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GENERALIZED α− ψ-GERAGHTY MULTIVALUED MAPPINGS ON

b-METRIC SPACES ENDOWED WITH A GRAPH

H. AFSHARI 1, M. ATAPOUR 1, H. AYDI 2, §

Abstract. In this paper, we provide some conditions for the existence of a coincidence
point of single-valued and multivalued mappings involving generalized α − ψ-Geraghty
contractions endowed with a graph. Our main results improve the existing results in the
corresponding literature. We also present examples to support the obtained results.
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1. Introduction

The study of b-metric spaces was initiated in the works of Bakhtin, Heinonen, and
Czerwik [6, 8]. Afterwards, several articles which deal with fixed point theorems for
single-valued and multivalued mappings in the class of b-metric spaces appeared in [2, 3,
4, 5, 8, 10] and related references therein.

Definition 1.1. [9] Let X be a nonempty set and s ≥ 1 be a given real number. A mapping
d : X ×X → [0,∞) is said to be a b-metric and the pair (X, d) is called a b- metric space
if, for all x, y, z ∈ X, the following conditions are satisfied:

(bM1) d(x, y) = 0 if and only if x = y;
(bM2) d(x, y) = d(y, x);
(bM3) d(x, z) ≤ s[d(x, y) + d(y, z)].

Remark 1.1. Since a metric space turns into a b-metric space by taking the constant
s = 1, the class of b-metric spaces is larger than the class of metric spaces.

The following example shows that there exists a b-metric which is not a metric.

Example 1.1. Let X = {a, b, c} with 0 < a < 2b < c and d : X ×X → [0,∞) be defined
by

d(a, b) = b, d(a, c) =
b

2
and d(b, c) = c,
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with d(x, x) = 0 and d(x, y) = d(y, x) for all x, y ∈ X. Notice that d is not a metric
since d(b, c) > d(a, b) + d(a, c). However, it is easy to see that d is a b-metric space with
coefficient s ≥ 2.

Let N be the set of positive integers. A sequence {xn} in a b-metric space X is said to be
convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→∞. In this case,
we write → limn→∞ xn = x. A sequence {xn} in a b-metric space X is said to be Cauchy
if and only if d(xn, xm) → 0 as m,n → ∞. A b-metric space (X, d) is complete if every
Cauchy sequence in X converges. In general, a b-metric is not continuous. The famous
Banach contraction principle [7] infers that every contraction on a complete metric space
has a unique fixed point. Jachymski [11] introduced the notion of a Banach G-contraction
to generalize the Banach contraction principle as follows. Let (M,d) be a metric space.
Consider ∆ the diagonal of the Cartesian product M ×M and G a directed graph such
that the set V (G) of its vertices coincides with M and the set E(G) of its edges contains all
loops; that is, E(G) ⊇ ∆. Assume that G has no parallel edges. A mapping f : M → M
is called a Banach G-contraction if:
(i) for every x, y ∈ X,

(x, y) ∈ E(G)⇒ (f(x), f(y)) ∈ E(G)

(ii) there exists 0 < α < 1 such that for all x, y ∈ X,

(x, y) ∈ E(G)⇒ d(f(x), f(y)) ≤ αd(x, y)

Now, let (X, d) be a b-metric space. Take Pb,cl(X) the set of bounded and closed sets
in X. For x ∈ X and A,B ∈ Pb,cl(X), as in [8], we define

D(x,A) = inf
a∈A

d(x, a),

D(A,B) = sup
a∈A

D(a,B).

Define a mapping H : Pb,cl(X)× Pb,cl(X)→ [0,∞) such that

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,B)},

for every A,B ∈ CB(X). Then the mapping H forms a b-metric. H is called as the
Hausdorff b-metric induced by the b-metric d. The proof of the following lemmas can be
found in [8].

Lemma 1.1. Let (X, d) be a b-metric space. For any A,B ∈ Pb,cl(X) and any x, y ∈ X,
we have the following:
(1) D(x,B) ≤ d(x, b) for any b ∈ B,
(2) D(x,B) ≤ H(A,B),
(3) D(x,A) ≤ s(d(x, y) +D(y,B)).

