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COMMON COUPLED FIXED POINT THEOREM UNDER WEAK ψ − ϕ
CONTRACTION FOR HYBRID PAIR OF MAPPINGS WITH

APPLICATION

BHAVANA DESHPANDE1, AMRISH HANDA2, LAKSHMI NARAYAN MISHRA3, §

Abstract. We establish a common coupled fixed point theorem for hybrid pair of map-
pings under weak ψ − ϕ contraction on a non-complete metric space, which is not
partially ordered. It is to be noted that to find coupled coincidence point, we do not em-
ploy the condition of continuity of any mapping involved therein. Moreover, an example
and an application to integral equations are given here to illustrate the usability of the
obtained results. We improve, extend, and generalize several known results.
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1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2X the class of all nonempty subsets of X, by
CL(X) the class of all nonempty closed subsets of X, by CB(X) the class of all nonempty
closed bounded subsets of X and by K(X) the class of all nonempty compact subsets of
X. A functional H : CL(X)×CL(X)→ R+ ∪{+∞} is said to be the Pompeiu-Hausdorff
generalized metric induced by d is given by

H(A, B) =

{
max {supa∈AD(a, B), supb∈B D(b, A)} , if maximum exists,

+∞, otherwise,

for all A, B ∈ CL(X), where D(x, A) = infa∈A d(x, a) denote the distance from x to
A ⊂ X. For simplicity, if x ∈ X, we denote g(x) by gx.

The existence of fixed points for various multivalued contractions and non-expansive
mappings has been studied by many authors under different conditions which was initiated
by Markin [22]. The theory of multivalued mappings has applications in control theory,
convex optimization, differential inclusions and economics.

In 1987, Guo and Lakshmikantham [17] gave the notion of coupled fixed point. Follow-
ing this paper, Gnana-Bhaskar and Lakshmikantham [4] introduced the concept of mixed
monotone property for F : X ×X → X (where X is an ordered metric space) and proved
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some results on the existence and uniqueness of coupled fixed points. Later on, Laksh-
mikantham and Ciric [18] generalized these results for nonlinear contraction mappings by
introducing the notions of coupled coincidence point and mixed g-monotone property in
2009. These results are applied for proving the existence and uniqueness of the solution for
periodic boundary value problems. Many authors focused on coupled fixed point theory
including [3, 5, 10, 11, 20, 21, 25, 29].

Samet et al. [27] claimed that most of the coupled fixed point theorems in the setting
of single-valued mappings on ordered metric spaces are consequences of well-known fixed
point theorems.

The concepts related to coupled fixed point theory in the setting of multivalued map-
pings were extended by Abbas et al. [2] and obtained coupled coincidence point and
common coupled fixed point theorems involving hybrid pair of mappings satisfying gener-
alized contractive conditions in complete metric spaces. Very few papers were devoted to
coupled fixed point problems for hybrid pair of mappings including [1, 2, 12, 13, 19, 28].

In [2], Abbas et al. introduced the following for multivalued mappings:

Definition 1.1. Let X be a non-empty set, F : X ×X → 2X and g be a self-mapping on
X. An element (x, y) ∈ X ×X is called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).
(2) a coupled coincidence point of hybrid pair {F, g} if gx ∈ F (x, y) and gy ∈ F (y, x).
(3) a common coupled fixed point of hybrid pair {F, g} if x = gx ∈ F (x, y) and

y = gy ∈ F (y, x).
We denote the set of coupled coincidence points of mappings F and g by C(F, g). Note

that if (x, y) ∈ C(F, g), then (y, x) is also in C(F, g).

Definition 1.2. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping
on X. The hybrid pair {F, g} is called w−compatible if gF (x, y) ⊆ F (gx, gy) whenever
(x, y) ∈ C(F, g).

Definition 1.3. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping
on X. The mapping g is called F−weakly commuting at some point (x, y) ∈ X × X if
g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx).

Lemma 1.1. [26]. Let (X, d) be a metric space. Then, for each a ∈ X and B ∈ K(X),
there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = infb∈B d(a, b).

In [16], Gordji et al. established some fixed point theorems for (ψ, ϕ)-weak contractive
mappings in a complete metric space endowed with a partial order. Our basic references
are [5, 6, 7, 8, 9, 14, 15, 16, 23, 24, 26, 27].

