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DERIVATIVE FREE MULTILEVEL OPTIMIZATION

B. KARASÖZEN1, §

Abstract. Optimization problems with different levels arise by discretization of ordi-
nary and partial differential equations. We present a trust-region based derivative-free
multilevel optimization algorithm. The performance of the algorithm is shown on a shape
optimization problem and global convergence to the first order critical point is proved.

Keywords: Derivative-free optimization; multilevel optimization; shape optimization;
trust-region methods.

AMS Subject Classification: 90C30, 65K05, 90C26, 90C06, 90C56 ; 65D05.

1. Introduction

Discretization of infinite dimensional optimization problems, such as optimal control
problems with partial differential equations(PDEs) lead to large-scale finite dimensional
optimization problems. This kind of problems can be solved for a dicretization level by
the existing large scale numerical optimization packages. But this approach does not
exploit the structure of the underlying infinite dimensional optimization problem which
can be dicretized at different levels. There exist several methods, which make use of the
discretization of infinite dimensional problems at different levels. The simplest approach is
to use coarse grids in order to compute approximate solutions for the starting points on a
finer grid. Efficient optimizations methods were developed recently within the framework
of multi-grid methods [2, 11, 13]. In [11], a recursive line-search based truncated Newton
method was developed for efficient solution of large-scale convex optimization problems
arising from the discretization of partial differential equations (PDEs). This approach is
then extended to nonconvex problems using the trust-region approach in a series of papers
[7, 8, 9, 17], known as recursive multilevel (multiscale) trust-region (RMTR) methods.
The recursive multilevel optimization methods use a model of the objective function on
the coarse grid at the lower level for optimization on the fine grid at the higher level .

For continuously differentiable functions usually gradient based methods are used the
find the local minimum of the objective function. However, for many practical problems
the derivatives of the objective function are either not available or costly to evaluate.
Derivative free optimization methods build models of function based on sample func-
tion value or directly exploit a sample set of function values without building an explicit
model [6, 10]. Among them are the well known trust-region based methods by modeling
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the objective function by multivariate interpolation in combination with the trust-region
techniques [3, 4, 5].

In this paper we have developed a trust-region based derivative-free recursive multi-level
optimization (DFRMTR) method for solving the finite-dimensional optimization problem
at different levels. In the next section, the DFRMTR algorithm is described. In Section 3
we show the implementation of our algorithm for a shape optimization problem and the
convergence analysis of the method is given in Section 4.

2. Derivative free multilevel optimization

Consider the problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a smooth function and bounded below. Trust-region methods
compute a sequence of iterates xk, starting from an initial guess x0, converging to the
solution of the problem (1). At each iteration k, a linear or quadratic model Qk of f is
constructed in the neighborhood of the current iterate xk, Bk = {xk+s : s ∈ Rn and ||s|| ≤
∆k}, with the trust-region radius ∆k, here || · || represents the Euclidean norm. At the
kth step, the model function within the trust-region Bk, is given as

Qk (xk + s) = Qk (xk)+ < s, gk > +
1

2
< s,Hks > (2)

for some g ∈ Rn and some symmetric n × n matrix H, where < ·, · > denotes the inner
product . The vector g and the matrix H do not necessarily correspond to the first and
second derivatives of the objective function f . They are determined by requiring that the
model (2) interpolates the function f at a set Y = {yi} of points containing the current
iterate xk, f(yi) = mk(yi) for all yi ∈ Y. Here, Y denotes the set of interpolation points,
which is a subset of the set of points at which the values of f is known, including the cur-
rent iterate. Building the full quadratic model in (2) requires the determination of f(xk),
the components of the vector gk and the entries of the matrix Hk; so that the cardinality
of Y must be equal to p = 1

2(n+ 1)(n+ 2).

At each iteration step k the trust-region subproblem defining sk

min
s∈B(0;∆k)

Qk(xk + s), (3)

has to be solved. where B(0;∆k) is the trust-region of radius ∆k centered at 0 and
s = x− xk.

The RMTR methods developed by [7, 9, 17], consider a collection of twice-continuously
differentiable functions fi : Rni → R, i = 1, . . . , r with ni > ni−1 and fr(x) = f(x) .
Because fi represents a finer discretization of the infinite dimensional objective function,
it has more variables than fi−1 and therefore it is more costly to minimize fi than fi−1

The main idea of the multilevel optimization is then to use fr−1 to construct a cheaper
model hr in the neighborhood of the current iterate than the quadratic model for fr in
order to define the step in the trust-region algorithm. If more than one level is available
(r > 1), this can be done recursively. At the level i = 0, always the quadratic model is
used. The linear and quadratic models in [7, 9, 17] use the gradient and the Hessian of
f(x) and the relation between this models is by the restriction and prolongation between
operators between a fine and a coarse grid as in multigrid algorithms.
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We construct the lower model hi based on Qi−1 which results from the interpolation of
f(x) at the level i−1, similar to the recursive multilevel optimization methods in [7, 9, 17].
The lower level model is defined as

hi,k(xi,k) = Qi−1(xi,k) + (∇Qi,k(xmin)−∇Qi−1,k(xmin))
T (xi,k − xmin), (4)