Lemma 1.2. Let A and B be nonempty closed and bounded subsets of a b-metric space
(X, d). Choose q > 1. Then for all a ∈ A, there exists b ∈ B such that d(a, b) ≤ qH(A,B).

Definition 1.2. [16] Let X be a nonempty set and G = (V (G), E(G)) be a graph such that
V (G) = X. T : X → Pb,cl(X) is said to be graph preserving if it satisfies the following:

if (x, y) ∈ E(G), then (u, v) ∈ E(G) for all u ∈ Tx and v ∈ Ty.

Definition 1.3. [16] Let X be a nonempty set and G = (V (G), E(G)) be a graph such that
V (G) = X. T : X → Pb,cl(X) is said to be g-graph preserving if it satisfies the following:
for x, y ∈ X,

if (g(x), g(y)) ∈ E(G), then (u, v) ∈ E(G) for all u ∈ Tx and v ∈ Ty.



250 TWMS J. APP. ENG. MATH. V.2, N.7, 2017

Let Φ be set of all increasing and continuous functions φ : [0,∞)→ [0,∞) satisfying

φ(ct) ≤ cφ(t) for all c > 1.

Let s ≥ 1. We denote by Fs the family of all functions β : [0,∞)→ [0, 1
s2

).
The notation of an α−ψ-Geraghty contraction-type multivalued mapping in the setting

of metric spaces was introduced by Karapinar and Samet [12, 13, 14]. Newly, Afshari et
al. [1] proved some results on generalized α − ψ-Geraghty contraction-type multivalued
mappings. Precisely, they have proved the following theorem.

Theorem 1.1. Let (X, d) be a complete b-metric space with a coefficient s ≥ 1. Let
T : X → Pb,cl(X) be a multivalued mapping. Suppose that there exists α : X×X → [0,∞)
such that

α(x, y)ψ(s3H(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) + Lφ(N(x, y)),

for all x, y ∈ X, where β ∈ Fs and ψ, φ ∈ Φ with

M(x, y) = max{d(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) +D(y, Tx)

2s
}

and N(x, y) = min{D(x, Tx), D(y, Tx)}.
Suppose also that
(i) T is α-admissible;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(iii) T is continuous or X is α-regular.
Then T has a fixed point.

Mention that the concept of α-regularity is stated as follows.

Definition 1.4. [15] Let (X, d) be a b-metric space and α : X ×X → [0,∞). X is said
α-regular, if for every sequence {xn} in X such that α(xn, xn+1) ≥ 1 for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1

for all k.

In this paper, we improve Theorem 1.1 by proving the existence of a coincidence point
of single-valued and multivalued mappings in the class of b-metric spaces endowed with a
graph, but without the function α. We do not need the assumption that T is continuous
to establish our main results.

2. Auxiliary results: the case s = 1

Here, we treat the case s = 1. First, let Ψ be the set of all increasing and continuous
functions ψ : [0,∞)→ [0,∞) satisfying:
(i) ψ(r + t) ≤ ψ(r) + ψ(t) for all r, t > 0;
(ii) ψ(ct) ≤ cψ(t) for all c > 1;
(iii) ψ(0) = 0.

Definition 2.1. Let (X, d) be a metric space and G = (V (G), E(G)) be a graph such
that V (G) = X and the set E(G) of its edges contains all loops, that is, E(G) ⊇ ∆.
For g : X → X and T : X → Pb,cl(X), T is said to be a generalized g-Geraghty-type
G-multivalued mapping provided that
(i) T is g-graph preserving;
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(ii) for every x, y ∈ X such that (g(x), g(y)) ∈ E(G), whenever there exists some L ≥ 0
such that for

M(g(x), g(y)) = max{d(g(x), g(y)), D(g(x), Tx), D(g(y), Ty) (1)

,
D(g(x), T y) +D(g(y), Tx)

2
}

and N(g(x), g(y)) = min{D(g(x), Tx), D(g(y), Tx)}, (2)

we have

ψ(H(Tx, Ty)) ≤ θ(ψ(M(g(x), g(y))))ψ(M(g(x), g(y))) + Lφ(N(g(x), g(y))), (3)

where θ ∈ F1 and ψ, φ ∈ Ψ.