In this paper, we establish a common coupled fixed point theorem for hybrid pair of
mappings under weak ψ − ϕ contraction on a non-complete metric space, which is not
partially ordered. It is to be noted that to find coupled coincidence point, we do not
employ the condition of continuity of any mapping involved therein. Moreover, an example
and an application to integral equations are given here to illustrate the usability of the
obtained results. We improve, extend and generalize the result of Gnana-Bhaskar and
Lakshmikantham [4], Gordji et al. [16] and Lakshmikantham and Ciric [18].
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2. Main results

Let Ψ denote the set of all functions ψ : [0, +∞)→ [0, +∞) satisfying
(iψ) ψ is continuous and non-decreasing,
(iiψ) ψ(t) = 0⇔ t = 0,
(iiiψ) lim sups→0+

s
ψ(s) <∞.

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying
(iϕ) ϕ is lower semi-continuous and non-decreasing,
(iiϕ) ϕ(t) = 0⇔ t = 0,
(iiiϕ) for any sequence {tn} with limn→∞ tn = 0, there exists k ∈ (0, 1)
and n0 ∈ N, such that ϕ(tn) ≥ ktn for each n ≥ n0.

Let Θ denote the set of all functions θ : [0, +∞)→ [0, +∞) satisfying
(iθ) θ is continuous,
(iiθ) θ(t) = 0⇔ t = 0.

For simplicity, we define

M(x, y, u, v)

= max


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 ,

D(gy, F (v, u))+D(gv, F (y, x))
2

 ,

and

N(x, y, u, v) = min

{
D(gx, F (u, v)), D(gu, F (x, y)),
D(gy, F (v, u)), D(gv, F (y, x))

}
,

and

m(x, y, u, v) = max


d(x, u), d(x, F (x, y)), d(u, F (u, v)),
d(y, v), d(y, F (y, x)), d(v, F (v, u)),

d(x, F (u, v))+d(u, F (x, y))
2 ,

d(y, F (v, u))+d(v, F (y, x))
2

 ,

and

n(x, y, u, v) = min

{
d(x, F (u, v)), d(u, F (x, y)),
d(y, F (v, u)), d(v, F (y, x))

}
.

Theorem 2.1. Let (X, d) be a metric space, F : X ×X → K(X) and g : X → X be two
mappings. Suppose there exist some ψ ∈ Ψ, ϕ ∈ Φ and θ ∈ Θ such that

ψ (H(F (x, y), F (u, v))) (1)

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) ,

for all x, y, u, v ∈ X. Furthermore assume that F (X×X) ⊆ g(X) and g(X) is a complete
subset of X. Then F and g have a coupled coincidence point. Moreover, F and g have a
common coupled fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. limn→∞ g
nx = u and limn→∞ g

ny = v for some (x,
y) ∈ C(F, g) and for some u, v ∈ X and g is continuous at u and v.

(b) g is F−weakly commuting for some (x, y) ∈ C(F, g) and gx and gy are fixed points
of g, that is, g2x = gx and g2y = gy.

(c) g is continuous at x and y. limn→∞ g
nu = x and limn→∞ g

nv = y for some (x,
y) ∈ C(F, g) and for some u, v ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).
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Proof. Let x0, y0 ∈ X be arbitrary. Then F (x0, y0) and F (y0, x0) are well defined. Choose
gx1 ∈ F (x0, y0) and gy1 ∈ F (y0, x0), because F (X×X) ⊆ g(X). Since F : X×X → K(X),
therefore by Lemma 1.1, there exist z1 ∈ F (x1, y1) and z2 ∈ F (y1, x1) such that

d(gx1, z1) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, z2) ≤ H(F (y0, x0), F (y1, x1)).

Since F (X ×X) ⊆ g(X), there exist x2, y2 ∈ X such that z1 = gx2 and z2 = gy2. Thus

d(gx1, gx2) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, gy2) ≤ H(F (y0, x0), F (y1, x1)).

Continuing this process, we obtain sequences {xn} and {yn} in X such that for all n ∈ N,
we have gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn) such that

d(gxn+1, gxn+2) ≤ H(F (xn, yn), F (xn+1, yn+1)),

d(gyn+1, gyn+2) ≤ H(F (yn, xn), F (yn+1, xn+1)).