where xmin is the minimum of value of f(x) at the (i − 1)th level and Qi−1 is a fixed
function for every iteration k at ith level. In the derivative-free case, the prolongation and
restriction operators can not be used, because the gradient and Hessian of the function f(x)
are not available. Instead of this, we use either the minimum point in the interpolation
set of (i − 1)th level to construct the new interpolation set at the level i, or we take the
interpolation set from the previous level i − 1. In the following, i (1 ≤ i ≤ r) denotes
the level index and the k, the the current iteration at the level i. The lower level model
corresponds to the modification of the model Qi−1 at i’th level. The lower level model can
not always be useful since ∇Qi−1,k can be close to zero with respect to ∇Qi,k. In this case
the current iterate appears to be first-order critical for (i − 1)th level while it is not for
i’th level. Therefore the lower model is useful only if ∇Qi−1,k is large enough compared to
∇Qi,k and ∇Qi,k is greater than a constant ϵQ, which is given by the following condition
(see also [7, 9, 17]):

∥∇Qi,k∥ ≥ κQ∥∇Qi−1,k∥ and ∥∇Qi,k∥ ≥ ϵQ, where κQ, ϵQ ∈ (0, 1). (5)

When the conditions above are satisfied, for kth iteration at the ith level the lower level
model hi,k is used and the trust-region subproblem becomes

min
∥si,k∥≤∆i,k

hi,k(xmin + si,k) (6)

where si,k = xi,k − xmin.

Otherwise, the model (2) is used and trust-region subproblem at the Taylor step becomes

min
∥si,k∥≤∆i,k

Qi,k(xi,k + si,k) +∇Qi,k(xi,k + si,k)
T si,k + sTi,k∇2Qi,k(xi,k + si,k)si,k. (7)

We can now define the derivative-free multilevel optimization (DFRMTR) algorithm.

Step 0: Initialization

Given x0 ∈ Rn, the initial guess, ∆0, the initial trust-region radius, construct a well-
poised interpolation set Y around x0 ∈ Y ⊂ Rn within the initial trust-region. and build
the quadratic interpolation model Qi on the interpolation set Y .

Step 1: Model Choice

If i = 1 or if the conditions: ∥∇Qi∥ ≥ κQ ∥∇Qi−1∥ and ∥∇Qi∥ > ϵQ fail, go to Step 3
(Taylor step), otherwise go to Step 2 (lower level model).

Step 2: Lower level model computation

Solve the trust-region subproblem min
∥s∥<∆i,k

hi,k(xmin + s).

Step 3: Taylor step computation
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Solve the model problem

min
∥s∥≤∆i,k

Qi(x) +∇QT
i,k(x)s+

1

2
sT∇2Qi,k(x)s.

Step 4: Updating the interpolation set

Compute the ratio

ρi,k = (fi(xk)− fi(x̂k))/δi,k, with x̂k = x̂i,k = xi,k + si,k,

• δi,k = Qi(xk)−Qi(x̂k) (if the model (2) is used),
• δi,k = hi(xk)− hi(x̂k) (if the lower level model is used).

• Successful step: If ρi,k ≥ η0, include x̂k in Y by dropping one of the existing
interpolation points.

• Unsuccessful step: If ρi,k < η0 and Y is inadequate in x ∈ Bk, improve the geometry
of the interpolation set.

Step 5: Updating the current iterate

Determine x̄k with the best objective function value f(x̄k) = min
xj∈Y,xj ̸=xk

f(xj). If the im-

provement is sufficient ρ̄i,k = (fi(xk)−fi(x̄k))δi,k ≥ η0, set xk+1 = x̄k, otherwise xk+1 = xk
where xk = xi,k.

Step 6: Trust-region radius update

• if ρi,k ≥ η1, increase the trust-region radius, ∆i,k+1 ∈ [∆i,k, γ2∆i,k]
• if ρi,k < η0 and the cardinality of Y ∩Bk was less than n+1 when x̂k was computed,
reduce the trust-region radius, ∆i,k+1 ∈ [γ0∆i,k, γ1∆i,k+1]

• otherwise set ∆i,k+1 = ∆i,k.

Step 7: Termination

The algorithm is terminated when one of the following three criteria are satisfied:

• The radius of trust-region is small enough, such that. ∆ ≤ ϵ∆
• Final interpolation point set has the ‘ good geometry ’ property.
• Maximum function evaluations or number of maximum iterations are reached.

Increment k by one and go to Step 0.

In the algorithm, some constants and parameters are used: ϵ∆ denotes the minimum
value for the trust-region radius, 0 < η0 < η1 < 1 are parameters to improve quality
of interpolation set, 0 < γ0 ≤ γ1 < γ2 ≤ 1 are constant which monitor the trust-region
radius, κQ ∈ (0, 1) is a constant which is used for the model choice, ϵQ ∈ (0, 1) is the
tolerance for the gradient norm and ϵfun is the tolerance for the function reduction.