Lemma 2.1. Let (X, d) be a metric space with a directed graph G. Assume that g : X → X
is a surjective map and T : X → Pb,cl(X) is a generalized g-Geraghty-type G-multivalued
mapping in (X, d). Suppose also that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx and w ∈ Ty.
Then there exists a sequence {xk}k∈N∪{0} in X such that for each k ∈ N, we have

g(xk) ∈ Txk−1
(g(xk−1), g(xk)) ∈ E(G)

{g(xk)} is a Cauchy sequence in X.

Proof. Since g is surjective, there exists x1 ∈ X such that g(x1) ∈ Tx0 and (g(x0), g(x1)) ∈
E(G). Let q = 1√

θ(ψ(d(g(x0),g(x1))))
. We have q > 1. Then

0 < D(g(x1), Tx1) ≤ H(Tx0, Tx1) < qH(Tx0, Tx1).

By Lemma 1.2, again g is surjective, so there exists x2 ∈ X such that g(x2) ∈ Tx1 and

ψ(d(g(x1), g(x2))) < ψ(qH(Tx0, Tx1)) ≤ qψ(H(Tx0, Tx1)) (4)

≤ qθ(ψ(M(g(x0), g(x1))))ψ(M(g(x0), g(x1))) + qLφ(N(g(x0), g(x1))),

where

M(g(x0), g(x1)) = max{d(g(x0), g(x1)), D(g(x0), Tx0), D(g(x1), Tx1), (5)

D(g(x0), T g(x1)) +D(g(x1), Tx0)

2
}

≤ max{d(g(x0), g(x1)), D(g(x1), Tx1),
D(g(x0), Tx1)

2
}

≤ max{d(g(x0), g(x1)), D(g(x1), Tx1),
D(g(x0), Tx1)

2
}

and

N(g(x0), g(x1)) = min{D(g(x0), Tx0), D(g(x1), Tx0)} (6)

≤ min{d(g(x0), g(x1)), d(g(x1), g(x1))} = 0.

In view of

D(g(x0), Tx1)

2
≤ [d(g(x0), g(x1)) +D(g(x1), Tx1)]

2
≤ max{d(g(x0), g(x1)), D(g(x1), Tx1)},
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we get

M(x0, , x1) ≤ max{d(g(x0), g(x1)), D(g(x1), Tx1)}.

If max{d(g(x0), g(x1)), D(g(x1), Tx1)} = D(g(x1), Tx1), then by (4), we have

ψ(D(g(x1), Tx1)) ≤ ψ(d(g(x1), g(x2)))

<
√
θ(ψ(D(g(x1), Tx1)))ψ(D(g(x1), Tx1)) < ψ(D(g(x1), Tx1)),

which is a contradiction. Hence, we obtain max{d(g(x0), g(x1)), D(g(x1), Tx1)} = d(g(x0), g(x1))
and so by (4),

ψ(d(g(x1), g(x2))) ≤
√
θ(ψ(d(g(x0), g(x1))))ψ(d(g(x0), g(x1))). (7)

Having in mind that ψ ∈ Ψ and
√
θ(ψ(d(g(x0), g(x1))) < 1, so we get

ψ(
1√

θ(ψ(d(g(x0), g(x1))))
d(g(x1), g(x2))) (8)

≤ 1√
θ(ψ(d(g(x0), g(x1))))

ψ(d(g(x1), g(x2))) < ψ(d(g(x0), g(x1))).

Since ψ is increasing, we have

d(g(x1), g(x2)) ≤
√
θ(ψ(d(g(x0), g(x1))))d(g(x0), g(x1)).

Recall that g(x2) ∈ Tx1 and g(x1) /∈ Tx1, so it is clear that g(x2) 6= g(x1). Choose

q1 =

√
θ(ψ(d(g(x0), g(x1))))ψ(d(g(x0), g(x1)))

ψ(d(g(x1), g(x2)))
.

By (5) and (7), we have q1 > 1. If g(x2) ∈ Tx2, then x2 is a coincidence point of g and T .
Assume that g(x2) /∈ Tx2. We get

0 < ψ(d(g(x2), Tx2)) ≤ ψ(H(Tx1, Tx2)) < q1ψ(H(Tx1, Tx2)).