Suppose first that gxn0 = gxn0+1 and gyn0 = gyn0+1 for some n0. Then, the sequences
{gxn} and {gyn} is constant for n ≥ n0. Indeed, let n0 = k. Then gxk = gxk+1 and
gyk = gyk+1. Now, by (iψ) and (1), we obtain

ψ (d(gxk+1, gxk+2))

≤ ψ (H(F (xk, yk), F (xk+1, yk+1)))

≤ ψ (M(xk, yk, xk+1, yk+1))− ϕ (ψ (M(xk, yk, xk+1, yk+1)))

+θ (N(xk, yk, xk+1, yk+1)) , (2)

where

M(xk, yk, xk+1, yk+1)

= max


d(gxk, gxk+1), D(gxk, F (xk, yk)), D(gxk+1, F (xk+1, yk+1)),
d(gyk, gyk+1), D(gyk, F (yk, xk)), D(gyk+1, F (yk+1, xk+1)),

D(gxk,F (xk+1,yk+1))+D(gxk+1,F (xk,yk))
2 ,

D(gyk,F (yk+1,xk+1))+D(gyk+1,F (yk,xk))
2


≤ max


d(gxk, gxk+1), d(gxk, gxk+1), d(gxk+1, gxk+2),
d(gyk, gyk+1), d(gyk, gyk+1), d(gyk+1, gyk+2),

d(gxk, gxk+2)+d(gxk+1, gxk+1)
2 ,

d(gyk, gyk+2)+d(gyk+1, gyk+1)
2


≤ max

{
d(gxk+1, gxk+2), d(gyk+1, gyk+2),

d(gxk, gxk+2)
2 ,

d(gyk, gyk+2)
2

}
≤ max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)} ,

and

θ (N(xk, yk, xk+1, yk+1))

= min

{
D(gxk, F (xk+1, yk+1)), D(gxk+1, F (xk, yk)),
D(gyk, F (yk+1, xk+1)), D(gyk+1, F (yk, xk))

}
= 0.

Thus, by (2) and (iiθ), we get

ψ (d(gxk+1, gxk+2))

≤ ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})
−ϕ (ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})) .
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Similarly

ψ (d(gyk+1, gyk+2))

≤ ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})
−ϕ (ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})) .

Combining them, we get

max {ψ (d(gxk+1, gxk+2)) , ψ (d(gyk+1, gyk+2))}
≤ ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})
−ϕ (ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})) .

Since ψ is non-decreasing, it follows that

ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})
≤ ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})
−ϕ (ψ (max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)})) ,

which, by (iiφ) and (iiψ), implies that

max {d(gxk+1, gxk+2), d(gyk+1, gyk+2)} = 0.

It follows that

d(gxk+1, gxk+2) = 0 and d(gyk+1, gyk+2) = 0,

and so gxk+1 = gxk+2, gyk+1 = gyk+2. Thus the sequences {gxn} and {gyn} are constants
(starting from some n0).

Suppose that max{d(gxn, gxn+1), d(gyn, gyn+1)} > 0 for each n ∈ N. It is clear that
N(xn, yn, xn+1, yn+1) = 0 for all n ∈ N. Now, by condition (1) and (iψ), we have

ψ (d(gxn+1, gxn+2))

≤ ψ (H(F (xn, yn), F (xn+1, yn+1)))

≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1)))

+θ (N(xn, yn, xn+1, yn+1)) ,

which, by (iiθ), implies

ψ (d(gxn+1, gxn+2)) (3)

≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1))) ,

which by the fact that ϕ ≥ 0 implies

ψ (d(gxn+1, gxn+2)) ≤ ψ (M(xn, yn, xn+1, yn+1)) .

Since ψ is non-decreasing, therefore we obtain

d(gxn+1, gxn+2) ≤M(xn, yn, xn+1, yn+1).

Similarly, we can obtain that

d(gyn+1, gyn+2) ≤M(xn, yn, xn+1, yn+1).

Combining them, we get

max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)} ≤M(xn, yn, xn+1, yn+1). (4)
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Hence

M(xn, yn, xn+1, yn+1)

= max


d(gxn, gxn+1), D(gxn, F (xn, yn)), D(gxn+1, F (xn+1, yn+1)),
d(gyn, gyn+1), D(gyn, F (yn, xn)), D(gyn+1, F (yn+1, xn+1)),

D(gxn,F (xn+1,yn+1))+D(gxn+1,F (xn,yn))
2 ,

D(gyn,F (yn+1,xn+1))+D(gyn+1,F (yn,xn))
2


≤ max


d(gxn, gxn+1), d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn, gyn+1), d(gyn+1, gyn+2),

d(gxn,gxn+2)+d(gxn+1,gxn+1)
2 , d(gyn,gyn+2)+d(gyn+1,gyn+1)

2


≤ max

{
max {d(gxn, gxn+1), d(gyn, gyn+1)} ,

max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)}

}
.

If max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)} ≥ max{d(gxn, gxn+1), d(gyn, gyn+1)}. Then

M(xn, yn, xn+1, yn+1) (5)

≤ max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)} .