There exist various implementations derivative free methods. The oldest one is the
DFO (Derivative Free Optimization) [3, 4]. The package CONDOR (Constrained, Non-
linear, Direct, parallel Optimization using trust-region method for high-computing load
function) [1] is based on the UOBYQA algorithm [14]. The DFO uses Newton polynomials
while CONDOR uses Lagrange polynomials as the basis for the interpolation polynomial.
The linear or quadratic models are minimized in DFO package by applying a standard
optimization procedure, e.g., sequential quadratic programming (SQP), using the IPOPT
package. CONDOR uses the Moré and Sorenson algorithm [12] for the computation of
the trust-region radius and the minimization of the quadratic model. The trust-region
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subproblem for the lower level problem (6) is solved by CONDOR using the Moré and
Sorensen algorithm [12]. For solution of the trust-region subproblem (7) withe DFO, we
use either, trust with the full eigenvalue decomposition, based on the secular equation
1
∆ − 1

∥s∥ = 0 [16] or lmlib or the Levenberg-Marquardt algorithm with the Moré and

Sorensen technique. Updating and improving the interpolation set are explained in detail
in [3, 4] and they are implemented in different ways in the DFO and CONDOR. The
geometry of the interpolation set has to maintained at every iteration. There must be at
least n+ 1 points are in the trust-region. If there are less than n+ 1 points, the farthest
point from the current trust-region center by x̃ is replaced with a point on the boundary
of the current trust-region, so that the interpolation set is well poised [3, 4].

3. Numerical Example

We consider a shape optimization problem over a rectangular region with a rectangular
hole Ω(u) parameterized with the coordinates u = (P9, P12), as in Figure 1.

min
1

2

∫
Ω(u)

(y(x1, x2)− yd)
2 dx

such that
∆y = 1 in Ω(u), y = 0 on ∂Ω(u).

Here, y(x1, x2) is a state variable, yd is the desired state, and u is the control variable.
Data yd is designed in such a way, that y(u∗) is the global minimum for the optimal control
u∗.

−1  P8 1   P4
P3

−0.6

P6

0.6 

P1 P5 P2

P7

P9 P10

P11 P12

Figure 1. Shape optimization problem

We have used the parameters as in the MATLAB version of the DFO algorithm [15]:

ϵtrust = 0.01, ϵdet = 1e− 12,∆0 = 0.2, η0 = 0.45, η1 = 0.75,

γ1 = 0.3, γ2 = 1, ϵdist = 0.001, ϵfun = 1e− 8, κQ = 0.01, ϵQ = 0.001.

In CONDOR [1] only the parameters ρstart = 0.2, the initial distance between sample
points, and ρend = 0.001 stopping criteria for the distance of the points, can be specified
by the user and other parameters are fixed.

The initial trust-region radius was taken as ∆0 = 0.2 and ϵfun = 1.0e− 8. In all compu-

tations, we use u0 = [−0.5, 0.5, 0.5,−0.5]T as starting value for the control variable and
ū denotes the optimal control computed at the point (P9, P12). The exact value of the
optimal control is not known.

We give first the numerical results in Table 1 and 2, for DFO and CONDOR without
using the DFRMTR. The number of iterations were not available in CONDOR. From



B. KARASÖZEN: DERIVATIVE FREE MULTILEVEL OPTIMIZATION 51

Tables 1 and 2, we see that CONDOR requires smaller number of function evaluations
and it gives more accurate results for the minimization of the cost function than the DFO.

Table 1. DFO without multilevel derivative-free optimization

level # iterations # func. eval. func. value ū
1 32 103 5.0677e-008 −0.7108, 0.2386,−0.1397,−0.2385
2 35 91 1.1911e-010 −0.7501, 0.2499,−0.2499,−0.2499
3 39 82 9.4293e-009 −0.7504, 0.2498,−0.2491,−0.2495
4 33 84 1.0900e-008 −0.7501, 0.2495,−0.2485,−0.2499
5 35 75 5.0694e-011 −0.7500, 0.2500,−0.2501,−0.2500

Table 2. CONDOR without multilevel derivative-free optimization

level # func. eval. # func. value ū
1 131 3.0482e-014 −0.7158, 0.2275,−0.0894,−0.2275
2 82 3.2440e-014 −0.7500, 0.2500,−0.2500,−0.2500
3 60 1.0045e-012 −0.7500, 0.2500,−0.2500,−0.2500
4 52 1.6304e-011 −0.7500, 0.2500,−0.2500,−0.2500
5 61 2.8944e-012 −0.7500, 0.2500,−0.2500,−0.2500

In Tables 3 and 4, the numerical results obtained with the DFRMTR algorithm are
shown. The interpolation set of Qi is constructed by using the minimum point of the
(i− 1)th level. The trust-region subproblem is solved by lmlib or trust routines.

Table 3. DFRMTR with lmlib

level # iterations # func. eval. # func. value ū
1 32 103 5.0677e-08 −0.7108, 0.2386,−0.1397,−0.2385
2 17 52 2.1545e-07 −0.7492, 0.2515,−0.2617,−0.2525
3 17 56 1.3604e-09 −0.7501, 0.2499,−0.2503,−0.2499
4 14 51 1.4646e-09 −0.7501, 0.2499,−0.2503,−0.2499
5 14 51 1.4966e-09 −0.7501, 0.2499,−0.2503,−0.2499

Table 4. DFRMTR with trust

level # iterations # func. eval. # func. value ū

1 50 136 8.6367e-10 −0.7152, 0.2180,−0.0380,−0.2181
2 34 103 4.2532e-10 −0.7499, 0.2501,−0.2502,−0.2500
3 14 49 5.5573e-10 −0.7499, 0.2501,−0.2502,−0.2500
4 14 49 6.0052e-10 −0.7499, 0.2501,−0.2502,−0.2500
5 14 49 6.1392e-10 −0.7499, 0.2501,−0.2502,−0.2500
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In Tables 4 and 5, the numerical results are given by constructing the initial interpo-
lation set of Qi by using last interpolation set of previous (i − 1)th level with lmlib and
trust routines.