Hence, there exists g(x3) ∈ Tg(x2) such that

ψ(d(g(x2), g(x3))) < q1ψ(H(Tx1, Tx2))

≤ q1θ(ψ(M(g(x1), g(x2))))ψ(M(g(x1), g(x2))) + q1Lφ(N(g(x1), g(x2))).

Similarly, M(g(x1), g(x2)) ≤ d(g(x1), g(x2)) and N(g(x1), g(x2)) = 0. By (7) and a prop-
erty of (θ), we have

ψ(d(g(x2), g(x3))) ≤
√
θ(ψ(d(g(x1), g(x2))))ψ(d(g(x1), g(x2))) (9)

≤
√
θ(ψ(d(g(x1), g(x2))))

√
θ(ψ(d(g(x0), g(x1))))ψ(d(g(x0), g(x1))).

(10)

By (7) and that assumption that
√
θ(ψ(d(g(x0), g(x1)))) < 1, we have

ψ(d(g(x1), g(x2))) ≤ ψ(d(g(x0), g(x1))).

The function θ is increasing, by (9), we obtain

ψ(d(g(x2), g(x3))) ≤ (
√
θ(ψ(d(g(x0), g(x1)))))

2ψ(d(g(x0), g(x1))). (11)

Again, by (8),

d(g(x2), g(x3)) ≤ (
√
θ(ψ(d(g(x0), g(x1)))))

2d(g(x0), g(x1))
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It is clear that g(x2) 6= g(x1). Take

q2 =
(
√
θ(ψ(d(x0, x0))))

2ψ(d(g(x0), g(x1)))

ψ(d(g(x2), g(x3)))
.

Then q2 > 1. If g(x3) ∈ Tx3, then x3 is a coincidence point of g and T . Assume that
g(x3) /∈ Tx3. Then

0 < ψ(d(g(x3), Tx3)) ≤ ψ(H(Tx2, Tx3)) < q2ψ(H(Tx2, Tx3)).

Thus there exists g(x4) ∈ Tx3 such that

ψ(d(g(x3), g(x4))) < q2ψ(H(Tx2, Tx3)) (12)

≤ q2θ(ψ(M(g(x2), g(x3))))ψ(M(g(x2), g(x3))) + q2Lφ(N(g(x2), g(x3)))

Similarly, M(g(x2), g(x3)) ≤ d(g(x2), g(x3).) and N(g(x2), g(x3)) = 0. So, by (12),

ψ(d(g(x3), g(x4))) ≤
√
θ(ψ(d(g(x2), g(x3))))ψ(d(g(x2), g(x3))) (13)

≤
√
θ(ψ(d(g(x2), g(x3))))(

√
θ(ψ(d(g(x0), g(x1)))))

2ψ(d(g(x0), g(x1))).

By (11) and the assumption
√
θ(ψ(d(g(x0), g(x1))))

2
< 1, we have

ψ(d(g(x2), g(x3))) ≤ ψ(d(g(x0), g(x1))).

Again, θ is increasing, so using (13),

d(g(x3), g(x4)) ≤ (
√
θ(ψ(d(g(x0), g(x1)))))

3d(g(x0), g(x1)).

It is clear that g(x3) 6= g(x2). Put

q3 =
(
√
θ(ψ(d(g(x0), g(x1)))))

3ψ(d(g(x0), g(x1)))

ψ(d(g(x2), g(x3)))
.

Then q3 > 1. By continuing this process, we are arrived to construct a sequence {xn} in
X such that g(xn) ∈ Txn−1, g(xn) 6= g(xn−1) and

d(g(xn), g(xn+1)) < (
√
θ(ψ(d(g(x0), g(x1)))))

nd(g(x0), g(x1))

for all n. Let t =
√
θ(ψ(d(g(x0), g(x1)))), then 0 < t < 1. For n < m, by the triangle

inequality

d(g(xn), g(xm)) ≤ d(g(xn), g(xn+1)) + d(g(xn+1), g(xn+2)) + . . .

+ d(g(xm−2), g(xm−1)) + d(g(xm−1), g(xm))

≤ tn(1 + t+ t2 + . . .)d(g(x0), g(x1))

= (
tn

1− t
)d(g(x0), g(x1))→ 0 as n→∞.