From (4) and (5), we get

M(xn, yn, xn+1, yn+1)

= max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)} .

Thus, by (3), we have

ψ (d(gxn+1, gxn+2))

≤ ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
−ϕ (ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})) .

Similarly, we can obtain that

ψ (d(gyn+1, gyn+2))

≤ ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
−ϕ (ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})) .

Combining them, we get

max {ψ (d(gxn+1, gxn+2)) , ψ (d(gyn+1, gyn+2))}
≤ ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
−ϕ (ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})) .

Since ψ is non-decreasing, therefore

ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
≤ ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
−ϕ (ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})) ,

which is only possible when max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)} = 0, it is a contra-
diction. Hence, max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)} ≤ max{d(gxn, gxn+1), d(gyn,
gyn+1)} for some n ∈ N. Then

M(xn, yn, xn+1, yn+1) (6)

≤ max {d(gxn, gxn+1), d(gyn, gyn+1)} .
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Notice that

M(xn, yn, xn+1, yn+1) (7)

≥ max {d(gxn, gxn+1), d(gyn, gyn+1)} .
From (6) and (7), we get

M(xn, yn, xn+1, yn+1)

= max {d(gxn, gxn+1), d(gyn, gyn+1)} .
Thus, by (4), weget

max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)}
≤ max {d(gxn, gxn+1), d(gyn, gyn+1)} .

This shows that the sequence {δn}∞n=0 given by

δn = max {d(gxn, gxn+1), d(gyn, gyn+1)} , for each n ∈ N,
is a non-increasing sequence. Thus there exists δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

max {d(gxn, gxn+1), d(gyn, gyn+1)} = δ. (8)

Then
lim
n→∞

M(xn, yn, xn+1, yn+1) = δ.

We shall prove that δ = 0. Assume to the contrary that δ > 0. Then, by condition (1) and
(iψ), we have

ψ (d(gxn+1, gxn+2))

≤ ψ (H(F (xn, yn), F (xn+1, yn+1)))

≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1)))

+θ (N(xn, yn, xn+1, yn+1)) ,

which, by (iiθ), implies

ψ (d(gxn+1, gxn+2))

≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1))) .

Similarly

ψ (d(gyn+1, gyn+2))

≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1))) .

Combining them, we get

max {ψ (d(gxn+1, gxn+2)) , ψ (d(gyn+1, gyn+2))}
≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1))) .

Since ψ is non-decreasing, therefore

ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
≤ ψ (M(xn, yn, xn+1, yn+1))− ϕ (ψ (M(xn, yn, xn+1, yn+1))) .

Letting n→∞ in the above inequality, by using (iψ) and (iϕ), we get

ψ (δ) ≤ ψ (δ)− ϕ (ψ (δ)) ,

which, by (iiϕ) and (iiψ), implies that

δ = lim
n→∞

max {d(gxn, gxn+1), d(gyn, gyn+1)} = 0. (9)
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Now we shall show that {δn}∞n=0 is a Cauchy sequence in X. Since

lim
n→∞

M(xn, yn, xn+1, yn+1) = 0,

then, by (iiiϕ), there exist k ∈ (0, 1) and n0 ∈ N such that

ϕ (ψ (M(xn, yn, xn+1, yn+1))) ≥ kψ (M(xn, yn, xn+1, yn+1)) , ∀n ≥ n0.
For any natural number n ≥ n0, by (3), we have

ψ (d(gxn+1, gxn+2))

≤ (1− k)ψ (M(xn, yn, xn+1, yn+1))

≤ (1− k)ψ (max {d(gxn, gxn+1), d(gyn, gyn+1}) .
Thus

ψ (d(gxn+1, gxn+2))

≤ (1− k)ψ (max {d(gxn, gxn+1), d(gyn, gyn+1}) , ∀n ≥ n0.
Similarly

ψ (d(gyn+1, gyn+2))

≤ (1− k)ψ (max {d(gxn, gxn+1), d(gyn, gyn+1}) , ∀n ≥ n0.
Combining them, we get

max {ψ (d(gxn+1, gxn+2)) , ψ (d(gyn+1, gyn+2))}
≤ (1− k)ψ (max {d(gxn, gxn+1), d(gyn, gyn+1}) , ∀n ≥ n0.

Since ψ is non-decreasing, therefore

ψ (max {d(gxn+1, gxn+2), d(gyn+1, gyn+2)}) (10)

≤ (1− k)ψ (max {d(gxn, gxn+1), d(gyn, gyn+1}) , ∀n ≥ n0.
Denote

an = ψ (max{d(gxn, gxn+1), d(gyn, gyn+1)}) , for all n ≥ 0.

