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ON COMPLEX MULTIPLICATIVE INTEGRATION

AGAMIRZA E. BASHIROV1,2, SAJEDEH NOROZPOUR1, §

Abstract. In the present paper, we extend the multiplicative integral to complex-valued
functions of complex variable. The main difficulty in this way, that is, the multi-valued
nature of the complex logarithm is avoided by division of the interval of integration to a
finite number of local intervals, in each of which the complex logarithm can be localized
in one of its branches. Interestingly, the complex multiplicative integral became a multi-
valued function. Some basic properties of this integral are considered. In particular, it is
proved that this integral and the complex multiplicative derivative are bonded in a kind
of fundamental theorem.
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1. Introduction

In 1972, Grossman and Katz [13] proposed different alternative calculi to the classical
calculus of Newton and Leibnitz. The multiplicative and bigeometric calculi are the most
popular of them. This pioneering work initiated numerous studies on multiplicative and
bigeometric calculi. In the literature, sometimes, bigeometric calculus is also referred as
proportional or product calculus. Bigeometric calculus was pushed forward by the contri-
butions of Grossman [12], Cordova-Lepe [7, 8], etc. Furthermore, elements of stochastic
integration of bigeometric nature are introduced in Karandikar [14], and Daletskii and
Teterina [9]. On the other hand, multiplicative calculus and its applications were pro-
moted in Bashirov et al. [4, 5] and Stanley [20]. Moreover, Riza et al. [18], Mısırlı and

Gürefe [15], and Özyapıcı et al. [16, 17] used multiplicative calculus for advancement of
numerical methods; Florack and Van Assen [10] applied multiplicative calculus to biomed-
ical image analysis; and Bashirov and Bashirova [3] used multiplicative calculus for the
derivation of a mathematical model of literary texts etc.

The basic difference between different calculi is that they have different reference func-
tions. In the case of Newtonian calculus, this reference function is linear. Therefore,
the statements and proofs of facts, which are not perfectly described in terms of linear
functions become complicated. For example, Newtonian calculus is suitable for Taylor
series, but not for Fourier series. At the same time, the reference function of multiplica-
tive calculus is exponential. This makes the study of exponent related problems such as
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growth suitable in multiplicative calculus. In particular, complex Fourier series, expressed
in terms of exponent, are seen to be suitable for multiplicative calculus.

Nevertheless, the capacity of real multiplicative calculus is restricted within the class of
positive functions of real variable and, hence, does not accept sine and cosine functions.
Therefore, studying Fourier series by means of real multiplicative calculus is not possible.
This suggests a creation of complex multiplicative calculus.

A proper complex multiplicative differentiation was prompted in Bashirov and Riza [6],
where it was also demonstrated that the complex multiplicative differentiation accepts the
functions with positive and as well as negative values whenever they are nowhere-vanishing.
This point is unlike to real multiplicative differentiation and very important since the terms
of complex Fourier series are also nowhere-vanishing. Continuing this study with the aim
of further application to Fourier series, in this paper we deal with complex multiplicative
integration by taking into consideration all branches of the complex logarithm.

Many books on complex analysis and calculus are available. We refer to Ahlfors [1],
Greene and Krantz [11], and Sarason [19] which are used during this study.

The paper is organized in the following way: In Section 2, we briefly review basic points
of multiplicative differentiation and line multiplicative integrals. The basic difficulty for
a proper definition of the complex multiplicative integral is a multi-valued nature of the
complex logarithm. In Section 3, complex multiplicative integral is defined locally, which
allows to work with only one branch of the complex logarithm. Next, in Section 4, the
multiplicative complex integral is defined in general form. Finally, in Section 5, we study
the properties of complex multiplicative integral.

One major remark about the notation is that the multiplicative versions of the con-
cepts of ordinary calculus are called as *concepts, for example; a *derivative means a
multiplicative derivative. We denote by R and C the fields of real and complex numbers,
respectively. Arg z is the principal value of arg z, noticing that −π < Arg z ≤ π. Always
lnx refers to the natural logarithm of the real number x > 0 whereas log z to the same of
the complex number z 6= 0. By Log z, we denote the value at z of the principal branch
of the complex logarithm, that is, Log z = ln |z| + iArg z, where i denotes the imaginary
unit and |z| the modulus of z.

