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A NEW LOOK AT q-HYPERGEOMETRIC FUNCTIONS

M. DARUS1 §

Abstract. For complex parameters ai, bj , q(i = 1, ..., r, j = 1, ..., s, bj ∈ C\{0,−1,−2, ...},
|q| < 1), define the q-hypergeometric function rΦs(a1, ..., ar; b1, ..., bs; q, z) by

rΦs(ai; bj ; q, z) =

∞∑
n=0

(a1, q)n...(ar, q)n
(q, q)n(b1, q)n...(bs, q)n

zn

(r = s + 1; r, s ∈ N0 = N ∪ {0}; z ∈ U) where N denote the set of positive integers and
(a, q)n is the q-shifted factorial defined by

(a, q)n =

{
1, n = 0;
(1− a)(1− aq)(1− aq2)...(1− aqn−1), n ∈ N.

Recently, the authors [7] defined the linear operator M(ai, bj ; q)f . Using the operator
M(ai, bj ; q)f(z)f , Aldweby and Darus [13] gave a new integral operator. In this work
we highlight a result related to the new integral operator.
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1. Introduction

The word ’hypergeometric series’ is not an alien to any mathematicians or statisticians,
be it in pure or applied studies. Numerous applications are seen in solving real problems
as well as in fitting it right in solving problems defined in a complex plane. It is known at
first as basic hypergeometric series which started essentially by Euler back in 1748 that
emphasis on generating functions of partitions. Later, Gauss (1813) and Cauchy (1852)
found several transformations and summations formulas related to basic hypergeometric
series. A hundred years later after Euler discovery, Heine (1846) converted a simple
notation

limq→1
1− qa

1− q
= a

into a systematic theory of basic hypergeometric series parallel to the theory of Gausss
hypergeometric series.

Many great mathematicians have made important contributions to the basic hypergeo-
metric series. For example, Andrews and Askey persistently convincing people how useful
the summation and transformation formulas for basic hypergeometric series are in the
theory of partitions and other disciplines (see also [1]).
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of Mathematics 2014; all rights reserved.

16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Isik University Academic Open Access

https://core.ac.uk/display/334949536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


M.DARUS: A NEW LOOK AT Q-HYPERGEOMETRIC FUNCTIONS 17

In basic hypergeometric series (or q-analogue of generalized hypergeometric series) there
exist a fixed parameter q ∈ C, which usually taken to satisfy |q| < 1.

For complex parameters ai, bj , q(i = 1, ..., r, j = 1, ..., s, bj ∈ C\{0,−1,−2, ...},
|q| < 1), we define the q-hypergeometric function rΦs(a1, ..., ar; b1, ..., bs; q, z) by

rΦs(ai; bj ; q, z) =

∞∑
n=0

(a1, q)n...(ar, q)n
(q, q)n(b1, q)n...(bs, q)n

zn (1)

(r = s + 1; r, s ∈ N0 = N ∪ {0}; z ∈ U) where N denote the set of positive integers and
(a, q)n is the q-shifted factorial defined by

(a, q)n =

{
1, n = 0;
(1− a)(1− aq)(1− aq2)...(1− aqn−1), n ∈ N.

By using the ratio test, we should note that, if |q| < 1, the series (1) converges absolutely
for |z| < 1 and r = s+1. For more mathematical background of these functions, one may
refer to [8].

Corresponding to a function rGs(ai; bj ; q, z) defined by

rGs(ai; bj ; q, z) = z rΦs(ai; bj ; q, z). (2)

Recently, the authors [7] defined the linear operator M(ai, bj ; q)f : A −→ A by

M(ai, bj ; q)f(z) =r Gs(ai; bj ; q, z) ∗ f(z)

= z +
∞∑
n=2

Υncnz
n,

(3)

where

Υn =
(a1, q)n−1...(ar, q)n−1

(q, q)n−1(b1, q)n−1...(bs, q)n−1
, (|q| < 1)

It should be remarked that the linear operator (3) is a generalization of many operators
considered earlier. For ai = qαi , bj = qβj , αi, βj ∈ C, βj ̸= 0,−1,−2, ..., (i = 1, ..., r, j =
1, .., s) and q → 1, we obtain the Dziok-Srivastava linear operator [2] (for r = s + 1),
so that it includes (as its special cases) various other linear operators introduced and
studied by Ruscheweyh [6], Carlson-Shaffer [9] and Bernardi-Libera-Livingston operators
([10]-[11]-[12]).

The q-difference operator is defined by

dqh(z) =
h(qz)− h(z)

(q − 1)z
, q ̸= 1, z ̸= 0, (4)

and
lim
q→1

dqh(z) = h′(z),

where h′(z) is the ordinary derivative. For more properties of dq see ([3]-[4]).

2. Findings

The following lemma is crucial in the studies.

Lemma 2.1. (see [7]). Let f ∈ A, then

i: For r = 1, s = 0 and a1 = q, we have M(q,−; q)f(z) = f(z).
ii: For r = 1, s = 0, and a1 = q2, we have M(q2,−; q)f(z) = zdqf(z) and limq→1M(q2,−; q)f(z) =

zf ′(z), where dq is the q-derivative defined by (4)

Aldweby and Darus [13] stated the following:
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Definition 2.1. A function f ∈ A is said to be in the class Br
s(ai, bj ; q;µ) if it is satisfying

the condition ∣∣∣∣z2(M(ai, bj ; q)f(z))
′

[M(ai, bj ; q)f(z)]2
− 1

∣∣∣∣ < 1− µ (z ∈ U ; 0 ≤ µ < 1), (5)

where M(ai, bj ; q)f is the operator defined by (3).

Note that B1
0(q,−; q;µ) = B(µ), where the class B(µ) of analytic and univalent func-

tions was introduced and studied by Frasin and Darus [5].
Using the operator M(ai, bj ; q)f(z)f , Aldweby and Darus [13] stated the following new

integral operator:
For m ∈ N∪{0} , γ1, γ2, ..., γm, δ ∈ C\{0,−1,−2, ...}, and |q| < 1 we define the integral

operator Iγk,δ(ai, bj ; q; z) : An −→ An by

Iγk,δ(ai, bj ; q; z) =

(
δ

∫ z

0
tδ−1

m∏
k=1

(
M(ai, bj ; q)f(z)fk(t)

t

) 1
γk

dt

) 1
δ

, (6)

where fk ∈ A.
It is interesting to note that the integral operator Iγk,δ(ai, bj ; q; z) generalizes many

operators introduced and studied by several authors (see in [13]).
An example of a result obtained for this integral operator can be read in [13] as follows:

Theorem 2.1. Let fk ∈ A for all k = 1, ...,m, γk ∈ C and M ≥ 1 with

1

Re(δ)

m∑
k=1

[(2− µk)M + 1]

|γk|
≤ 1.

If for all k = 1, ...,m, fk ∈ Br
s(ai, bj , q, µk), 0 ≤ µk < 1, and

|M(ai, bj ; q)f(z)fk(z)| ≤ M, (z ∈ U)
then the integral operator Iγk,δ(ai, bj ; q; z) defined by (6) is analytic and univalent in U .

Other studies that we are looking at regarding this matter include introducing new
classes (starlike-convex-close-to-convex) in the space of analytic functions by using new
q-operators and investigating their properties.
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