From (10), we have
an+1 ≤ (1− k)an, for all n ≥ n0.

Then, we have
∞∑
n=0

an ≤
n0∑
n=0

an +
∞∑

n=n0+1

(1− k)n−n0an0 <∞. (11)

On the other hand, by (iiiψ), we have

lim sup
n→∞

max {d(gxn, gxn+1), d(gyn, gyn+1)}
ψ (max {d(gxn, gxn+1), d(gyn, gyn+1)})

<∞. (12)

Thus, by (11) and (12), we have
∑

max{d(gxn, gxn+1), d(gyn, gyn+1)} <∞. It means that
{gxn}∞n=0 and {gyn}∞n=0 are Cauchy sequences in g(X). Since g(X) is complete, therefore
there exist x, y ∈ X such that

lim
n→∞

gxn = gx and lim
n→∞

gyn = gy. (13)

Now, since gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn), therefore by using condition (1)
and (iψ), we get

ψ (D(gxn+1, F (x, y)))

≤ ψ (H(F (xn, yn), F (x, y)))

≤ ψ (M(xn, yn, x, y))− ϕ (ψ (M(xn, yn, x, y))) + θ (N(xn, yn, x, y)) ,



B.DESHPANDE, A.HANDA, L.N.MISHRA: COMMON COUPLED FIXED POINT THEOREM ... 15

where

M(xn, yn, x, y)

= max


d(gxn, gx), D(gxn, F (xn, yn)), D(gx, F (x, y)),
d(gyn, gy), D(gyn, F (yn, xn)), D(gy, F (y, x)),

D(gxn,F (x,y))+D(gx,F (xn,yn))
2 ,

D(gyn,F (y,x))+D(gy,F (yn,xn))
2


≤ max


d(gxn, gx), d(gxn, gxn+1), D(gx, F (x, y)),
d(gyn, gy), d(gyn, gyn+1), D(gy, F (y, x)),

D(gxn,F (x,y))+d(gx,gxn+1)
2 ,

D(gyn,F (y,x))+d(gy,gyn+1)
2

 ,

and

N(xn, yn, x, y)

= min

{
D(gxn, F (x, y)), D(gx, F (xn, yn)),
D(gyn, F (y, x)), D(gy, F (yn, xn))

}
.

Letting n→∞ in the above inequality, by using (iψ), (iϕ), (iθ), (iiθ) and (13), we get

ψ (D(gx, F (x, y)))

≤ ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})
−ϕ (ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})) .

Similarly, we can obtain that

ψ (D(gy, F (y, x)))

≤ ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})
−ϕ (ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})) .

Combining them, we get

max {ψ (D(gx, F (x, y))) , ψ (D(gy, F (y, x)))}
≤ ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})
−ϕ (ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})) .

Since ψ is non-decreasing, therefore

ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})
≤ ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})
−ϕ (ψ (max {D(gx, F (x, y)), D(gy, F (y, x))})) ,

which, by (iiϕ) and (iiψ), implies that

max {D(gx, F (x, y)), D(gy, F (y, x))} = 0,

it follows that

gx ∈ F (x, y) and gy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is non-empty.
Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

lim
n→∞

gnx = u and lim
n→∞

gny = v, (14)
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where u, v ∈ X. Since g is continuous at u and v. We have, by (14), that u and v are fixed
points of g, that is,

gu = u and gv = v. (15)

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1,

that is,

gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x), for all n ≥ 1. (16)

Now, by using (1), (16) and (iψ), we obtain

ψ (D(gnx, F (u, v)))

≤ ψ
(
H(F (gn−1x, gn−1y), F (u, v))

)
≤ ψ

(
M(gn−1x, gn−1y, u, v)

)
− ϕ

(
ψ
(
M(gn−1x, gn−1y, u, v)

))
+θ
(
N(gn−1x, gn−1y, u, v)

)
,

where

M(gn−1x, gn−1y, u, v)

= max


d(gnx, gu), D(gnx, F (gn−1x, gn−1y)), D(gu, F (u, v)),
d(gny, gv), D(gny, F (gn−1y, gn−1x)), D(gv, F (v, u)),

(gnx,F (u,v))+d(gu,F (gn−1x,gn−1y))
2 ,

D(gny,F (v,u))+d(gv,F (gn−1y,gn−1x))
2


≤ max


d(gnx, gu), d(gnx, gnx), D(gu, F (u, v)),
d(gny, gv), D(gny, gny), D(gv, F (v, u)),

D(gnx,F (u,v))+D(gu,gnx)
2 ,

D(gny,F (v,u))+D(gv,gny)
2

 ,

and

N(gn−1x, gn−1y, u, v)

= min

{
D(gnx, F (u, v)), D(gu, F (gn−1x, gn−1y)),
D(gny, F (v, u)), D(gv, F (gn−1y, gn−1x))

}
.