2. Preliminaries

The *derivative f∗(x) of a purely positive or purely negative differentiable function f
of a real variable is defined as the limit

f∗(x) = lim
h→0

(f(x+ h)/f(x))1/h, (1)

showing how many times |f(x)| changes at x. It differs from the derivative f ′(x), which
shows to the rate of change of f at x. These two derivative concepts are related to each
other by the formula

f∗(x) = e(ln |f(x)|)′ = e
f(x)′
f(x) . (2)

The appropriateness of the *derivative, especially, in modeling growth related processes
has been demonstrated in various papers, for example; [3, 4, 5, 10, 15, 18].

One can observe that the limit in (1) can not be applied to differentiable functions with
values changing the sign. The reason is that such a function certainly has zeros. This lack
of integrity is removed by complex *derivative.

Following to Bashirov and Riza [6], let f be nowhere-vanishing differentiable complex
function on an open set D in C. To extend formulae (1)–(2) to the complex case, note that
in general a branch of log f may not exist. Even if it exists, it can not be represented as
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a composition of a branch of log-function and f . These rigorously can be avoided locally;
since for a sufficiently small neighborhood U ⊆ D of the point z ∈ D, the branches of
log f on U exist. They are composition of branches of the log-function and the restriction
of f to U , and the log-differentiation formula (log f)′ = f ′/f is valid for log f on U (see
Sarason [19]). Taking this into consideration, the *derivative of f can be defined just as

f∗(z) = e(ln f(z))′ = e
f(z)′
f(z) , (3)

noticing that it is independent of the branches of log-function. In [6], it is proved that if
z = x+ iy and

R(z) = R(x, y) = |f(z)| and Θ(z) = Θ(x, y) = Argf(z), (4)

then {
|f∗(z)| = R∗x(z) = [eΘ]∗y(z),
arg f∗(z) = Θ′x(z) + 2πn = −[lnR]′y(z) + 2πn, n = 0,±1,±2, . . . ,

(5)

where Θ′x and [lnR]′y are partial derivatives as well as R∗x and [eΘ]∗y are partial *derivatives
of the real-valued functions of two real variables.

We say that a complex-valued function f of complex variable is *differentiable at z ∈ C,
if it is differentiable at z and f(z) 6= 0. We also say that f is *holomorphic or *analytic
on an open connected set D, if f∗(z) exists for every z ∈ D.

The following examples demonstrate some features of complex *differentiation.

Example 2.1. The function f(z) = ecz, z ∈ C, where c = const ∈ C, is an entire function
and its *derivative

f∗(z) = ef
′(z)/f(z) = ece

cz/ecz = ec, z ∈ C,
is again an entire function, taking identically the nonzero value ec. Thus, in complex
*calculus f(z) = ecz plays the role of the linear function g(z) = az with a = ec from
Newtonian calculus.

Example 2.2. For another entire function f(z) = ece
z
, z ∈ C, with c = const ∈ C, we

have

f∗(z) = ef
′(z)/f(z) = ece

zece
z
/ece

z

= ece
z
, z ∈ C.

Hence, f is a solution of the equation f∗ = f . Thus, in complex *calculus f(z) = ece
z

plays the role of the exponential function g(z) = cez from ordinary calculus.

Example 2.3. The function f(z) = z, z ∈ C, is also entire; but its *derivative

f∗(z) = ef
′(z)/f(z) = e1/z, z ∈ C \ {0},

accounts an essential singularity at z = 0. This is because *differentiation is applicable to
functions with the range in C \ {0}. Thus, the *derivative of an entire function may not
be entire.