Therefore, for n < m, we obtain

d(g(xn), g(xm))→ 0 as n→∞.
We deduce

lim
m,n→∞

d(g(xn), g(xm)) = 0.

Thus {g(xn)} is a Cauchy sequence in (X, d). The proof is completed. �

The following hypothesis is required for the rest.
Hypothesis (A): For any sequence {xn}n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for
n ∈ N, then there is a subsequence {xnk

}nk∈N such that (xnk
, x) ∈ E(G) for nk ∈ N.
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Theorem 2.1. Let (X, d) be a complete metric space with a directed graph G. Assume
that g : X → X is a surjective map and T : X → Pb,cl(X) is g-graph preserving. Suppose
that T is a generalized g-Geraghty-type G-multivalued mapping in (X, d). Assume also
that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx,w ∈ Ty;
(iii) the hypothesis (A) holds.
Then there exists u ∈ X such that g(u) ∈ Tu, that is, u is a coincidence point of g and T .

Proof. By (i), let x0 ∈ X be such that (g(x0), g(x1)) ∈ E(G) for some g(x1) ∈ Tx0. From
Lemma 2.1, there exists a sequence {xk}k∈N∪{0} in X such that for each k ∈ N,

g(xk) ∈ Txk−1 and (g(xk−1), g(xk)) ∈ E(G).

{g(xk)} is also a Cauchy sequence in X. Since X is complete, the sequence {g(xk)}
converges to a point w for some w ∈ X. Let u ∈ X be such that g(u) = w. In view of
(iii), there is a subsequence {g(xkn)} such that (g(xk), g(u)) ∈ E(G) for any n ∈ N. We
claim that g(u) ∈ Tu. We have

ψ(D(g(u), Tu)) ≤ ψ(d(g(u), g(xkn)) +D(g(xkn), Tu))

≤ ψ(d(g(u), g(xkn))) + ψ(D(g(xkn), Tu))

≤ ψ(d(g(u), g(xkn))) + ψ(H(Txkn , Tu))

≤ ψ(d(g(u), g(xkn))) + θ(ψ(M(g(xkn), g(u))))ψ(M(g(xkn), g(u)))

+ Lφ(N(g(xkn), g(u))).

Referring to (5) and (6),

M(g(xkn), g(u)) ≤ d(g(xkn), g(u)) and N(g(xkn), g(u)) = 0.

Since {g(xkn)} is subsequence of {g(xk)}, it converges to g(u) as n→∞, so D(g(u), Tu) =
0. Since Tu is closed, we conclude that g(u) ∈ Tu, that is, u is a coincidence point of g
and T . �

Example 2.1. Let X = [0, 1] be endowed with the usual metric d. Consider the directed
graph G defined by V (G) = X and

E(G) = {(x, x), (0,
1

2
), (

1

2
, 0), (0,

1

4
), (

1

4
, 0), (

1

2
,
1

4
), (

1

4
,
1

2
) : x ∈ X}.

Let T : X → Pb,cl(X) be defined by

Tx =


{14} if x = 1,
{0, 12} if x ∈ (0, 1)− {12 ,

1√
2
},

{12} if x ∈ {0, 12 ,
1√
2
}.

Let g : X → X be defined by g(x) = x2. Consider ψ(t) = t and θ(t) = t+1
t+2 . Then it is

easy to check that T is a g-Geraghty-type G-multivalued mapping. It is straightforward to
check that the conditions (i), (ii), and (iii) of Theorem 2.1 are satisfied. On the other
hand, if (g(x), g(y)) ∈ E(G), then H(Tg(x), T g(y)) = 0. Hence, if for all x, y ∈ X such
that (g(x), g(y)) ∈ E(G), then

ψ(H(Tx, Ty)) ≤ θ(ψ(M(g(x), g(y))))ψ(M(g(x), g(y))) + Lφ(N(g(x), g(y))).

By Theorem 2.1, there exists u ∈ X such that g(u) ∈ Tu. In this example, u = 1√
2
.
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3. Main results: the case s > 1

Here, we consider the case s > 1. First, we introduce the notion of a g-Geraghty-type
G-contraction multivalued mapping in the setting of b-metric spaces.

