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STUDY OF THE FIRST BOUNDARY VALUE PROBLEM FOR A
FOURTH ORDER PARABOLIC EQUATION IN A NONREGULAR
DOMAIN OF RN*!

AREZKI KHELOUFT!, §

ABSTRACT. This paper is concerned with the extension of solvability results obtained
for a fourth order parabolic equation, set in a nonregular domain of R* obtained in [1], to
the case where the domain is cylindrical, not with respect to the time variable, but with
respect to IV space variables, N > 1. More precisely, we determine optimal conditions
on the shape of the boundary of a (N + 1)-dimensional domain, N > 1, under which the
solution is regular.
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1. INTRODUCTION
Let Q be an open set of R? defined by
Q={(t,z)) eR*:0<t< Ty (t) <m1 <2 (t)}

where T is a finite positive number, while 1 and @2 are continuous real-valued functions
defined on [0, T, Lipschitz continuous on [0, 7], and such that

©2 (t) — Q1 (t) > 0, fort € ]0, T]

and
©2(0) = ¢1 (0) =0.
The lateral boundary of € is defined by

Di={(tpt)eR*:0<t<T},i=1,2

For fixed positive numbers b;,i = 1, ..., N—1, with N > 1, let @ be the (N +1)-dimensional
domain defined by
N-1
Q =0 x ]0, bz[ .
1
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In this work, we study the existence and the regularity of the solution of the fourth order
parabolic equation with Cauchy-Dirichlet boundary conditions

o + Zszl 8§ku =f in Q,
uly_g =0,

. 1
uly, = Onuly, =0,i=1,2, (1)
u‘zouzb = awz“’zouzb == 8:1:Nu|zou2,, =0,

where ¥; = T'; X Hfj:—ll 10,bx[, : = 1, 2, X is the part of the boundary of @) where
=0,k =2,..., N and X is the part of the boundary of ) where

rp = bp_1,k = 2,...,N. The right-hand side term f of the equation lies in L2 (Q) the
space of square-integrable functions on @) with the measure wdtdz;...dxy. Here the weight
w is a real-valued differentiable function on [0, 7).

We are especially interested in the question of what sufficient conditions, as weak as
possible, the functions ¢, 2 and w must verify in order that Problem (1) has a solution
with optimal regularity, that is a solution u belonging to the anisotropic weighted Sobolev
space

Hy3 (@) = {ue HY Q) uly o =0}
with
HY Q) ={ue L2(Q): O, 81t 020N u e L2 (Q), 1 <iy + ... +iy < 4}
and uly o = 0 means that

uli—g = ulg, = Oryuly, = ulgyus, = Orttlgus, = - = Oeyulgus, =0,i=1,2.

Observe that the domain () considered here is nonstandard since it shrinks at
t =0, p2(0) = 1 (0). This prevents the nonregular domain @ to be transformed into a
usual cylindrical domain by means of a smooth transformation. On the other hand, the
semi group generating the solution cannot be defined since the initial condition is defined
on a set measure zero.

In Sadallah [2] a similar result has been obtained for a 2m-parabolic operator in the
case of one space variable. The solvability of boundary value problems for a 2m-th order
parabolic equation in Holder spaces for noncylindrical domains (of the same kind but which
cannot include our domain) with a nonsmooth (in t) lateral boundary was established in
(3], [4] and [5]. Further references on the analysis of parabolic problems in noncylindrical
domains are: Galaktionov [6], Baderko [7], Mikhailov [8], Savaré [9], Hoffmann and Lewis
[10], Labbas, Medeghri and Sadallah [11], [12] and Kheloufi et al. [13], [14], [15], [16] and
[17].

The organization of this paper is as follows. In Section 2, we prove that Problem (1)
admits a (unique) solution in the case of a truncated domain. In Section 3 we approximate
@ by a sequence (@) of such domains and we establish (for 7" small enough) a uniform
estimate of the type

HUNHHU{A(QH) <K ”fHLg(Qn) )

where wu,, is the solution of Problem (1) in @, and K is a constant independent of n.