Table 5. DFRMTR with lmlib

level # iterations # func. eval. func. value ū
1 32 103 5.0677e-08 −0.7108, 0.2386,−0.1397,−0.2385
2 21 49 4.9240e-09 −0.7493, 0.2500,−0.2492,−0.2499
3 5 21 1.3604e-09 −0.7493, 0.2500,−0.2492,−0.2499
4 4 19 9.3654e-09 −0.7493, 0.2500,−0.2492,−0.2499
5 4 19 9.7371e-09 −0.7493, 0.2500,−0.2492,−0.2499

Table 6. DFRMTR with trust

level # iterations # func. eval. func. value ū
1 50 136 8.6367e-10 −0.7152, 0.2180,−0.0380,−0.2181
2 17 55 2.8223e-09 −0.7494, 0.2500,−0.2497,−0.2501
3 4 23 4.3601e-09 −0.7494, 0.2500,−0.2497,−0.2501
4 4 19 4.8409e-09 −0.7494, 0.2500,−0.2497,−0.2501
5 4 19 4.9758e-09 −0.7494, 0.2500,−0.2497,−0.2501

We also obtained numerical results using f(x) instead of the model function Q(x). At
the coarsest i = 1, the quadratic Taylor model (2) is solved with DFO. At all other levels
levels, the algorithm chooses either the quadratic Taylor model (2) and or the lower level
model

hi(x) = fi−1(x) + (∇Qi(xi−1)−∇Qi(xi−1))
T (x− xi)

is solved, where xi is the minimum point obtained from first level and Qi is the last model
function of level i.

The results are given in the Tables 7-10. In Table 7 and 8, the interpolation set of Qi

is constructed by using the minimum point of the (i− 1)th level.

Table 7. DFRMTR with lmlib using the function f(x)

level # iterations # func. eval. func. value ū
1 32 103 5.0677e-08 −0.7108, 0.2386,−0.1397,−0.2385
2 17 52 2.1545e-07 −0.7492, 0.2515,−0.2617,−0.2525
3 17 56 1.3604e-09 −0.7501, 0.2499,−0.2503,−0.2499
4 14 51 1.4646e-09 −0.7501, 0.2499,−0.2503,−0.2499
5 14 51 1.4966e-09 −0.7501, 0.2499,−0.2503,−0.2499

On coarse grids, trust : eigenvalue decomposition based on the secular equation requires
more iterations and function evaluations than lmlib: the Levenberg-Marquardt algorithm
with the More & Sorensen technique. On the finer grids, they produce almost the same
number of iterations and function evaluations. The choice between the lower level model
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Table 8. DFRMTR with trust using the function f(x)

level # iterations # func. eval. func. value ū
1 50 136 8.6367e-10 −0.7152, 0.2180,−0.0380,−0.2181
2 33 102 1.5754e-09 −0.7499, 0.2500,−0.2507,−0.2502
3 14 49 2.2922e-09 −0.7499, 0.2500,−0.2507,−0.2502
4 14 49 2.6092e-09 −0.7499, 0.2500,−0.2507,−0.2502
5 14 49 2.7059e-09 −0.7499, 0.2500,−0.2507,−0.2502

and Taylor model depends critically on parameters κ. Computations with limlib produced
the most accurate results (see Table 8). The numerical results are affected by the construc-
tion of the interpolation set. When the interpolation set at level i is constructed around
the minimum point of the level i − 1, more function evaluations are required than by
the construction of interpolation set using the last interpolation set of previous level (see
Tables 3, 4 and Tables 7,8). The computation time (number of iterations and functions
evaluations) increases when f(x) is used instead of Q.

4. Convergence of the recursive multilevel derivative free method

In the following we show that, the solutions obtained by the derivative free multilevel
algorithm in Section 2, converge to the first order critical points. The convergence analysis
is based on minimization of derivative free trust-region subproblem in [6] and [16]. We
consider the case that the interpolation set is constructed from the last iteration of previous
level i. When the conditions (5) are satisfied the following trust-region subproblem (6)
with the lower level model (4) will be solved We use the following assumptions for the
trust-region method as in [6, 16]:

• A.1: The objective function f is twice continuously differentiable and its Hessian
is uniformly bounded over Rn, so that which there exists a positive constant κ1
such that, for all xi,k ∈ Rn,

∥∥∇2f(xi,k)
∥∥ ≤ κ1. where κ1 ≥ 1 as in [16].

• A.2: The objective function f is bounded below .
• A.3: The Hessian of the chosen model is uniformly bounded, that is there exists a
constant κ2 > 0 such that 1 + ∥Hi,k∥ ≤ κ2.

In the following, we give some definitions, lemmas concerning the derivative free opti-
mization [3].

An interpolation set Y is called adequate in Bi,k(∆i,k) whenever

• the cardinality of Y is at least n+ 1 within the trust-region xj ∈ Bi,k(∆i,k) for all
xj ∈ Y ,

• and dist(xj − xc) < 2∆i,k holds, where xc denotes the center of the interpolation
set and ∆i,k is the trust-region radius at the level i and at kth iteration.

