≤ 2p
(
xqn , xqn+1

)
+ p (xqn , xpn) + 2p

(
xpn , xpn+1

)
.

Taking the limit as n → ∞, and taking into account that lim
n→∞

p (xn, xn+1) = 0, we get

lim
n→∞

p
(
xqn+1 , xpn+1

)
= ε. Since xpn and xqn lie in different adjacently labelled sets Ai and

Ai+1 for certain 1 ≤ i ≤ m, assuming that T is a cyclic (φ− ψ)-Kannan type contraction,
we have

φ
(
p
(
xqn+1 , xpn+1

))
= φ (p (Txqn , Txpn))

≤ φ (αp (xqn , Txqn) + βp (xpn , Txpn))

−ψ (p (xqn , Txqn) , p (xpn , Txpn))

= φ
(
αp
(
xqn , xqn+1

)
+ βp

(
xpn , xpn+1

))
−ψ

(
p
(
xqn , xqn+1

)
, p
(
xpn , xpn+1

))
.

Letting n→∞ in the last equality, we obtain

φ (ε) ≤ φ (0)− ψ (0, 0) = 0.

Therefore, we get ε = 0 which is a contradiction.
Similarly, assuming that T is a cyclic (φ− ψ)-Chatterjea type contraction, we have

φ
(
p
(
xqn+1 , xpn+1

))
= φ (p (Txqn , Txpn))

≤ φ (αp (xqn , Txpn) + βp (xpn , Txqn))

−ψ (p (xqn , Txpn) , p (xpn , Txqn))

= φ
(
αp
(
xqn , xpn+1

)
+ βp

(
xpn , xqn+1

))
−ψ

(
p
(
xqn , xpn+1

)
, p
(
xpn , xqn+1

))
.

Letting n→∞ in the last equality, we obtain

φ (ε) ≤ φ ((α+ β) ε)− ψ (ε, ε) .

Therefore, since 0 < α+ β < 1, we get ψ (ε, ε) = 0, and hence, ε = 0 which is a contradic-
tion.

From the above proved claim for both cases, i.e., the case when T is a cyclic (φ− ψ)-
Kannan type contraction and the case when T is a cyclic (φ− ψ)-Chatterjea type contrac-
tion, and for arbitrary ε > 0, we can find n0 ∈ N such that if p, q > n0 with p− q ≡ 1 (m) ,
then p (xp, xq) < ε. Since lim

n→∞
p (xn, xn+1) = 0, we can find n1 ∈ N such that

p (xn, xn+1) ≤
ε

m
, for n > n1.
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Now, for r, s > max {n0, n1} and s > r, there exists k ∈ {1, 2, ...,m} such that s − r ≡
k (m) . Therefore, s− r + j ≡ 1 (m) for j = m− k + 1. So, we have

p (xr, xs) ≤ p (xr, xs+j) + p (xs+j , xs+j−1)

+...+ p (xs+1, xs)−
j∑
i=1

p (xs+i, xs+i)

≤ p (xr, xs+j) + p (xs+j , xs+j−1) + ...+ p (xs+1, xs) .

This implies

p (xr, xs) ≤ ε+
ε

m

m∑
j=1

1 = 2ε.

Thus, (xn) is a Cauchy sequence in
m⋃
i=1

Ai . Consequently, (xn) converges to some

z ∈
m⋂
i=1

Ai. However in view of cyclical condition, the sequence (xn) has an infinite number

of terms in each Ai, for i = 1, 2, ...,m. Therefore z ∈
m⋂
i=1

Ai.

Now, we will prove that z is a fixed point of T . Suppose that z ∈ Ai, T z ∈ Ai+1, and
we take a subsequence xnk

of (xn) with xnk
∈ Ai−1. Then, assuming that T is a cyclic

(φ− ψ)-Kannan type contraction, we have

φ
(
p
(
xnk+1

, T z
))

= φ (p (Txnk
, T z))

≤ φ (αp (xnk
, Txnk

) + βp (z, Tz))

−ψ (p (xnk
, Txnk

) , p (z, Tz))

≤ φ (αp (xnk
, Txnk

) + βp (z, Tz)) .

Letting k →∞, we have

φ (p (z, Tz)) ≤ φ (αp (z, Tz) + βp (z, Tz)) ,

since φ is a non-decreasing function, we get

p (z, Tz) ≤ (α+ β) p (z, Tz) .

Thus, since 0 < α+ β ≤ 1, we have p (z, Tz) = 0, and hence, z = Tz.
Similarly, assuming that T is a cyclic (φ− ψ)-Chatterjea type contraction, we have

φ
(
p
(
xnk+1

, T z
))

= φ (p (Txnk
, T z))

≤ φ (αp (xnk
, T z) + βp (z, Txnk

))

−ψ (p (xnk
, T z) , p (z, Txnk

))

≤ φ (αp (xnk
, T z) + βp (z, Txnk

)) .

Letting k →∞, we have

φ (p (z, Tz)) ≤ φ (αp (z, Tz) + βp (z, Tz)) ,

since φ is a non-decreasing function, we get

p (z, Tz) ≤ αp (z, Tz) + βp (z, Tz)

= (α+ β)p (z, Tz) .