Definition 3.1. Let (X, d) be a b-metric space with a directed graph G and with a co-
efficient s > 1. Let T : X → Pb,cl(X) be a multivalued mapping. We say that T is
a generalized g-Geraghty-type G-contraction multivalued mapping in the b-metric space
(X, d) provided that
(i) T is g-graph preserving;
(ii) for every x, y ∈ X such that (g(x), g(y)) ∈ E(G), whenever there exists some L ≥ 0
such that for

M(x, y) = max{d(g(x), g(y)), D(g(x), Tx), D(g(y), T y),
D(g(x), Ty) +D(g(y), Tx)

2s
}
(14)

and N(g(x), g(y)) = min{D(g(x), Tx), D(g(y), Tx)}, (15)

we have

ψ(s3H(Tx, Ty)) ≤ β(ψ(M(g(x), g(y))))ψ(M(g(x), g(y))) + Lφ(N(g(x), g(y))), (16)

for all x, y ∈ X, where β ∈ Fs and ψ, φ ∈ Ψ.

Remark 3.1. The functions belonging to F are strictly smaller than 1
s2

. Then, the ex-
pression β(ψ(M(g(x), g(y)))) in (16) satisfies

β(ψ(M(g(x), g(y)))) <
1

s2
for all x, y ∈ X with x 6= y.

Lemma 3.1. Let (X, d) be a b-metric space with a directed graph G and with a coefficient
s > 1. Assume that g : X → X is a surjective map and T : X → Pb,cl(X) is g-graph
preserving. Suppose also that T is a generalized g-Geraghty-type G-contraction multivalued
mapping in (X, d). Assume that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx and w ∈ Ty.
Then there exists a sequence {xk}k∈N∪{0} in X such that for each k ∈ N, we have

g(xk) ∈ Txk−1
(g(xk−1), g(xk)) ∈ E(G)

{g(xk)} is a Cauchy sequence in X.

Proof. Since g is surjective, there exists x1 ∈ X such that g(x1) ∈ Tx0 and (g(x0), g(x1)) ∈
E(G). Let us take a real q such that 1 < q < s. Then

0 < D(g(x1), Tx1) ≤ H(Tx0, Tx1) < qH(Tx0, Tx1).

Hence, By Lemma 1.2 and regarding again as g is surjective, there exists x2 ∈ X such
that g(x2) ∈ Tx1 and

ψ(d(g(x1), g(x2))) < ψ(qH(Tx0, Tx1)) ≤ qψ(s3H(Tx0, Tx1)) (17)

≤ qβ(ψ(M(g(x0), g(x1))))ψ(M(g(x0), g(x1))) + qLφ(N(g(x0), g(x1)))

<
q

s2
ψ(M(g(x0), g(x1))) + qLφ(N(g(x0), g(x1))),
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where

M(g(x0), g(x1)) = max{d(g(x0), g(x1)), D(g(x0), Tx0), D(g(x1), Tx1), (18)

D(g(x0), Tx1) +D(g(x1), Tx0)

2s
}

≤ max{d(g(x0), g(x1)), D(g(x1), Tx1),
D(g(x0), Tx1)

2s
}

≤ max{d(g(x0), g(x1)), D(g(x1), Tx1),
D(g(x0), Tx1)

2s
}

and

N(g(x0), g(x1)) = min{D(g(x0), Tx0), D(g(x1), Tx0)} (19)

≤ min{d(g(x0), g(x1)), d(g(x1), g(x1))} = 0.

Since

D(g(x0), Tx1)

2s
≤ [d(g(x0), g(x1)) +D(g(x1), Tx1)]

2s
≤ max{d(g(x0), g(x1)), D(g(x1), Tx1)},

we get

M(x0, , x1) ≤ max{d(g(x0), g(x1)), D(g(x1), Tx1)}.

If max{d(g(x0), g(x1)), D(g(x1), Tx1)} = D(g(x1), Tx1), then by (17), we have

ψ(D(g(x1), T g(x1))) ≤ ψ(d(g(x1), g(x2)))

<
q

s2
ψ(D(g(x1), Tx1)) < ψ(D(g(x1), Tx1)),

which is a contradiction. Hence, max{d(g(x0), g(x1)), D(g(x1), Tx1)} = d(g(x0), g(x1)),
and so by (17),

ψ(d(g(x1), g(x2))) ≤
q

s2
ψ(d(g(x0), g(x1))). (20)

Since ψ ∈ Ψ and q
s2
< 1, we have

ψ(
s2

q
d(g(x1), g(x2))) (21)

≤ s2

q
ψ(d(g(x1), g(x2))) ≤ ψ(d(g(x0), g(x1))).