Theorem 4.1. Assuming that A.1 - A.3 hold, then the relation between the the objective
function and the model function (4) is given by

|fi(xi,k)− hi(xi,k)| ≤ 3κay max[∆2
i,k,∆

3
i,k]

for all xi,k ∈ Bi,k(∆i,k) and some constant κay > 0, where hi = hi,k.

Proof. As in the convergence analysis of the derivative free optimization [5], we can write

|fi−1(xi−1,k)−Qi−1(xi−1,k)| ≤ κ̆mdmax[∆2
i,k,∆

3
i,k] (8)
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∥∇fi−1(xi−1,k)−∇Qi−1(xi−1,k)∥ ≤ κ̆gdmax[∆i,k,∆
2
i,k] (9)

for some constants κ̆md, κ̆gd > 0. Then it follows

|fi(xi,k)−Qi(xi,k)| ≤ κmdmax
[
∆2

i,k,∆
3
i,k

]
(10)

for all xi,k ∈ Bi,k(∆i,k) and some constant κmd > 0.
If Taylor model is chosen with ∥∇Qi,k(xmin)∥ ≤ ∆i,k and |Qi,k −Qi−1,k| ≤ ∆2

i,k, we
obtain then

|fi(xi,k)− hi(xi,k)| = |fi(xi,k)−Qi−1(xi,k)− (∇Qi,k(xmin)−∇Qi−1(xmin)) si,k| . (11)

∥∇Qi,k(xmin)−∇Qi−1(xmin)∥ ≤ ∥∇Qi,k(xmin)∥+ ∥∇Qi−1(xmin)∥
≤ ∥∇Qi,k(xmin)∥+ 1

κQ
∥∇Qi,k(xmin)∥

≤ (1 + 1
κQ

) ∥∇Qi,k(xmin)∥
≤ κm ∥∇Qi,k(xmin)∥ ,

(12)

where the condition ∥∇Qi,k(x)∥ ≥ κQ ∥∇Qi−1(x)∥ is used and κm = 1 + 1
κQ

≥ 2.

Adding and subtracting Qi(xi,k) to (11), using the triangle inequality and Cauchy-Schwarz
inequality, we obtain with (10) and the Assumption A.1:

|fi(xi,k)− hi(xi,k)| ≤ |fi(xi,k) +Qi(xi,k)−Qi(xi,k)−Qi−1(xi,k)|
+ ∥(∇Qi,k(xmin)−∇Qi−1(xmin)) si,k∥
≤ |fi(xi,k)−Qi(xi,k)|+ |Qi(xi,k)−Qi−1(xi,k)|
+ ∥(∇Qi,k(xmin)−∇Qi−1(xmin))∥ ∥si,k∥
≤ κmdmax[∆2

i,k,∆
3
i,k] + κm ∥∇Qi,k(xmin)∥∆i,k + |Qi,k −Qi−1,k|

≤ κmdmax[∆2
i,k,∆

3
i,k] + κm∆2

i,k +∆2
i,k

≤ 3κay max[∆2
i,k,∆

3
i,k],

where κay := max[κmd, κm, 1] and ∥si,k∥ ≤ ∆i,k. �

Theorem 4.2. Assuming that A.1 - A.3 hold and the lower level model (4) is chosen, we
have

∥∇fi(xi,k)−∇hi(xi,k)∥ ≤ κmatmax[∆i,k,∆
2
i,k]

for some constant κmat and for all xi,k ∈ Bi,k(∆i,k).

Proof. Similar to (9) we obtain

∥∇fi(xi,k)−∇Qi,k(xi,k)∥ ≤ κgdmax
[
∆i,k,∆

2
i,k

]
(13)

where xi,k ∈ Bi,k(∆i,k) and κgd > 0 is a constant, and

∇hi,k = ∇Qi−1(xi,k) +∇Qi,k(xmin)−∇Qi−1(xmin)

Therefore,

∇fi,k −∇hi,k = ∇fi(xi,k)−∇Qi−1(xi,k)−∇Qi,k(xmin) +∇Qi−1(xmin). (14)

Adding and subtracting ∇Qi(xi,k) to (14):

∇fi(xi,k)−∇hi,k(xi,k) = ∇fi(xi,k)−∇Qi−1(xi,k)−∇Qi,k(xmin) +∇Qi−1(xmin)
+ ∇Qi,k(xi,k)−∇Qi,k(xi,k),

and then taking norm of (14) and using the triangle inequality, we obtain

∥∇fi(xi,k −∇hi,k(xi,k))∥ ≤ ∥∇fi(xi,k)−∇Qi,k(xi,k)∥
+ ∥∇Qi,k(xi,k) +∇Qi,k(xmin)∥
+ ∥∇Qi−1(xi,k)−∇Qi−1(xmin)∥ .
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Assuming that ∇Q is Lipschitz continuous at all levels, we obtain the following bound:

∥∇Qi−1(xi,k)−∇Qi−1(xmin)∥ ≤ κ ∥xi,k − xmin∥ = κ ∥s∥ ≤ κ∆i,k

∥∇Qi,k(xi,k)−∇Qi,k(xmin)∥ ≤ κ̄ ∥s∥ ≤ κ̄∆i,k,

where κ and κ̄ are constants independent of ∆i,k.
Thus, using last two inequalities and (13)

∥∇fi(xi,k −∇hi,k(xi,k))∥ ≤ κeg max[∆i,k,∆
2
i,k] + κ∆i,k + κ́∆i,k

≤ κmatmax[∆i,k,∆
2
i,k],

where κmat := κgd + κ+ κ̄. �
We denote S = {k | ρ̄i,k ≥ η0} as the index set of all successful iterations and R =

{k | ∆i,k+1 < ∆i,k} as the index set of all iterations where the trust-region radius is re-
duced.

