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SOME FIXED POINT THEOREMS IN PARTIAL METRIC SPACES

MUKTI GANGOPADHYAY1, MANTU SAHA2, A.P. BAISNAB3 §

Abstract. Here we prove two fixed point theorems on partial metric space, which was defined
by S. Matthews [8] in 1994. In the literature one can find fixed point theorems proved on such
spaces by using Picard iteration schemes. Here our main ingredient is Cantor intersection type
results.
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1. Introduction

Partial metric spaces were originally developed by S. Matthews [8] in 1994 to provide a
mechanism to generalize a metric space; If (X, p) is a partial metric space, then p(x, x) is not
necessary zero as x ∈ X. Partial metric spaces as defined has now found vast applications in
topological structures in the study of computer science, information science and in biological
sciences. Banach contraction principle [2] is a fundamental result in fixed point theory in a
complete metric space and the same has been extended in many directions like inviting broader
class of mappings or by taking more generalized domain or by making a combination of both.

We would like to present two fixed point theorems in a partial metric spaces. We cite some
relevant references like S.J. O’Neill work [9] and [10] on Mathew’s notion of partial metric spaces.
O. Valero and S. Oltra in [11] and [12] has also proved several generalizations of Banach fixed
point theorem in the setting of partial metric spaces and in consequence one finds Matthew’s
findings are rendered special cases of those of O. Valero’s. One is also refereed to the work
of S.K Chaterjee in [5]. In the above mentioned works the authors had used Picard iteration
scheme in the proof of fixed point theorems. In our investigations we have avoided that track
and instead employed Cantor’s intersection like theorems in the setting of a partial metric space.
Thus our findings may be looked upon as an alternative method of proving some useful fixed
point theorems in partial metric spaces and the involved mappings as they appear underneath.

2. some useful definitions and results

We start with defining partial metric space.
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Definition 2.1. A partial metric (PM) denoted by p on a nonempty set is a function p :
X ×X → R+(set of non-negative reals) such that for any x, y, z ∈ X,

(PM1) p(x, x) ≤ p(x, y).

(PM2) If p(x, x) = p(x, y) = p(y, y), then x = y.

(PM3) p(x, y) = p(y, x).

(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space and will be denoted by PMS in short.
Clearly any metric space is always a partial metric space. If (X, p) is a partial metric space,

then dp : X × X → R given by dp(x, y) = 2p(x, y) − p(x, x) − p(z, z) for x, y ∈ X is a metric
on X. In a PMS (X, p) if x ∈ X and ε > 0, the set Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
is called a p− open ball centered at x with radious ε. It can be easily verified that the family
{Bp(x, ε)} together with empty set forms a base for a topology τp on X which is T0. Similarly,
a p− closed ball centered at x with radious ε is defined.

Example 2.1. For a given positive integer n, let ℘ denotes the collection of all real polynomials
like f(t) = a0 + a1t+ . . . . . .+ ant

n, ai ∈ R, ai ≥ 0 with degree ≤ n. If f1, f2 ∈ ℘, let

p(f1, f2) = max
i

(ai, bi),

where ai, bi are coefficients of the polynomials f1, f2 respectively. Then by routine verification
we see that (℘, p) is a partial metric.

Lemma 1. A partial metric space (X, p) is first countable.

Proof. For each rational r(> 0) let Br(x0) = {x ∈ X : p(x, x0) < p(x0, x0)+r}. Then the family
{Br(x0)}, r > 0 forms a neighbourhood base at x0. So, (X, p) is first countable. �

We recall following well known definitions (viz. [3] and [6]). From now on (X, p) will always
denote a PMS.

Definition 2.2. (i) A sequence {xn} in (X, p) is said to converge to a point x ∈ X if and only
if

lim
n→∞

p(xn, x) = p(x, x).

(ii) A sequence {xn} in (X, p) converges properly to a point x ∈ X if and only if

p(x, x) = lim
n→∞

p(xn, xn) = lim
n→∞

p(x, xn).

That is to say if and only if

lim
n→∞

ps(x, xn) = 0 where ps(x, y) = 2p(x, y)− p(x, x)− p(y, y).

(iii) A sequence {xn} in (X, p) is called a Cauchy sequence if

lim
n→∞

p(xn, xm)

exists finitely.

(iv) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges to a point x ∈ X,
i.e.,

p(x, x) = lim
n→∞

p(xn, xm).