In order to develop complex *integration, we need also in line *integrals as well as a
fundamental theorem of calculus for them. Following to Bashirov [2], let f be a positive
function of two variables, defined on an open connected set in R2, and let C be a piecewise
smooth curve in the domain of f . Take a partition P = {P0, . . . , Pm} on C and let (ξk, ηk)
be a point on C between Pk−1 and Pk. Denote by ∆sk the arclength of C from the point
Pk−1 to Pk. Define the integral product

P (f,P) =

m∏
k=1

f(ξk, ηk)
∆sk .
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The limit of this product when max{∆s1, . . . ,∆sm} → 0 independently on selection of
the points (ξk, ηk) will be called a line *integral of f in ds along C, for which we will use
the symbol ∫

C
f(x, y)ds.

The line *integral of f along C exist if f is a positive function and the line integral of ln f
along C exists, and they are related as∫

C
f(x, y)ds = e

∫
C ln f(x,y) ds.

In a similar way, the line *integrals in dx and in dy can be defined and their relation to
the respective line integrals can be established in the form∫

C
f(x, y)dx = e

∫
C ln f(x,y) dx and

∫
C
f(x, y)dy = e

∫
C ln f(x,y) dy. (6)

Clearly, all three kinds of line *integrals exist if f is a positive continuous function. It is
also suitable to denote∫

C
f(x, y)dxg(x, y)dy =

∫
C
f(x, y)dx ·

∫
C
g(x, y)dy.

In cases when C is a closed curve we write
∮
C instead of

∫
C .

Example 2.4. Let c > 0 and let C = {(x(t), y(t)) : a ≤ t ≤ b} be a piecewise smooth
curve. Then, ∫

C
cdx = e

∫
C ln c dx = e(x(b)−x(a)) ln c = cx(b)−x(a).

Theorem 2.1 (Fundamental theorem of calculus for line *integrals). Let D ⊆ R2 be an
open connected set and let C = {(x(t), y(t)) : a ≤ t ≤ b} be a piecewise smooth curve in
D. Assume that f is a continuously differentiable positive function on D. Then,∫

C
f∗x(x, y)dxf∗y (x, y)dy =

f(x(b), y(b))

f(x(a), y(a))
.

Proof. See Bashirov [2]. �

3. Complex multiplicative integration (local)

Let f be a continuous nowhere-vanishing complex-valued function of complex variable
and let z(t) = x(t)+iy(t), a ≤ t ≤ b, be a complex-valued function of real variable, tracing
a piecewise smooth simple curve C in the open connected domain D of f . The complex
*integral of f along C will heavily use log f . In order to represent log f as the composition
of branches of log and f along the whole curve C, we will use a “method of localization”
from Sarason [19]. In this section, we will consider a simple case assuming that the length
of the interval [a, b] is sufficiently small so that all the values of f(z(t)) for a ≤ t ≤ b fall
into an open half plane bounded by a line through the origin. Under this condition, the
restriction of log f to C can be treated as a composition of the branches of log and the
restriction of f to C. Moreover, we can select one of the multi-values of log f(z(a)) and
consider a branch L of log so that L(f(z(a))) equals to this preassigned value. Thus

log f(z(t)) = L(f(z(t))) + 2πni, a ≤ t ≤ b, n = 0,±1,±2, . . . .
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Now, take a partition P = {z0, . . . , zm} on C and let ζk be a point on C between zk−1

and zk. Denote ∆zk = zk − zk−1. Consider the integral product
∏m
k=1 e

∆zk log f(ζk). It can
be evaluated as

m∏
k=1

e∆zk log f(ζk) = e
∑m
k=1(L(f(ζk))+2πni)∆zk

= e2πn(z(b)−z(a))ie
∑m
k=1 L(f(ζk))∆zk , n = 0,±1,±2, . . . ,

showing that
∏m
k=1 e

∆zk log f(ζk) has more than one value. Let

P0(f,P) = e
∑m
k=1 L(f(ζk))∆zk (7)

and
Pn(f,P) = e2πn(z(b)−z(a))iP0(f,P), n = 0,±1,±2, . . . . (8)

The limit of P0(f,P) as max{|∆z1|, . . . , |∆zm|} → 0 independently on selection of the
points ζk will be called a branch value of the complex *integral of f along C and it will
be denoted by I∗0 (f, C). Then the complex *integral of f along C can be defined as the
multiple values

I∗n(f, C) = e2πn(z(b)−z(a))iI∗0 (f, C), n = 0,±1,±2, . . . , (9)

which will be denoted by ∫
C
f(z)dz.