On taking limit as n→∞ in the above inequality, by using (iψ), (iϕ), (iθ), (iiθ), (14) and
(15), we get

ψ (D(gu, F (u, v)))

≤ ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})
−ϕ (ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})) .

Similarly

ψ (D(gv, F (v, u)))

≤ ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})
−ϕ (ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})) .

Combining them, we get

max {ψ (D(gu, F (u, v))) , ψ (D(gv, F (v, u)))}
≤ ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})
−ϕ (ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})) .
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Since ψ is non-decreasing, therefore

ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})
≤ ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})
−ϕ (ψ (max {D(gu, F (u, v)), D(gv, F (v, u))})) ,

which, by (iiϕ) and (iiψ), implies that

max {D(gu, F (u, v)), D(gv, F (v, u))} = 0,

it follows that

gu ∈ F (u, v) and gv ∈ F (v, u). (17)

Now, from (15) and (17), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g is F−weakly

commuting, that is, g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and g2x = gx and g2y = gy.
Thus gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy, gx), that is, (gx, gy) is a common
coupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for some u,
v ∈ X,

lim
n→∞

gnu = x and lim
n→∞

gnv = y. (18)

Since g is continuous at x and y. Therefore, by (18), we obtain that x and y are fixed
points of g, that is,

gx = x and gy = y. (19)

Since (x, y) ∈ C(F, g), therefore, by (19), we obtain

x = gx ∈ F (x, y) and y = gy ∈ F (y, x),

that is, (x, y) is a common coupled fixed point of F and g.
Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then, {x} = {gx} = F (x,

x). Hence (x, x) is a common coupled fixed point of F and g. �

If we put θ(t) = 0 in the Theorem 2.1, we get the following result:

Corollary 2.1. Let (X, d) be a metric space. Assume F : X×X → K(X) and g : X → X
be two mappings. Suppose there exist some ψ ∈ Ψ and ϕ ∈ Φ such that

ψ (H(F (x, y), F (u, v))) ≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) ,

for all x, y, u, v ∈ X. Furthermore assume that F (X×X) ⊆ g(X) and g(X) is a complete
subset of X. Then, F and g have a coupled coincidence point. Moreover, if one of the
conditions (a) to (d) of Theorem 2.1 holds. Then, F and g have a common coupled fixed
point.

If we put ϕ(t) = t− tϕ̃(t) for all t ≥ 0 in Corollary 2.1, then we get the following result:

Corollary 2.2. Let (X, d) be a metric space. Assume F : X×X → K(X) and g : X → X
be two mappings. Suppose there exist some ψ ∈ Ψ and ϕ̃ ∈ Φ such that

ψ (H(F (x, y), F (u, v))) ≤ ϕ̃ (ψ (M(x, y, u, v)))ψ (M(x, y, u, v)) ,

for all x, y, u, v ∈ X. Furthermore assume that F (X×X) ⊆ g(X) and g(X) is a complete
subset of X. Then, F and g have a coupled coincidence point. Moreover, if one of the
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conditions (a) to (d) of Theorem 2.1 holds. Then, F and g have a common coupled fixed
point.

If we put ψ(t) = 2t for all t ≥ 0 in Corollary 2.2, then we get the following result:

Corollary 2.3. Let (X, d) be a metric space. Assume F : X×X → K(X) and g : X → X
be two mappings. Suppose there exists some ϕ̃ ∈ Φ such that

H(F (x, y), F (u, v)) ≤ ϕ̃ (2M(x, y, u, v))M(x, y, u, v),

for all x, y, u, v ∈ X. Furthermore assume that F (X×X) ⊆ g(X) and g(X) is a complete
subset of X. Then, F and g have a coupled coincidence point. Moreover, if one of the
conditions (a) to (d) of Theorem 2.1 holds. Then, F and g have a common coupled fixed
point.