The function ψ is increasing, so

d(g(x1), g(x2)) ≤
q

s2
d(g(x0), g(x1)).

Recall that g(x2) ∈ Tx1 and g(x1) /∈ Tx1, so it is clear that g(x2) 6= g(x1). Put

q1 =
q

s2
ψ(d(g(x0), g(x1)))

ψ(d(g(x1), g(x2)))
.

By (18) and (20), we have q1 > 1. If g(x2) ∈ Tx2, then x2 is a coincidence point of g and
T . Assume that g(x2) /∈ Tx2. Then,

0 < ψ(d(g(x2), Tx2)) ≤ ψ(H(Tx1, Tx2)) < q1ψ(H(Tx1, Tx2)).
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Hence, there exists g(x3) ∈ Tx2 such that

ψ(d(g(x2), g(x3))) < q1ψ(s3H(Tx1, Tx2))

≤ q1β(ψ(M(g(x1), g(x2))))ψ(M(g(x1), g(x2))) + q1Lφ(N(g(x1), g(x2))).

Similarly, M(g(x1), g(x2)) ≤ d(g(x1), g(x2)) and N(g(x1), g(x2)) = 0. So, in addition to
(20), by a property of (β), we have

ψ(d(g(x2), g(x3))) ≤
q

s2
ψ(d(g(x0), g(x1)))

ψ(d(g(x1), g(x2)))
ψ(d(g(x1), g(x2))) (22)

= (
q

s2
)2ψ(d(g(x0), g(x1))).

Again, by (21), we obtain

d(g(x2), g(x3)) ≤ (
q

s2
)2d(g(x0), g(x1))

It is clear that g(x2) 6= g(x3). Let

q2 =
( q
s2

)2ψ(d(g(x0), g(x1)))

ψ(d(g(x2), g(x3)))
.

Then q2 > 1. If g(x3) ∈ Tx3, then x3 is a coincidence point of g and T . Assume that
g(x3) /∈ Tx3. Then,

0 < ψ(d(g(x3), Tx3)) ≤ ψ(H(Tx2, Tx3)) < q2ψ(s3H(Tx2, Tx3)).

Thus, there exists g(x4) ∈ Tx3 such that

ψ(d(g(x3), g(x4))) < q2ψ(s3H(Tx2, Tx3)) (23)

≤ q2β(ψ(M(g(x2), g(x3))))ψ(M(g(x2), g(x3))) + q2Lφ(N(g(x2), g(x3)))

Similarly M(g(x2), g(x3)) ≤ d(g(x2), g(x3)) and N(g(x2), g(x3)) = 0. So, by (12),

ψ(d(g(x3), g(x4))) ≤
q2
s2
ψ(d(g(x2), g(x3))) ≤

( q
s2

)3ψ(d(g(x0), g(x1)))

ψ(d(g(x2), g(x3)))
ψ(d(g(x2), g(x3)))

(24)

= (
q

s2
)3ψ(d(g(x0), g(x1))).

Again, by (21),

d(g(x3), g(x4)) ≤ (
q

s2
)3d(g(x0), g(x1)).

Put

q3 =
( q
s2

)3ψ(d(g(x0), g(x1)))

ψ(d(g(x3), g(x4)))
.

Then q3 > 1. By continuing this process, we are arrived to construct a sequence {g(xn)}
in X such that g(xn) ∈ Txn−1 and g(xn) 6= g(xn−1). Also,

d(g(xn), g(xn+1)) < (
q

s2
)nψ(d(g(x0), g(x1)))
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for all n. Now, using the triangle inequality, we write for n < m

d(g(xn), g(xm)) ≤ sd(g(xn), g(xn+1)) + s2d(g(xn+1), g(xn+2)) + . . .