Note that if z(b) − z(a) is an integer, then all the values of
∫
C f(z)dz equal to I∗0 (f, C),

i.e., I∗(f, C) become single-valued. If z(b) − z(a) is a rational number in the form p/q,
where p and q are irreducible integers with q > 0, then

∫
C f(z)dz has q distinct values

e2πnpi/qI∗0 (f, C), n = 0, 1, . . . , q − 1.

Generally,
∫
C f(z)dz has countably many distinct values. In case if z(b) − z(a) is a real

number, we also have |I∗n(f, C)| = |I∗0 (f, C)| for all n. Similarly, if z(b) − z(a) is an
imaginary number, Arg I∗n(f, C) = Arg I∗0 (f, C) for all n.

The existence of the complex *integral of f can be reduced to the existence of line
*integrals in the following way. Let R(z) = |f(z)| and Θ(z) = ImL(f(z)) for z ∈ C.
Denote z = x+ iy and ∆zk = ∆xk + i∆yk. Then from (7),

P0(f,P) = e
∑m
k=1 L(f(ζk))∆zk

= e
∑m
k=1(lnR(ζk)+iΘ(ζk))(∆xk+i∆yk)

= e
∑m
k=1(lnR(ζk)∆xk−Θ(ζk)∆yk)+i

∑m
k=1(Θ(ζk)∆xk+lnR(ζk)∆yk).

If the limits of the sums in the last expression exist, then they are line integrals, producing

I∗0 (f, C) = e
∫
C(lnR(z) dx−Θ(z) dy)+i

∫
C(Θ(z) dx+lnR(z) dy). (10)

Additionally,

e2πn(z(b)−z(a))i = e2πn(−(y(b)−y(a))+i(x(b)−x(a))) = e−
∫
C 2πn dy+i

∫
C 2πn dx.

By (9)–(10), this implies

I∗n(f, C) = e
∫
C(lnR(z) dx−(Θ(z)+2πn) dy)+i

∫
C((Θ(z)+2πn) dx+lnR(z) dy) (11)

for n = 0,±1,±2, . . . or, in the multi-valued form,∫
C
f(z)dz = e

∫
C log f(z) dz,
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in which

I∗0 (f, C) = e
∫
C L(f(z)) dz and I∗n(f, C) = e2πn(z(b)−z(a))iI∗0 (f, C). (12)

To write (11) in terms of line *integrals, note that by (6)

|I∗n(f, C)| = e
∫
C(lnR(z) dx−(Θ(z)+2πn) dy) =

∫
C
R(z)dx

(
e−Θ(z)−2πn

)dy
and

arg I∗n(f, C) =

∫
C

((Θ(z) + 2πn) dx+ lnR(z) dy) + 2πm

= ln

∫
C

(
eΘ(z)+2πn

)dx
R(z)dy + 2πm.

Hence,

I∗n(f, C) =

∫
C
R(z)dx

(
e−Θ(z)−2πn

)dy
ei ln

∫
C(eΘ(z)+2πn)

dx
R(z)dy (13)

for n = 0,±1,±2, . . . . Thus, the conditions imposed at the beginning of this section,
namely (a) f is nowhere-vanishing and continuous on the open connected set D, (b) C is
piecewise smooth and simple curve in D, and (c) {f(z(t)) : a ≤ t ≤ b} falls into an open
half plane bounded by a line through the origin and guarantee the existence of

∫
C f(z)dz

as multiple values.
The following proposition will be used for justifying the correctness of the definition of

the complex *integral for arbitrary interval [a, b] in the next section.