If we put ϕ̃(t) = k where 0 < k < 1, for all t ≥ 0 in Corollary 2.3, then, we get the
following result:

Corollary 2.4. Let (X, d) be a metric space. Assume F : X×X → K(X) and g : X → X
be two mappings satisfying

H(F (x, y), F (u, v)) ≤ kM(x, y, u, v),

for all x, y, u, v ∈ X, where 0 < k < 1. Furthermore assume that F (X × X) ⊆ g(X)
and g(X) is a complete subset of X. Then, F and g have a coupled coincidence point.
Moreover, if one of the conditions (a) to (d) of Theorem 2.1 holds. Then, F and g have
a common coupled fixed point.

If we take F to be a singleton set and g = I (the identity mapping) in Theorem 2.1,
then, we get the following result:

Corollary 2.5. Let (X, d) be a complete metric space, F : X × X → X be a mapping.
Suppose there exist some ψ ∈ Ψ, ϕ ∈ Φ and θ ∈ Θ such that

ψ (d(F (x, y), F (u, v))) (20)

≤ ψ (m(x, y, u, v))− ϕ (ψ (m(x, y, u, v))) + θ (n(x, y, u, v)) ,

for all x, y, u, v ∈ X. Then, F and g have a coupled fixed point.

Example 2.1. Suppose that X = [0, 1], equipped with the metric d : X ×X → [0, +∞)
defined as d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let F : X ×X → K(X)
be defined as

F (x, y) =

{
{0}, for x, y = 1,[

0, x2+y2

3

]
, for x, y ∈ [0, 1),

and g : X → X be defined as
gx = x2 for all x ∈ X.

Define ψ : [0, +∞)→ [0, +∞) by

ψ(t) =
t

2
, for all t ≥ 0,

and ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =
t

3
, for all t ≥ 0,
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and θ : [0, +∞)→ [0, +∞) by

θ(t) =
t

4
, for all t ≥ 0.

Now, for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1), we have
Case (a). If x2 + y2 = u2 + v2, then

ψ (H(F (x, y), F (u, v)))

=
1

2
H(F (x, y), F (u, v))

=
1

6
(u2 + v2)

≤ 1

6
max

{
x2, u2

}
+

1

6
max

{
y2, v2

}
≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
M(x, y, u, v)

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v)))

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

Case (b). If x2 + y2 6= u2 + v2 with x2 + y2 < u2 + v2, then

ψ (H(F (x, y), F (u, v)))

=
1

2
H(F (x, y), F (u, v))

=
1

6
(u2 + v2)

≤ 1

6
max

{
x2, u2

}
+

1

6
max

{
y2, v2

}
≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
M(x, y, u, v)

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v)))

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

Similarly, we obtain the same result for u2 + v2 < x2 + y2. Thus, the contractive condition
(1) is satisfied for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1). Again, for all x, y, u, v ∈ X
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with x, y ∈ [0, 1) and u, v = 1, we have

ψ (H(F (x, y), F (u, v)))

=
1

2
H(F (x, y), F (u, v))

=
1

6
(x2 + y2)

≤ 1

6
max

{
x2, u2

}
+

1

6
max

{
y2, v2

}
≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
M(x, y, u, v)

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v)))

≤ ψ (M(x, y, u, v))− ϕ (ψ (M(x, y, u, v))) + θ (N(x, y, u, v)) .

Thus, the contractive condition (1) is satisfied for all x, y, u, v ∈ X with x, y ∈ [0, 1)
and u, v = 1. Similarly, we can see that the contractive condition (1) is satisfied for all
x, y, u, v ∈ X with x, y, u, v = 1. Hence, the hybrid pair {F, g} satisfies the contractive
condition (1), for all x, y, u, v ∈ X. In addition, all the other conditions of Theorem 2.1
are satisfied and z = (0, 0) is a common coupled fixed point of hybrid pair {F, g}. The
function F : X ×X → K(X) involved in this example is not continuous at the point (1,
1) ∈ X ×X.

3. Application to integral equations

As an application of the results established in section 2 of our paper, we study the
existence of the solution to a Fredholm nonlinear integral equation. We shall consider the
following integral equation

x(p) =

b∫
a

(K1(p, q) +K2(p, q)) [f(q, x(q)) + g(q, x(q))] dq + h(p), (21)

for all p ∈ I = [a, b].

Let Υ denote the set of all functions γ : [0, +∞)→ [0, +∞) satisfying
(iγ) γ is non-decreasing,
(iiγ) γ(p) ≤ 1

3p.