Finally, in Section 4 we prove the two main results of this paper.

The main assumptions on the functions ¢1, @92 and w are
oL (t) (p2— 1) (t) — 0 ast—0, i=1, 2, (2)
YVt e [0,T]:w(t) >0, (3)
and

w is a decreasing function on ]0,77]. (4)
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Note that this work may be extended at least in the following directions:

1. The function f on the right-hand side of the equation of Problem (1), may be taken
in L%, (Q), p € ]1,00[. The domain decomposition method used here does not seem to be
appropriate for the space L% (Q) when p # 2.

2. The nonregular domain () may be replaced by a noncylindrical conical type domain,
such as, for example, the following domain

Q= {(t,$1,$2,...,$N) eRNL0< /a2 bad . tat <pt),0<t< T}
where ¢ is similar to ¢;,7 = 1, 2. These questions will be developed in forthcoming works.

2. RESOLUTION OF PROBLEM (1) IN A TRUNCATED DOMAIN ),
In this section, we replace @ by @Q,,n € N* and % <T:
1
Qn = {(t,xl,...,x]v) €Q: E <t < T} .

Theorem 2.1. For each n € N* such that % < T, the problem

Ortin + 3 O tn = fn € L (Qn)

un|t:% = un‘zm = 81'1“’71’21-," =0,1=1,2, (5)

un‘EO,nUEb,n - aIQun‘EOmUEb,n =T aINu”|Eo,nUEb,n =0,
admits a (unique) solution u, € Hy* (Q,). Here,
Sin={(t,gi(t) ER?: L <t < T} x 2!11]0, bel,i=1,2, X, is the part of the bound-

ary of Qn where xy, =0, k = 2,..., N and X, is the part of the boundary of (), where
Tl = bk—la k= 2, ,N

Proof of Theorem 2.1: The change of variables
z1— 1 (1)
(tv L1, T2y -y LUN) — (t, yl? ?/2, ceey yN) = (t7 o L2y ey .’EN) )
©2(t) — pa(t)
transforms @, into the cylindrical domain P,, = ] %, T[ x 10, 1 x Hizzl 10, b;[. Putting

Un (tv Y1, Y2, .- yN) = Un (ta L1, X2, .- .CEN)
and
9n (t7 Y1, Y2, .- yN) = fTL (tu L1y L2y -eey .’EN) )
then Problem (5) becomes
Opvn + a (t,y1) Oy vn + ¢ () 6§1vn + ZQ;Q 8§kvn =g, € L (P,)
vn|t:% = U"|Z‘¢,Pn = 81/1””‘&,1% =0,i=1, 2,
Un’zoypnuﬁbvpn = 8yzvn|207pnui]b7pn == 8yN,Un’20’anEb’Pn = O’
where Sy p, = |1, T[x {0} x [0, 6], So.p, = | 1, T[ % {1} x 112,110, bs[, So,p, is the
part of the boundary of P, where x;, =0,k =2,..., N, ¥ p, is the part of the boundary of
P, where zp, = by_1,k=2,....,N, c(t) = i and a (t,y1) = _ = ) +er (O),

1
[p2()—p1 (D)]* ©2(6)—1(t)
Since the functions a,c and (2 — 1) are bounded when ¢ € ]%,T[, then the above

change of variable which is (N + 1)-Lipschitz preserves the spaces L2 and HY*. In other
words

fn € L2 (Qn) <= gn € L2 (Py), u, € HY* (Q)) <= v, € HYA (P,).