Proposition 3.1 (1st multiplicative property, local). Let f be a nowhere-vanishing con-
tinuous function, defined on an open connected set D, and let C = {z(t) = x(t) + iy(t) :
a ≤ t ≤ b} be a piecewise smooth simple curve in D with the property that the set
{f(z(t)) : a ≤ t ≤ b} falls into an open half plane bounded by a line through ori-
gin. Take any a < c < b and let C1 = {z(t) = x(t) + iy(t) : a ≤ t ≤ c} and
C2 = {z(t) = x(t) + iy(t) : c ≤ t ≤ b}. Then∫

C
f(z)dz =

∫
C1

f(z)dz
∫
C2

f(z)dz,

where the equality is understood in the sense that

I∗n(f, C) = I∗n(f, C1)I∗n(f, C2) for all n = 0,±1,±2, . . .

with the same branch L of log used for I0(f, C), I0(f, C1) and I0(f, C2).

Proof. This follows immediately from (11) and the respective property of line integrals. �

Next, we consider an *analog of the fundamental theorem of complex calculus in a local
form.

Proposition 3.2 (Fundamental theorem of complex *calculus, local). Let f be a nowhere-
vanishing *holomorphic function, defined on an open connected set D, and let C = {z(t) =
x(t) + iy(t) : a ≤ t ≤ b} be a piecewise smooth simple curve in D with the property that
the set {f(z(t)) : a ≤ t ≤ b} falls into an open half plane bounded by a line through origin.
Then ∫

C
f∗(z)dz = {e2πn(z(b)−z(a))if(z(b))/f(z(a)) : n = 0,±1,±2, . . .}.
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Proof. From (13),∫
C
f∗(z)dz =

∫
C
|f∗(z)|dx

(
e− arg f∗(z)

)dy
e
i ln
∫
C

(
earg f∗(z)

)dx
|f∗(z)|dy

.

Using (5),

I∗n(f∗, C) =

∫
C
R∗x(z)dx

(
e[lnR]′y(z)−2πn

)dy
e
i ln
∫
C

(
eΘ
′
x(z)+2πn

)dx
[eΘ]

∗
y
(z)dy

=

∫
C
R∗x(z)dxR∗y(z)

dy e
i ln
∫
C [eΘ]

∗
x
(z)dx[eΘ]

∗
y
(z)dy

×
∫
C

(
e−2πn

)dy
ei ln

∫
C(e2πn)dx .

By Theorem 2.1,∫
C
R∗x(z)dxR∗y(z)

dy e
i ln
∫
C [eΘ]

∗
x
(z)dx[eΘ]

∗
y
(z)dy

=
R(z(b))eiΘ(z(b))

R(z(a))eiΘ(z(a))
=
f(z(b))

f(z(a))
,

and, by Example 2.4,∫
C

(
e−2πn

)dy
ei ln

∫
C(e2πn)dx = e2πn(−(y(b)+y(a))+i(x(b)−x(a))) = e2πn(z(b)−z(a))i.

Thus, the proposition is proved. �

4. Complex multiplicative integration (general)

The following lemma is crucial for a general definition of complex *integral.

Lemma 4.1. Let f be a continuous nowhere-vanishing function, defined on an open con-
nected set D, and let C = {z(t) = x(t) + iy(t) : a ≤ t ≤ b} be a piecewise smooth curve
in D. Then there exists a partition P = {t0, t1, . . . , tm} of [a, b] such that each of the sets
{f(z(t)) : tk−1 ≤ t ≤ tk}, k = 1, . . . ,m, falls into an open half plane bounded by a line
through origin.