Similar to Lemma 5 in the convergence proof of DFO in [5], we can write the following
lemma for DFRMTR.

Lemma 4.1. (1) For all k, if ρi,k ≥ η0, then ρ̄i,k ≥ η0 and thus iteration k is success-
ful.

(2) If k ∈ R, then Y is adequate in Bi,k(∆i,k).
(3) There are finite number of improvements of the geometry, unless ∇fi(xi,k) = 0.
(4) There can only be a finite number of iterations such that ρi,k < η1 before the

trust-region radius is reduced in second item of Step 6 in DFRMTR.

Proof. If ρi,k ≥ η0, xi,k + si,k is added to the interpolation set Y by Step 4. And it can be
written by Step 5, f(x̄i,k) ≤ f(xi,k + si,k). Thus

ρ̄i,k =
f(xi,k)− f(x̄i,k)

hi,k(xi,k)− hi,k(xi,k + si,k)

≥
f(xi,k)− f(xi,k + si,k)

hi,k(xi,k)− hi,k(xi,k + si,k)
= ρi,k ≥ η0.

Then, k ∈ S and the k is successful. The proofs of (ii), (iii), (iv) can be done in the same
way as n the convergence proof of DFO [5]. �

As in [16] we assume that for linear and quadratic models the ”Cauchy point decrease
condition”

Qi,k(xk)−Qi,k(xk + sk) ≥ κb ∥gi,k∥min

{
∥gi,k∥

1 + ∥Hi,k∥
,∆i,k

}
(15)

holds, where gi,k = ∇sQi,k(xk),Hi,k = ∇2
ssQi,k(xk) and κb ∈ (0, 1).

In the following lemma we prove that the ”Cauchy point condition” is valid for the lower
level linear model in DFRMTR.

Lemma 4.2. At every iteration k at level i, one has

hi(xi,k)− hi(xi,k + si,k) ≥
κQκb
2 + κQ

∥∇hi,k∥min

[
κQ ∥∇hi,k∥

(2 + κQ)(1 + ∥Hi∥)
,∆i,k

]
for some constant κb ∈ (0, 1) independent of k, and Hi = ∇2Qi and hi,k = hi,k(xi,k).

Proof.

hi(xi,k)− hi(xi,k + s) = Qi−1(xi,k) + (∇Qi,k(xmin)−∇Qi−1(xmin))
T s−Qi−1(xi,k + s)

− (∇Qi,k(xmin)−∇Qi−1(xmin))
T (xi,k + s− xmin)

= Qi−1(xi,k)−Qi−1(xi,k + s)− (∇Qi,k(xmin)−∇Qi−1(xmin))
T s.
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Taking the Taylor expansion, we obtain

Qi,k(xmin)−Qi,k(xmin + s) = −s∇Qi,k(xmin)− 1/2s2∇2Qi,k(ξk), (16)

where ξk is lying in the open stretch (xmin, xmin + s). We assume that

−(∇Qi,k(xmin)−∇Qi−1(xmin))
T s ≥ −κm∇Qi,k(xmin)

T s,

1/2s2∇2Qi,k(ξk) = 1/2sT∇2Qi,k(ξk)
T s ≥ 0,

∥∇Qi,k(xi,k)∥ ≤ ∥∇Qi,k(xmin)∥.
Using the assumption of the Theorem 6.3.4 in [16], Qi−1(xi,k) − Qi−1(xi,k + s) ≥ 0 we
obtain

hi(xi,k)− hi(xi,k + s) ≥ (∇Qi−1(xmin)−∇Qi,k(xmin))
T s

≥ −κm∇Qi,k(xmin)
T s

= κm
(
Qi,k(xmin)−Qi,k(xmin + s) + 1/2s2∇2Qi,k(ξk)

)
≥ Qi,k(xmin)−Qi,k(xmin + s)

where κm ≥ 2 and (16) are used. Using (15), we can write

hi(xi,k)− hi(xi,k + s) ≥ Qi(xmin)−Qi(xmin + s)

≥ κb ∥∇Qi,k(xmin)∥min

[
∥∇Qi,k(xmin)∥

1+∥Hi∥ ,∆i,k

]
,

where Hi = ∇2Qi,k(xmin).