(v) A subset B of (X, p) is called bounded if there is a positive number K such that p(u, v) ≤ K
for all u, v ∈ B.

(vi) Diameter of a bounded set B is defined as

diameter (B) = sup
u,v∈B

p(u, v).

The following lemma is obvious.
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Lemma 2. (i) A sequence {xn} is Cauchy in (X, p) if and only if {xn} is Cauchy in the metric
space (X, ps).

(ii) (X, p) is complete if and only if the metric space (X, ps) is complete.

3. Results

We start this section with stating the following result.

Theorem 1. A necessary and sufficient condition for a PMS (X, p) to complete is that every
nested sequence of nonempty closed subsets {Gn} in (X, p) with diameter (Gn) → 0 as n → ∞
has

∞∩
n=1

Gn

as a singleton.

We prove the following lemma and then the proof of the above theorem (using the lemma)
run parallel to classical Cantor’s theorem in a usual metric space. Hence we omit the proof of
the theorem.

Lemma 3. If G is a non empty subset of (X, p) then diameter(G) = diameter(Ḡ), where Ḡ
denotes τp− closure of G in (X, p).

Proof. Clearly,
diameter(G) ≤ diameter(Ḡ). (1)

Let ε > 0 be arbitarary. If a, b ∈ Ḡ, we find u, v ∈ G such that p(u, a) < ε/2 and P (v, b) < ε/2.
Now

p(a, b) ≤ p(a, u) + p(b, u)− p(u, u)

≤ p(a, u) + p(u, v) + p(v, b)− p(v, v)− p(u, u)

≤ p(a, u) + p(u, v) + p(v, b)

< ε/2 + ε/2 + p(u, v)

= ε+ p(u, v).

This gives
p(a, b) ≤ ε+ diameter (G)

and hence
sup

(a,b)∈Ḡ
p(a, b) ≤ ε+ diameter (G).

Thus diameter(Ḡ) ≤ ε+ diameter(G) and hence one has

diameter (Ḡ) ≤ diameter (G). (2)

Now we have the result from (1) and (2). �
Now applying theorem 1 we prove the following two fixed point results.

Theorem 2. Let (X, p) be a partial metric space and f : X → X satisfy the following

p(f(x), f(y)) ≤ αp(x, f(x)) + βp(y, (f(y))) + γp(x, y)

with α+ β + γ < 1 and 0 ≤ α, β, γ∀x, y ∈ X. Then f has a unique fixed point in X.

Proof. If x0 is an arbitrary point in X and

xn = fn(x0), n = 1, 2, . . . . . . . . . , (x0 = f0(x0)).

Then,

p(x2, x1) = p(f(x1), f(x2))

≤ αp(x1, x2) + βp(x0, x1) + γp(x0, x1).

≤ β + γ

1− α
p(x0, x1).
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Similarly,

p(x3, x2) ≤
(
β + γ

1− α

)2

p(x0, x1).

By induction,

p(xn, xn+1) ≤
(
β + γ

1− α

)n

p(x0, x1).

Hence

p(xn, xn+1) = δnp(x0, f(x0)), (3)

where δ = β+γ
1−α < 1. Therefore,

lim
n→∞

δn = 0.

Let hk be a sequence of positive real numbers so that

lim
k→∞

hk = 0.

Without loss of generality we assume hk ≥ hk+1 ≥ . . .. Put Gk = {x ∈ X : p(x, f(x)) ≤ hk}.
Now from 3 it follows that for large k,Gk ̸= φ for all k’s. Clearly {Gk} forms a decreasing chain
of nonempty sets in X. We show that f maps Gk into itself. If x ∈ Gk then

p(f(x), f(f(x))) ≤ αp(x, f(x)) + βp(f(x), f(f(x))) + γp(x, f(x)).

This implies that,

p(f(x), f(f(x)) ≤ α+ γ

1− α
p(x, f(x)) ≤ α+ γ

1− α
hk < hk.

Hence p : Gk → Gk.
Next we show that each Gk is closed. Let u be a limit point of Gk. Since a PMS is a first

countable space, there is a sequence {xj} in Gk such that

lim
j

xj = u.

Now we have

p(u, f(u)) ≤ p(u, f(u)) + p(xj , f(u))− p(xj , xj)

≤ p(u, xj) + p(xj , f(xj)) + p(f(xj), f(f(u))− p((f(xj), f(xj))

≤ p(u, xj) + p(xj , f(xj)) + p(f(xj), f(f(u)).