Proof. To every t ∈ [a, b], consider θt = Arg f(z(t)) and the line Lt formed by the rays
θ = θt + π/2 and θ = θt − π/2. Since f is continuous and nowhere-vanishing, there is an
interval (t− εt, t+ εt) ⊆ [a, b] such that the set

{f(z(s)) : t− εt < s < t+ εt}
falls into one of the open half planes bounded by Lt if t ∈ (a, b). In the case of t = a,
such an interval can be selected in the form [a, a+ εa) and in the case t = b as (b− εb, b].
The collection of all such intervals forms an open cover of the compact subspace [a, b] of
R. Therefore, there is a finite number of them covering [a, b]. Writing the end points of
these intervals in an increasing order a = t0 < t1 < · · · < tm = b produces a required
partition. �

This lemma determines a way for definition of
∫
C f(z)dz in the general case. Assume

again that f is a continuous nowhere-vanishing complex-valued function of complex vari-
able and z(t) = x(t) + iy(t), a ≤ t ≤ b, is a complex-valued function of real variable,
tracing a piecewise smooth simple curve C in the open connected domain D of f . Let P =
{t0, t1, . . . , tm} be a partition of [a, b] from Lemma 4.1 and let Ck = {z(t) : tk−1 ≤ t ≤ tk}.
Choose any branch L1 of log and consider

∫
C1
f(z)dz as defined in the previous section.

Then, select a branch L2 of log with L2(f(z(t1))) = L1(f(z(t1))) and consider
∫
C2
f(z)dz.

Next, select a branch L3 of log with L3(f(z(t2))) = L2(f(z(t2))) and consider
∫
C3
f(z)dz,
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etc. In this process, the selection of the starting branch L1 is free, but the other branches
L2, . . . ,Lm are selected accordingly to construct a continuous single-valued function g on
[a, b] so that the value of g at fixed t ∈ [a, b] equals to one of the branch values of log f(z(t)).
Now, following to (12), the complex *integral of f over C, that will again be denoted by∫
C f(z)dz, can be defined as the multiple values

I∗n(f, C) =
m∏
k=1

e
2πn(z(tk)−z(tk−1))i+

∫
Ck
Lk(f(z)) dz

, n = 0,±1,±2, . . . ,

or

I∗n(f, C) = e2πn(z(b)−z(a))ie
∑m
k=1

∫
Ck
Lk(f(z)) dz

, n = 0,±1,±2, . . . . (14)

This definition is independent on the selection of the partition P of [a, b]. Indeed, if
Q is another partition, being a refinement of the previous one, then the piece Ck from
z(tk−1) to z(tk) of the curve C became departed into smaller non-overlapping pieces Cki,
i = 1, . . . , lk, each over the partition intervals of Q falling into [tk−1, tk]. Since the range
of f over Ck falls into an open half plane bounded by a line through origin, the range of
f over each Cki falls into the same half plane. Therefore, by Proposition 3.1,

I∗n(f, Ck) =

lk∏
i=1

I∗n(f, Cki)

with the same branch Lk of log used for all I0(f, Ck) and I0(f, Ck1), . . . , I0(f, Cklk). Then

I∗n(f, Ck) =
m∏
k=1

I∗n(f, Ck)) =
m∏
k=1

lk∏
i=1

I∗n(f, Cki),

i.e., both P and Q produce the same multiple values. In case if P and Q are two arbitrary
partitions of [a, b] from Lemma 4.1, we can compare the integral for selections P and Q
with the same for their refinement P ∪ Q and deduce that I∗n(f, C) is independent on
selection of P and Q. Actually, the described method can be seen as a kind of gluing
method, where we match the values for the partitions P and Q.

5. Properties of Complex Multiplicative Integrals

Theorem 5.1 (1st multiplicative property). Let f be a nowhere-vanishing continuous
function, defined on an open connected set D, and let C = {z(t) = x(t)+ iy(t) : a ≤ t ≤ b}
be a piecewise smooth simple curve in D. Take any a < c < b and let C1 = {z(t) =
x(t) + iy(t) : a ≤ t ≤ c} and C2 = {z(t) = x(t) + iy(t) : c ≤ t ≤ b}. Then∫

C
f(z)dz =

∫
C1

f(z)dz
∫
C2

f(z)dz

in the sense that

I∗n(f, C) = I∗n(f, C1)I∗n(f, C2) for all n = 0,±1,±2, . . . ,

where L01(f(z(a))) = L11(f(z(a))) and L1m1(f(z(c))) = L21(f(z(c))) if L01, . . . ,L0m,
L11, . . . ,L1m1 and L21, . . . ,L2m2 are the sequences of branches of log used in definition of
I∗0 (f, C), I∗0 (f, C1) and I∗0 (f, C2), respectively.