148 TWMS J. APP. ENG. MATH. V.5, N.1, 2015

Proposition 2.1. For each n € N* such that % < T, the following operator is compact
a (1) Oy, = Hylg (Pa) — LE (Pn).
Proof. P, has the "horn property” of Besov [19], so

§73
Dy, : Hg;j (P) — HE" (Py), vn — Oy vn,

3
. . . . . .. . . 153 .
is continuous. Since P, is bounded, the canonical injection is compact from HJ™ (P,) into
L? (P,), where

N-1 N-1
Hi3(P,) = L2 (i,T;HS’ (]0,1[>< I1 ]mm[)) nHi (:L,T;LQ (]Oal[x 11 ]Ovbi[» -

i=1 =1

For the complete definitions of the H™* Hilbertian Sobolev spaces see for instance [20].
Consider the composition

33
Oy, + Hy'y (Po) = HE” (Po) = L (Pa) ) vn = Oy, vn — Oy, vn,

then 0,, is a compact operator from H&ﬁ (P,) into L2 (P,). Since a(.,.) is a bounded

function for 2 < ¢ < T, the operator ady, is also compact from H&ﬁ (P,) into L2 (P,). O

So, thanks to Proposition 2.1, to complete the proof of Theorem 2.1, it is sufficient to
show that the operator

N
O +c(t) 631 + Z a;k
k=2

is an isomorphism from Héﬁ (P,) into L2 (Py).

Lemma 2.1. For each n € N* such that % < T, the operator
N
O +c(t)oy, +> ay
k=2

is an isomorphism from Héf) (P,) into L% (Py,).

Proof. Since the coefficient m is continuous in P,, the optimal regularity is given

by Ladyzhenskaya-Solonnikov-Ural’tseva [18]. O

We shall need the following result in order to justify some calculations in the next
section, see [1].

Lemma 2.2. For each n € N* such that % < T, the space

{un c H* (Pn); un‘aPn—FT = O}
is dense in the space

{un e H" (Pn) ) un|8Pn—FT = 0} :
Here 't be the part of the boundary of P, wheret="T.

Remark 2.1. In Lemma 2.2, we can replace P, by Q, with the help of the change of
variable defined above.
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3. AN "ENERGY” TYPE ESTIMATE

For each n € N* such that < T, we denote by u, € Hy* (Qn) the solution of Problem
(5) corresponding to the rlght hand side f,, = f] o, € L? (Qy). Such a solution exists by
Theorem 2.1.

Proposition 3.1. Assume that @1 and @o fulfil condition (2) and the weight function w
verifies assumptions (3) and (4). Then, for T small enough, there exists a constant M
independent of n such that

[unllgrag,y < M fallzz @) < Mz q) -

where
1/2
4
2 2
[unll grag,y = | lunllzz @) + 10uallzz ,) + Z [reEgsicamiRN UnHL2 On)

11,82,..,AN=0
1<i1 gt ki <4

Remark 3.1. Let € > 0 be a real which we will choose small enough. The hypothesis (2)
implies the existence of a real number T > 0 small enough such that

vt € (0,T),]¢; (1) (2 — 1)’ ()] <€, i =1, 2. (6)

To derive the basic inequality of Proposition (3.1), we need the following lemmas.

Lemma 3.1. Let |y,6] C R. There exists a positive constant Ko (independent of v and

§) such that for each v € H* (7, 6]) N HE (], d])
2

@ < (-~ VK 1=0,1,2,3.

|+ ’L2(]%6[ =0=) 27 gy 02

The proof of the previous Lemma can be found in [1].

(4) ’

Lemma 3.2. For every e > 0, chosen such that (p2(t) —p1(t)) < €, there exists a constant
C1 independent of n such that

! 2(4-1) || 94 2 _
|0, vy <GV 0l g, 1=0.1,2,5
Proof. Replacing in Lemma 3.1 v by u,, and ]y, d[ by ]gpl (t), 2 ()], for a fixed ¢, we obtain
2 2
fﬁ(ﬂgﬂ (0L, un)” dy K (p2(t) — 200 ;2((:) (0% un)” da:

IN A

24-10) fﬁt) (a;ilun) dz,.

Multiplying the previous inequality by w (¢) (which is positive) and integrating with respect
to t, then with respect to xs, x3,..., xn, we get the desired result with Cy = Kos. O

Lemma 3.3. Let us denote the inner product in L2 (Qy) by (.,.). Under the assumptions
of Proposition (3.1), we have
i) 2(0pun, Op un) > —Ke H&%lunHLQ (@n) (for T' small enough).

i) 2(O¢tin, Oy un) >0, k=2,...,N.

i) 2(a§jun,a§kun> = xjagkun ,j=1,.,N—1, k=5+1,..,N.