(1− β)p(u, f(u)) ≤ hk + αhk + (1 + α)p(xj , u)

≤ (α+ 1)hk + (1 + γ)p(xj , u).

p(u, f(u)) ≤ α+ 1

1− β
hk +

1 + α

1− β
p(xj , u).

Passing on to the limit j → ∞, we find p(u, f(u)) ≤ α+1
1−βhk. Since

lim
j→∞

p(xj , u) = 0 (using lemma 1.5 in [1]).

Now 0 ≤ α, β, γ < 1 and α+ β + γ < 1 gives α+γ
1−β < 1 and so

sup
γ

{
α+ γ

1− β

}
≤ 1

and hence α+1
1−β ≤ 1. Thus p(u, f(u)) ≤ hk, and hence u ∈ Gk and so Gk is closed.

Finally we need to show Gk is bounded and diameter (Gk) → 0 as k → ∞. Let u, v ∈ Gk

then,

p(u, v) ≤ p(u, f(u)) + p(f(u), v)− p(f(u), f(u))

≤ hk + p(f(u), f(v)) + p(v, f(v))− p(f(v), f(v))

≤ 2hk + αp(u, f(u)) + βp(v, f(v)) + γp(u, v).
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Hence,

p(u, v) ≤ (2 + α+ β)hk

≤ α+ β + 2

1− γ
hk.

Hence Gk is bounded and diameter Gk → 0 as k → ∞.
Thus {Gk} is a decreasing chain of nonempty closed sets in (X, p) with diameter (Gk) → 0

as k → ∞. By Cantor’s type intersection theorem 1,
∞∩
k=1

Gk

is a singleton, say u for some u ∈ X. Hence f(u) = u. Uniqueness of u is clear from the
argument and thus the proof is complete. �

We have a couple of interesting corollaries.

Corollary 1. If f is a contraction mapping from a complete PMS X into itself, then f has a
unique fixed point in X

(Taking α = β = 0 and 0 < γ < 1 in theorem 2 the above corollary will follow.)

Corollary 2. If f is a Kannan type [7] mapping from a complete PMS X into itself, then f
has a unique fixed point in X.

(By taking α = β and γ = 0 in theorem 2 the above corollary will follow.)

Theorem 3. If (X, p) is a complete PMS and f : X → X satisfy the condition that p(f(x), f(y)) ≤
φ[max{p(x, y), p(x, f(x)), p(y, f(y))}] for all x, y ∈ X where φ is an upper semi continuous func-
tion from right from R+ to R+ such that

Sup
t>0

t

t− φ(t)
< ∞ and φ(t) ̸= t.

Then f has a fixed point in X.

We first prove a lemma and using the lemma we prove theorem 3.

Lemma 4. If αn = p(xn, xn+1) where xn = fn(x), x ∈ X, then

lim
n→∞

αn = 0.

Proof. Suppose αn > 0 for all n. Then

αn = p(xn, xn+1) = p(f(xn1), f(xn))

≤ φ[max{p(xn−1, xn), p(xn−1, f(xn−1), p(xn, f(xn))}]
= φ[max{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1)}]
= φ[max{p(xn−1, xn), p(xn, xn+1)}].

If the maximum value of φ equals p(xn, xn+1), then one has αn ≤ φ(αn−1) < αn−1. That means
{αn} is strictly decreasing and let

lim
n→∞

αn = α.

If α > 0 then φ(α) < α. Since φ is upper semi continuous from right we get,

limφ(αn) ≤ φ
(
lim
n
αn

)
= φ(α) < α.

Which contradicts the fact that αn = φ(αn−1) for all n. Hence one concludes

lim
n
αn = α = 0.

�



M. GANGOPADHYAY, M. SAHA, A.P. BAISNAB: SOME FIXED POINT THEOREMS... 211

Proof. (Proof of theorem 3) Let Gn =
{
x ∈ X : p(x, f(x)) ≤ 1

n

}
and as usual Φ denotes the null

set. We show that for large values of n,Gn ̸= Φ. We take x ∈ X and consider xn = fn(x). Now
lemma 4 says that p(xn, xn+1) → 0 as n → ∞. So, we get

lim
n→∞

p(xn, xn+1) = 0.