Proof. This follows from the the way of definition of complex *integral for general interval
[a, b] and its independence on the selection of partition P from Lemma 4.1. �
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Theorem 5.2 (2nd multiplicative property). Let f and g be nowhere-vanishing continuous
functions, defined on an open connected set D, and let C = {z(t) = x(t)+iy(t) : a ≤ t ≤ b}
be a piecewise smooth simple curve in D. Then∫

C
(f(z)g(z))dz =

∫
C
f(z)dz

∫
C
g(z)dz

as a set equality, where the product of the sets A and B is treated as AB = {ab : a ∈
A, b ∈ B}.

Proof. This follows from (14) and the set equality log(z1z2) = log z1 + log z2, where the
sum of the sets A and B is treated as A+B = {a+ b : a ∈ A, b ∈ B}. �

Theorem 5.3 (Division property). Let f and g be nowhere-vanishing continuous func-
tions, defined on an open connected set D, and let C = {z(t) = x(t) + iy(t) : a ≤ t ≤ b}
be a piecewise smooth simple curve in D. Then∫

C
(f(z)/g(z))dz =

∫
C
f(z)dz

/∫
C
g(z)dz

as a set equality, where the ratio of the sets A and B is treated as A/B = {a/b : a ∈
A, b ∈ B}.

Proof. This follows from (14) and the set equality log(z1/z2) = log z1 − log z2, where the
difference of the sets A and B is treated as A−B = {a− b : a ∈ A, b ∈ B}. �

Theorem 5.4 (Reversing the curve). Let f be a nowhere-vanishing continuous functions,
defined on an open connected set D, let C = {z(t) = x(t)+iy(t) : a ≤ t ≤ b} be a piecewise
smooth simple curve in D and let −C be the curve C with opposite orientation. Then∫

C
f(z)dz =

(∫
−C

f(z)dz
)−1

in the sense that I∗n(f, C) = I∗n(f,−C)−1 for all n = 0,±1,±2, . . . , where L11(f(z(a))) =
L2m2(f(z(a))) or L1m1(f(z(b))) = L21(f(z(b))) if L11, . . . ,L1m1 and L21, . . . ,L2m2 are the
sequences of branches of log used in definition of I∗0 (f, C) and I∗0 (f,−C), respectively.

Proof. This follows from (14). �

Theorem 5.5 (Raising to a natural power). Let f be a nowhere-vanishing continuous
functions, defined on an open connected set D and let C = {z(t) = x(t)+ iy(t) : a ≤ t ≤ b}
be a piecewise smooth simple curve in D. Then for n = 0, 1, 2, . . . ,(∫

C
f(z)dz

)n
⊆
∫
C

(f(z)n)dz.

Proof. This follows from multiple application of Theorem 5.2 and the fact that An ⊆
AA · · ·A (n times), where An = {an : a ∈ A} and AA · · ·A(n times) = {a1a2 · · · an : ai ∈
A, i = 1, . . . , n}. �

Theorem 5.6 (Fundamental theorem of calculus for complex *integrals). Let f be a
nowhere-vanishing *holomorphic function, defined on an open connected set D, and let
C = {z(t) = x(t) + iy(t) : a ≤ t ≤ b} be a piecewise smooth simple curve in D. Then∫

C
f∗(z)dz = {e2πn(z(b)−z(a))if(z(b))/f(z(a)), n = 0,±1,±2, . . .}. (15)



A.E.BASHIROV, S.NOROZPOUR: ON COMPLEX MULTIPLICATIVE INTEGRATION 91

Proof. Let P = {t0, t1, . . . , tm} be a partition from Lemma 4.1 and let Ck = {z(t) : tk−1 ≤
t ≤ tk}. Then ∫

C
f(z)dz =

∫
C1

f(z)dz · · ·
∫
Cm

f(z)dz.