∥∇hi,k∥ = ∥∇Qi−1(xi,k) +∇Qi,k(xmin)−∇Qi−1(xmin)∥
≤ ∥∇Qi−1(xi,k)∥+ ∥∇Qi,k(xmin)−∇Qi−1(xmin)∥
≤ 1

κQ
∥∇Qi−1(xi,k)∥+ κm ∥∇Qi,k(xmin)∥

≤ ( 1
κQ

+ κm) ∥∇Qi,k(xmin)∥ ,

(17)

where (5), (12) and the assumption (A.3) above are used. Putting κm = 1 + 1/κQ into
(17), we get

∥∇hi,k∥ ≤
(

1

κQ
+ 1 +

1

κQ

)
∥∇Qi,k(xmin)∥ , and

κQ
κQ + 2

∥∇hi,k∥ ≤ ∥∇Qi,k(xmin)∥ ,

(18)

hi(xi,k)− hi(xi,k + s) ≥ κb ∥∇Qi,k(xmin)∥min

[
∥∇Qi,k(xmin)∥

(1+∥Hi∥) ,∆i,k

]
≥ κb

κQ

2+κQ
∥∇hi,k∥min

[
κQ∥∇hi,k∥

(2+κQ)(1+∥Hi∥) ,∆i,k

]
,

where κb, κQ/(2 + κQ) ∈ (0, 1) since κQ ∈ (0, 1).

since ∥∥∇2hi,k
∥∥ =

∥∥∇2Qi−1(xk) +∇2Qi,k(xmin)−∇2Qi−1(xmin)
∥∥∥∥∇2hi

∥∥ =
∥∥∇2Qi

∥∥ = ∥Hi,k∥, where ∇2Qi−1(xk) = ∇2Qi−1(xmin) due to constant value
result of second derivative of at most second degree function Qi−1. �

Lemma 4.3. Assuming that A.1 - A.3 and

∆i,k ≤ min

[
1,

κQκb ∥∇hi,k∥ (1− η0)

(2 + κQ)6max[κh, κay]

]
(19)

hold, then iteration k is successful and

∆i,k ≥ ∆i,k−1.
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Proof. We note that η0, κb ∈ (0, 1) and κb(1− η0) < 1. Using κay, κh and putting these in
(19), we obtain

∥∇hi,k∥
6max[κh, κay]

≤
∥∇hi,k∥
6κh

≤
∥∇hi,k∥
6κ2

≤
∥∇hi,k∥

κ2
≤

∥∇hi,k∥
1 + ∥Hi∥

where κ2 > 1 + ∥Hi∥ and κh = max[κ1, κ2].
Using these, we obtain

∆i,k ≤
κQκb ∥∇hi,k∥ (1− η0)

(2 + κQ)6max [κh, κay]
≤

κQ ∥∇hi,k∥
(2 + κQ)(1 + ∥Hi∥)

Combining this inequality with Lemma 4.4, at kth iteration, we get

hi(xi,k)− hi(xi,k + si,k) ≥ κQκb

2+κQ
∥∇hi,k∥min

[
κQ∥∇hi,k∥

(2+κQ)(1+∥Hi∥) ,∆i,k

]
=

κQκb∥∇hi,k∥∆i,k

2+κQ

Now, we can write

|ρi − 1| =

∣∣∣∣ fi(xi,k)− fi(xi,k + s)

hi(xi,k)− hi(xi,k + s)
− 1

∣∣∣∣
≤

∣∣∣∣fi(xi,k + s)− hi(xi,k + s)

hi(xi,k)− hi(xi,k + s)

∣∣∣∣+ ∣∣∣∣ fi(xi,k)− hi(xi,k)

hi(xi,k)− hi(xi,k + s)

∣∣∣∣
≤ 2

3(2 + κQ)κaymax[∆2
i,k,∆

3
i,k]

κQκb ∥∇hi,k∥∆i,k

≤
6(2 + κQ)κay∆i,k

κQκb ∥∇hi,k∥
≤ 1− η0

Using the bounds

κbκQ(1− η0)

(2 + κQ)
< 1,

∥∇h∥
6max[κh, κay]

≤ ∥∇h∥
κh

,∆k ≤ min

[
1,

∥∇h∥
κh

]
we obtain

∆i,k ≤
κQκb ∥∇hi,k∥ (1− η0)

6(2 + κQ)max[κh, κay]
≤

κQκb ∥∇hi,k∥ (1− η0)

6(2 + κQ)κay
.

Therefore, ρi ≥ η0 and the iteration is successful. Furthermore, at step 6 of the algo-
rithm, ∆i,k ≥ ∆i,k−1. �

Theorem 4.3. Let’s assume A.1 - A.3 hold and ∥∇hi,k∥ ≥ κc, then there exists a constant
κd > 0 such that ∆i,k > κd.

Proof. Assume that iteration k is the first k (ρk < η0) such that

∆i,k+1 ≤ min

[
1,

γ0κQκbκc(1− η0)

6(2 + κQ)max[κh, κay]

]
. (20)

Then we have from the second item of Step 6: γ0∆i,k ≤ ∆i,k+1 and hence

∆i,k ≤ min

[
1,

κQκbκc(1− η1)

6(2 + κQ)max[κh, κay]

]
.
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The assumption on ∥∇hi,k∥ ≥ κc implies that (19) holds and thus that kth is successful
and ∆i,k+1 ≥ ∆i,k satisfied. But this contradicts the fact that iteration is the first such
that (20) holds, and initial assumption is therefore impossible and we get

κd = γ0min

[
1,

κQκbκc(1− η0)

6(2 + κQ)max[κh, κay]

]
.

�
Theorem 4.4. We assume that A.1 - A.3 hold and there are only finitely many successful
iterations. Then xi,k = xi,∗ for k sufficiently large and ∇fi(xi,∗) = 0.

Proof. For the details of the proof we refer to [5]
�

The next lemma shows that the trust-region radius converges to zero for DFRMTR as
for the DFO in Lemma 10.9 in [6].