Thus given Gk it follows that p(xn, f(xn)) <
1
k for large values of n. Hence Gk ̸= Φ. We verify

that f maps Gn into Gn, and for that take x ∈ Gn. Then

p(f(x), f(f(x))) ≤ φ[max{p(x, f(x))p(f(x), f(f(x))), p(x, f(x))}]
= φ[max{p(x, f(x)), p(f(x), f(f(x)))}].

Now if the maximum value equals to p(f(x), f(f(x)), then

p(f(x), f(f(x)) ≤ φ{p(f(x), f(f(x)))} < p(f(x), f(f(x))),

a contradiction. Therefore

p(f(x), f(f(x))) ≤ φ(p(x, f(x))) < p(x, f(x)) ≤ 1

n
.

Hence f(x) ∈ Gn. Thus f maps Gn into itself. Now we check that each Gn is closed in (X, p).
Let {xnk

} ∈ Gn satisfy

p− lim
k→∞

xnk
= x0 ∈ X

or,

lim
k→∞

p(xnk
, x0) = 0.

Clearly, p(xnk
, f(xnk

)) ≤ 1
n for all k. Now,

p(x0, f(x0)) ≤ p(x0, xnk
) + p(f(x0), xnk

)− p(xnk
, xnk

)

≤ p(x0, xnk
) + p(f(x0), xnk

)

≤ p(x0, xnk
) + p(f(x0), f(xnk−1))

≤ p(x0, xnk
) + φ[max{p(xnk−1, x0), p(xnk−1, xnk

), p(x0, f(x0))}].

Since

lim
k→∞

p(x0, xnk
) = p(x0, x0) = lim

k→∞
p(xnk−1, x0) = 0,

and

p(xnk−1, xnk
) ≤ 1

n
,

we have

p(x0, f(x0)) ≤ φ[max

{
1

n
, p(x0, f(x0))

}
].

If max
{

1
n , p(x0, f(x0))

}
= p(x0, f(x0)) then

p(x0, f(x0)) ≤ φ{p(x0, f(x0)} < p(x0, f(x0)),

which is untenable, so we conclude that

p(x0, f(x0)) ≤ φ

{
1

n

}
<

1

n
.

Thus x0 ∈ Gn and Gn is shown to be closed. Next we show that Gn is bounded. For x, y ∈ Gn,
Clearly p(x, f(x)) ≤ 1

n ;p(y, f(y)) ≤
1
n . Thus we have

p(x, y) ≤ p(x, f(x)) + p(y, f(x))− p(f(x), f(x))

≤ p(x, f(x)) + p(y, f(y)) + p(f(x), f(y))− p(f(y), f(y))

≤ p(x, f(x)) + p(y, f(y)) + p(f(x), f(y))

≤ 2

n
+ φmax

{
p(x, y),

1

n
,
1

n

}
.
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If max
{
p(x, y) 1n

}
= 1

n , then p(x, y) ≤ 2
n +φ

(
2
n

)
< 2

n + 1
n = 3

n . Thus in this case Gn is bounded

with diameter (Gn) ≤
{

3
n

}
→ 0 as n → ∞. Or,

p(x, y) ≤ 2

n
+ φ(p(x, y)).

Else, max
{
p(x, y), 1

n

}
= p(x, y), then

p(x, y)

(
1− φ(p(x, y))

p(x, y)

)
≤ 2

n
.

Thus,

p(x, y) ≤ 2

n

p(x, y)

p(x, y)− φ(p(x, y))
.

Now,

2

n
sup
t>0

t

t− φ(t)
=

2

n
R,

where

sup
t>0

t

t− φ(t)
= R < ∞.

So, diameter (Gn) ≤ 2R
n and hence Gn is bounded and diameter (Gn) → 0 as n → ∞. Thus

{Gn} is a decreasing chain of nonempty closed sets in (X, p) with diameter (Gn) → 0 as n → ∞.
By theorem 3 we have,

∞∩
n=1

Gn

is a singleton, say {u} for some u ∈ X. Thus f(u) = u and the proof is complete. �

4. Conclusion

Our findings as presented in this paper shall inspire researchers in fixed point theory to
explore applications of Cantor type theorems as new contour instead of following Picard iterative
schemes in generalized metric spaces like non symmetric metric spaces, partially ordered cone
metric spaces etc. Operators may be invited there in form of a class strictly larger than those
containing contractive type like Banach, Kannan and Ciric operator.
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