+ sm−n−2[d(g(xm−2), g(xm−1)) + d(g(xm−1), g(xm))])

≤ s( q
s2

)n(1 + s(
q

s2
) + s2(

q

s2
)2 + . . .)d(g(x0), g(x1))

= [
s( q
s2

)n

1− s( q
s2

)
]d(g(x0), g(x1))→ 0 as n→∞.

Therefore, by symmetry

lim
m,n→∞

d(g(xn), g(xm)) = 0.

We deduce that {g(xn)} is a Cauchy sequence in (X, d). �

Our main result is stated as follows.

Theorem 3.1. Let (X, d) be a complete b-metric space with a directed graph G and with
a coefficient s > 1. Suppose that g : X → X is a surjective map and T : X → Pb,cl(X)
is g-graph preserving. Assume also that T is a generalized g-Geraghty-type G-contraction
multivalued mapping in (X, d). Suppose that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx and w ∈ Ty;
(iii) (A) holds.
Then there exists u ∈ X such that g(u) ∈ Tu, that is, u is a coincidence point of g and T .

Proof. By (i), choose x0 ∈ X such that (g(x0), g(x1)) ∈ E(G) for some g(x1) ∈ Tx0. By
Lemma 3.1, there exists a sequence {xk}k∈N∪{0} in X such that for each k ∈ N

g(xk) ∈ Txk−1, (g(xk−1), g(xk)) ∈ E(G),

and {g(xk)} is a Cauchy sequence in X. The b-metric space (X, d) is complete, so the
sequence {g(xk)} converges to a point w for some w ∈ X. g is surjective, then there exists
u ∈ X such that g(u) = w. In view that (A) holds, there is a subsequence {g(xkn)} such
that (g(xk), g(u)) ∈ E(G) for any n ∈ N. We claim that g(u) ∈ Tu. We have

ψ(D(g(u), Tu)) ≤ ψ(sd(g(u), g(xkn)) + s3D(g(xkn), Tu))

≤ ψ(sd(g(u), g(xkn))) + ψ(s3H(Txkn , Tu))

≤ s(ψ(d(g(u), g(xkn))) + β(ψ(M(g(xkn), g(u)))))ψ(M(g(xkn), g(u)))

+ Lφ(N(g(xkn), g(u))).

By (18) and (19), we obtain

M(g(xkn), g(u)) ≤ d(g(xkn), g(u)) and N(g(xkn), g(u)) = 0.

Because {g(xkn)} is a subsequence of {g(xk)}, so it converges to g(u) as n → ∞. Thus
D(g(u), Tu) = 0. Having in mind that Tu is closed, we conclude that g(u) ∈ Tu. �

4. consequences

Taking L = 1 and ψ(t) = t in (16), we obtain the following result.

Corollary 4.1. Let (X, d) be a complete b-metric space with a directed graph G and with
a coefficient s > 1. Assume that g : X → X is a surjective map and T : X → Pb,cl(X) is
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g-graph preserving satisfying the following:
if for all x, y ∈ X with (g(x), g(y)) ∈ E(G), then

s3H(Tx, Ty) ≤ β(M(g(x), g(y)))M(g(x), g(y)).

Suppose also that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx,w ∈ Ty;
(iii) (A) holds.
Then there exists u ∈ X such that g(u) ∈ Tu.

Corollary 4.2. Let (X, d) be a complete b-metric space with a directed graph G and with
a coefficient s > 1. Assume that g : X → X is a surjective map and T : X → Pb,cl(X) is
g-graph preserving satisfying the following:
for all x, y ∈ X, if (g(x), g(y)) ∈ E(G), then

ψ(s3H(Tx, Ty)) ≤ β(ψ((d(g(x), g(y)))))ψ(d(g(x), g(y))) + Lφ(N(g(x), g(y))),

for all x, y ∈ X, where β ∈ F and ψ, φ ∈ Ψ and

and N(x, y) = min{d(x, Tx), d(y, Tx)}. (25)

Suppose also that
(i) there exists x0 ∈ X such that (g(x0), u) ∈ E(G) for some u ∈ Tx0;
(ii) if (g(x), g(y)) ∈ E(G), then (z, w) ∈ E(G) for all z ∈ Tx,w ∈ Ty;
(iii) (A) holds.
Then there exists u ∈ X such that g(u) ∈ Tu.
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