Theorem 3.1. Consider the integral equation (21) with K1, K2 ∈ C(I × I, R), f, g ∈
C(I × R, R) and h ∈ C(I, R) satisfying the following conditions:

(i) K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ I.
(ii) There exist the positive numbers λ, µ and γ ∈ Υ such that for all x, y ∈ R with

x ≥ y, the following conditions hold:

0 ≤ f(q, x)− f(q, y) ≤ λγ(x− y), (22)

−µγ(x− y) ≤ g(q, x)− g(q, y) ≤ 0. (23)
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(iii)

max{λ, µ} sup
p∈I

b∫
a

[K1(p, q)−K2(p, q)]dq ≤ 1. (24)

Then, the integral equation (21) has a solution in C(I, R).

Proof. Consider X = C(I, R). It is well known that X is a complete metric space with
respect to the sup metric

d(x, y) = sup
p∈I
|x(p)− y(p)| .

Define ψ : [0, +∞)→ [0, +∞) by

ψ(t) =
t

2
, for all t ≥ 0,

and ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =
t

3
, for all t ≥ 0,

and θ : [0, +∞)→ [0, +∞) by

θ(t) =
t

4
, for all t ≥ 0.

Define now the mapping F : X ×X → X by

F (x, y)(p) =

b∫
a

K1(p, q)[f(q, x(q)) + g(q, y(q))]dq

+

b∫
a

K2(p, q)[f(q, y(q)) + g(q, x(q))]dq + h(p),

for all p ∈ I. Now for all x, y, u, v ∈ X, we have

F (x, y)(p)− F (u, v)(p)

=

b∫
a

K1(p, q)[(f(q, x(q))− f(q, u(q)))− (g(q, v(q))− g(q, y(q)))]dq

−
b∫
a

K2(p, q)[(f(q, v(q))− f(q, y(q)))− (g(q, x(q))− g(q, u(q)))]dq.

Thus, by using (22) and (23), we get

F (x, y)(p)− F (u, v)(p) (25)

≤
b∫
a

K1(p, q) [λγ (x(q)− u(q)) + µγ (v(q)− y(q))] dq

−
b∫
a

K2(p, q) [λγ (v(q)− y(q)) + µγ (x(q)− u(q))] dq.
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Since the function γ is non-decreasing and so we have

γ (x(q)− u(q)) ≤ γ

(
sup
q∈I
|x(q)− u(q)|

)
= γ(d(x, u)),

γ (v(q)− y(q)) ≤ γ

(
sup
q∈I
|v(q)− y(q)|

)
= γ(d(y, v)).

Hence by (25), in view of the fact that K2(p, q) ≤ 0, we obtain

|F (x, y)(p)− F (u, v)(p)|

≤
b∫
a

K1(p, q) [λγ(d(x, u)) + µγ(d(y, v))] dq

−
b∫
a

K2(p, q) [λγ(d(y, v)) + µγ(d(x, u))] dq,

≤
b∫
a

K1(p, q) [max{λ, µ}γ(d(x, u)) + max{λ, µ}γ(d(y, v))] dq

−
b∫
a

K2(p, q) [max{λ, µ}γ(d(y, v)) + max{λ, µ}γ(d(x, u))] dq,

as all the quantities on the right hand side of (25) are non-negative. Now, taking the
supremum with respect to p, by using (24), we get

d(F (x, y), F (u, v))

≤ max{λ, µ} sup
p∈I

b∫
a

(K1(p, q)−K2(p, q)) dq. [γ(d(x, u)) + γ(d(y, v))]

≤ γ(d(x, u)) + γ(d(y, v)).

Thus,

1

2
d(F (x, y), F (u, v)) ≤ γ(d(x, u)) + γ(d(y, v))

2
. (26)

Now, since γ is non-decreasing, we have

γ(d(x, u)) ≤ γ (m(x, y, u, v)) ,

γ(d(y, v)) ≤ γ (m(x, y, u, v)) ,

which implies, by (iiγ), that

γ(d(x, u)) + γ(d(y, v))

2
≤ γ (m(x, y, u, v)) (27)

≤ 1

3
m(x, y, u, v).
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Thus, by (26) and (27), we have

ψ (d(F (x, y), F (u, v)))

=
1

2
d(F (x, y), F (u, v))

≤ 1

3
m(x, y, u, v)

≤ ψ (m(x, y, u, v))− ϕ (ψ (m(x, y, u, v)))

≤ ψ (m(x, y, u, v))− ϕ (ψ (m(x, y, u, v))) + θ (n(x, y, u, v)) ,

which is the contractive condition (20) in Corollary 2.5, which shows that all hypotheses
of Corollary 2.5 are satisfied. This proves that F has a coupled fixed point (x, y) ∈ X×X
which is the solution in X = C(I, R) of the integral equation (21). �
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