Thus, since 0 < α+ β < 1, we have p (z, Tz) = 0, and hence, z = Tz. �
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Corollary 2.1. Let X be a complete partial metric space, m positive integer, A1, A2, ..., Am

non-empty closed subsets of X, and X =
m⋃
i=1

Ai. Let T : X → X be an operator such that

(i) X =
m⋃
i=1

Ai is a cyclic representation of X with respect to T,

(ii) for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1 and ρ : [0,∞) → [0,∞)

is a Lebesgue integrable mapping satisfies
t∫
0

ρ(s)ds > 0 for t > 0, we have one of the

following:
p(Tx,Ty)∫

0

ρ(t)dt ≤
αp(x,Tx)+βp(y,Ty)∫

0

ρ(t)dt,

or
p(Tx,Ty)∫

0

ρ(t)dt ≤
αp(Tx,y)+βp(Ty,x)∫

0

ρ(t)dt.

Then T has a unique fixed point z ∈
m⋂
i=1

Ai.

Proof. Let φ : [0,∞) → [0,∞) be defined as φ(t) =
t∫
0

ρ(s)ds > 0. Then φ is an altering

distance function, and by taking ψ = 0, we get the result. �

Example 2.1. Let X ⊂ l1, X =
{

(xn) ∈ l1 : xn ≥ 0 for all n ∈ N
}
. Define a partial met-

ric p on X by

p ((xn) , (yn)) =
∞∑
n=1

max {xn, yn} .

Let the set

δn =

0, 0, ..., 1︸ ︷︷ ︸
nth term

, 0, 0, ....

 , n ∈ N

 be the standard basis for l1. Let β ∈ (0, 1)

be fixed and consider the sets

A1 =

{ ∞∑
k=l

β2kδ2k, l = 1, 2, 3....

}
,

B2 =

{ ∞∑
k=l

β2k−1δ2k−1, l = 1, 2, 3....

}
.

Let A = A1 ∪ {0} and B = B1 ∪ {0} , and Y = A ∪ B,where 0 = (0, 0, 0, 0...). Consider
the map T : Y → Y given by

T

( ∞∑
k=l

β2kδ2k

)
=

∞∑
k=l

β2k+1δ2k+1

T

( ∞∑
k=l

β2k+1δ2k+1

)
=

∞∑
k=l

β2k+2δ2k+2

It is easy to see that T (A) ⊂ B and T (B) ⊂ A and Y = A ∪B is a cyclic representation

of Y with respect to T. Now Let A 3 x =
∞∑
k=l

β2kδ2k and B 3 y =
∞∑
k=m

β2k+1δ2k+1. Suppose
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that l ≤ m, (for the case l > m is similar). Then

T (x) =

∞∑
k=l

β2k+1δ2k+1 and T (y) =

∞∑
k=m

β2k+2δ2k+2

and

p (x, y) =

m−1∑
k=l

β2k +
β2m

1− β

p (T (x) , T (y)) =

m−1∑
k=l

β2k+1 +
β2m+1

1− β

p (x, T (x)) =
β2l

1− β
, p (y, T (y)) =

β2m+1

1− β
.

Consequently for some positive real number α > 0 we have,

p (T (x) , T (y)) =
m−1∑
k=l

β2k+1 +
β2m+1

1− β

≤ β
β2l

1− β
≤ β β2l

1− β
+ α

β2m+1

1− β

= (β + 1− 1)
β2l

1− β
+ α

β2m+1

1− β

= β
β2l

1− β
+ α

β2m+1

1− β
− (1− β)

β2l

1− β

Now if ψ : [0,∞)2 → [0,∞) is taken such that ψ(x, y) = (1− β) max {x, y} we get

p (T (x) , T (y)) = βp (x, T (x)) + αp (y, T (y))− (1− β) max

{
β2l

1− β
,
β2m+1

1− β

}
= βp (x, T (x)) + αp (y, T (y))− ψ (p (x, T (x)) , p (y, T (y)))

and so taking the altering distance φ to be φ(t) = t,we get the result.

Example 2.2. Let X = [−1, 1] ⊆ R with

p (x, y) =

 max {x, y} x, y ∈ [0, 1]
max {|x| , |y|} x, y ∈ [−1, 0]
|x− y| otherwise

.
It is not hard to see that p is a partial metric on [−1, 1].
Let T : [−1, 1]→ [−1, 1] be given by

T (x) =


−1

2xe
− 1
|x| , x ∈ (0, 1],

0, x = 0,

−1
3xe
− 1
|x| , x ∈ [−1, 0).
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By taking ψ = 0, φ (t) = t and x ∈ [0, 1], y ∈ [−1, 0],

p (Tx, Ty) = |Tx− Ty| =
∣∣∣∣−1

2
xe
− 1
|x| +

1

3
ye
− 1
|y|

∣∣∣∣
≤ 1

2
|x|+ 1

3
|y|

≤ 1

2

∣∣∣∣x+
1

2
xe
− 1
|x|

∣∣∣∣+
1

3

∣∣∣∣y +
1

3
ye
− 1
|y|

∣∣∣∣
=

1

2
|Tx− x|+ 1

3
|Ty − y|

=
1

2
p (x, Tx) +

1

3
p (y, Ty)

which implies that T has a unique fixed point in [−1, 0] ∩ [0, 1] which is z = 0.
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