Hence, by Proposition 3.2,

I∗n(f, C) = e2πn(z(t1)−z(t0))i+···+2πn(z(tm)−z(tm−1))i f(z(t1)) · · · f(z(tm))

f(z(t0)) · · · f(z(tm−1))

= e2πn(z(b)−z(a))i f(z(b))

f(z(a))
.

This proves the theorem. �

This theorem demonstrates that
∫
C f
∗(z)dz is independent on the shape of the piecewise

smooth curve C, but depends on its initial point z(a) = x(a) + iy(a) and end point
z(b) = x(b) + iy(b) on the curve C. Therefore, this integral can be denoted by∫ z(b)

z(a)
f∗(z)dz.

Corollary 5.1. Let f be a nowhere-vanishing *holomorphic function, defined on an open
connected set D, and let C = {z(t) = x(t)+ iy(t) : a ≤ t ≤ b} be a piecewise smooth simple
closed curve in D. Then ∮

C
f∗(z)dz = 1. (16)

Proof. Simply, write z(a) = z(b) in (15). �

Note that in (16) all the values of
∮
C f
∗(z)dz are equal to 1, i.e.,

∮
C f
∗(z)dz becomes

single-valued.

Example 5.1. By Example 2.1, the function f(z) = ecz, z ∈ C, where c = const ∈ C, has
the *derivative f∗(z) = ec. Respectively,∫

C
(ec)dz = e2πn(z(b)−z(a))iec(z(b)−z(a)) = e(z(b)−z(a))(c+2πni),

where C = {z(t) : a ≤ t ≤ b} is a piecewise smooth curve.

Example 5.2. By Example 2.2, the function f(z) = ece
z
, z ∈ C, where c = const ∈ C,

has the *derivative f∗(z) = f(z). Respectively,∫
C

(
ece

z)dz
= e2πn(z(b)−z(a))iec(e

z(b)−ez(a)),

where again C = {z(t) : a ≤ t ≤ b} is a piecewise smooth curve.

Example 5.3. The analog of the integral∮
|z|=1

dz

z
= 2πi

in complex *calculus is ∮
|z|=1

(
e1/z

)dz
.

Assuming that the orientation on the unit circle |z| = 1 is positive, we informally have∮
|z|=1

(
e1/z

)dz
= e

∮
|z|=1 log e1/zdz

= e
∮
|z|=1

(
1
z

+2πni
)
dz

= e2πn(z(b)−z(a))ie2πi = 1.
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Formally, we use Example 2.3 and calculate the same:∮
|z|=1

(
e1/z

)dz
= e2πn(z(b)−z(a))i z(b)

z(a)
=

eπi

e−πi
= e2πi = 1.

Thus, this example also fits to Corollary 5.1. The main idea of this is that e0 = e2πi = 1
though 2πi 6= 0. In other words, the discontinuity of the branches of log on (−∞, 0], that
creates the Cauchy formula

∫
|z|=1

dz
z = 2πi, appears in a smooth form in complex *calculus

because now log z is replaced by elog z = z, where the discontinuity of log is compensated
by periodicity of the exponential function.

6. Conclusion

In continuation of [6], evidently, the extension of multiplicative calculus to complex
valued functions of complex variable eliminates the restriction to positive valued functions
caused by multiplicative calculus. The complex multiplicative integral was defined firstly
using the ”method of localization” in the sense of [19] so that the values of the function are
restricted to one half-plane bounded by a line through the origin, so we can decompose the
restriction of log f on C into the branches of the complex logarithm and the restriction of f
to C. The general definition of the complex multiplicative integral removes the restriction
by the so-called gluing method by matching the values of the functions at the branch-cuts.
Finally, based on this definition, the properties of complex multiplicative integrals are
given and illustrated by application to certain standard examples.
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[16] Özyapıcı,A., Riza,M., Bilgehan,B., and Bashirov,A.E., (2014), On multiplicative and Volterra mini-
mization method, Numerical Algorithms, 67(3), 623–636.
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