Lemma 4.4.
lim

k→+∞
∆k = 0.

Proof. Assume that S is finite. We consider iterations after the last successful iteration.
We know that there can be only a finite number of successful iterations before the model
becomes fully linear and, hence there is an infinite number of iterations that are acceptable
or unsuccessful and in either case the trust-region radius is reduced.
Since there are no more successful iterations, ∆k is never increased for sufficiently large
k. Moreover, ∆k is decreased at least once every N iterations by a factor γ. Thus, ∆k

converges to zero.
Now let’s consider the case when S is infinite. For any k ∈ S we have

fi(xk)− fi(xk+1) ≥ η0 [hi,k(xk)− hi,k(xk + sk)] .

Using the Cauchy decrease condition, we get

fi(xk)− fi(xk+1) ≥ η0
κQκb
2 + κQ

∥∇hi,k∥min

[
κQ ∥∇hi,k∥

(2 + κQ) (1 + ∥Hi∥)
,∆i,k

]
.

Using (18) and the condition (5), and assuming ∥∇hi,k∥ ≥ ϵQ
2 , we obtain

fi(xk)− fi(xk+1) ≥ η0
κQκb

2+κQ

ϵQ
2 min

[
κQϵQ

2(1+κQ)(1+∥Hi∥) ,∆i,k

]
≥ η0

κQκb

2+κQ

ϵQ
2 min

[
κQϵQ

2(1+κQ)κ2
,∆i,k

]
,

where 1 + ∥Hi∥ ≤ κ2.
Since S is infinite and f is bounded from below, the right-hand side of the expression

above converges to zero. Hence, lim
k∈S

∆k = 0, and the proof is completed if all iterations

are successful.
Recall that the trust-region radius can be increased only during a successful iteration,

and it can be increased only by a ratio of at most γ2 which is a constant in Step 6. If
k /∈ S be the index of an iteration after the first successful one, then ∆k ≤ γ2∆sk , where
sk is the index of the last successful iteration before k. Since ∆sk → 0, then ∆k → 0 for
k /∈ S and k → ∞. �
Theorem 4.5. In case of infinitely many successful iterations under assumptions A.1 -
A.3,

lim
k→∞

inf ∥∇hi,k∥ = 0

holds with hi,k = hi,k(xi,k).
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Proof. For the details of the proof we refer to [5, 6].
�

Lemma 4.5. Provided the assumptions A.1 - A.3 hold and {ki} is a subsequence such
that

lim
i→∞

∥∇hi,ki(xi,ki)∥ = 0, (21)

then

lim
i→∞

∥∇fi(xi,ki)∥ = 0. (22)

Proof. For the details of the proof we refer to [5, 6, 16]. �

The following two theorems are similar to those in the convergence of DFO, therefore
the proofs are omitted.

Theorem 4.6. Under the assumptions A.1 - A.3, there is at least one subsequence of
successful iteration {xi,k} whose limit is a critical point

lim
k→∞

inf ∥∇fi(xi,k)∥ = 0

Theorem 4.7. Provided that the Assumptions A.1 - A.3 hold, then every limit point xi,∗
of the sequence {xi,k} is a critical point

∇fi(xi,∗) = 0.

We have investigated convergence of the model (4) in ith level at any iteration k. When
after kth step or at the last iteration of ith level the Taylor model is chosen, then DFO
convergence can be applied directly.

Since the Cauchy decrease condition can not be applied to nonlinear models, an equiv-
alent condition is necessary for more general models. One way is to use a backtracking
algorithm along the model steepest descent direction, where the backtracking is suggested
from the boundary of the trust-region [6, 16]. We assume Qk(xk + s) is not a quadratic
function in s and we choose the smallest j ≥ 0 such that

xk+1 = xk + βjs, where s = − ∆k

∥gk∥
gk and β ∈ (0, 1) . (23)

By the way, a sufficient decrease takes the form

Qk(xk+1) ≤ Qk(xk) + κcβ
jsT gk, κc ∈ (0, 1) , (24)

which can, using (23), (24), equivalently be written as:

Qk(xk+1)−Qk(xk) ≤ −κcβ
j∆k ∥gk∥ . (25)

Taylor expansion of the left hand side gives

−βj∆k ∥gk∥+
1

2

β2j∆2
kg

T
k ∇2Qk (yk,j) gk

∥gk∥2
≤ −κcβ

j∆k ∥gk∥ ,

for some yk,j ∈
[
xk, xk + βjs

]
.

If
∥∥∇2Qk(yk,j)

∥∥ ≤ κbhm is assumed, then (25) is satisfied, when βj∆k/||gk|| ≤ 2(1 −
κc)/κbhm. Thus, a jk satisfying (25) can be found such that βjk > 2(1−κc)β∥gk∥

(κbhm∆k)
.

When sAC
k = βjks is defined as the approximate Cauchy step, we obtain

Qk(xk)−Qk(xk + sAC
k ) ≥ κcβ

jk∆k ∥gk∥ .
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On the other hand, if the approximate Cauchy step is on the boundary, it can be derived
from (4.20) that the decrease in the model exceeds or is equal to κc∆k ∥gk∥, and

Qk(xk)−Qk(xk + sAC
k ) ≥ κ̄c ∥gk∥min

{
∥gk∥
κbhm

,∆k

}
for a suitably defined κ̄c > 0.
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