LE(Qn)

Proof. 1) Estimation of 2(0yuy,d; u,) : We have

Ot 02 un = Oy (003 ) — Doy (Oy Ot 02, 1) + 20y (02,un)” .
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Then
2(atun,a§1un) = Qan Gtun.afglun.w (t) dtdry...dzy
2
= f@Qn [(Gglun) v+ 2 (8tun.8§’1un — 8x13tun.8£1un) I/xl} w(t)do
—Jo., (6§1un)2 W(t) dtdzy...dzy.
We shall rewrite the boundary mtegral making use of the boundary conditions. On the
parts of the boundary of Q,, wheret = =, 2, =0, k=2,.... Nand x = bp_1, k=2,...., N
we have 0, u, = 0 and consequently 821un = 831un = () The corresponding boundary

integral vanishes. On the part of the boundary where ¢t = T', we have v, =0 and 1, = 1.
Accordingly the corresponding boundary integral

by—1 b1 pe2(T) 9
/ / / un (T, xl,...,xN)] w(T)dxy...dzy
w1 (

is nonnegative. On the part of the boundary where x1 = ; (t), i = 1,2, we have
' _ (DT ei) )”1 (t)

_ ()
\/1+(30§)2(t)’ Vi+(e

we obtain

and v = 0y, up, = 0. Differentiating with respect to ¢

O, (t, i () oy ) = — @ () Opytin (£, 05 () 5oy TN)

04Oyt (£, 05 (1) 5 ooy zN) = — 05 (t) Q,%lun (typi (t) .., zN) -
Consequently, the corresponding boundary integrals I; and Is are the following:

n o= - (fol 0" [T () [02,un (b1 (1) s en)]” @ (1) didas...day
I, = bN ! f w0 (t [ U (t, 02 (t), ...,xN)]2 w (t) dtdzxs...dzy.
In virtue of (3) and (4), we have
2(Oytn, Oy un) > — |In| — |Io] . (7)

Lemma 3.4. There exists a constant K3 independent of n such that
2 .

Proof. We convert the boundary integral I into a surface integral by setting

[02 wy, (t, 1 (t),a:Q,...,a:N)]2 = —%[8§1un(t,x1,xz,---,xw)]

P (t) %) (t)_x 9 2

_ <p12(t)( )8731 (M [3 ] }dml
p2(t) _pa(t)—a1 52

-2 w1(t) p2(t)— w()a una L undry

2(t) 1
T wl(t) P2t —p1(0) [92, n] dzy.

z1=p2(1)

z1=1(t)

2

Then, we have

Il - bN ' fl [ <t7(p1 (t),flfg,...,fBN)]2 W(t)dtdxgde
2
_an 502((531() [52 Up, (t,21, ..., zn)] " w (t) dtdey ...dzy
+2 Jo, o et () (02, un) (02, un) w (t)dtdz:...dzy.

Thanks to Lemma 3.1, we can write

2 2
;2&? [02,u,)? dzy < Ko [palt) — o1 ()] ;2(3? (02 ] dy.
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Therefore

2 / )
fWZ(t [ 1 n} %w (t) dl’l < K2 |§0/1‘ [902(t) — (pl(t)]S ;iz(gf)) [8§1un] w (t) dxl?
consequently
L] < K[y lefl 802( ) — 901(t)]3 (04 up)’ w (t) dtdzy...day
+2 fQ |901| } Un} ‘ Un‘ w (t) dtdzry...dxy,

. pa2(t)—x
since | 220ty

< 1. Using the inequality

2 2
2 ‘go’laglun’ |0§1un| < € (3§1un) + % (@’1)2 (3§1Un)
for all € > 0, we obtain
L] < K fy, lehl lea(t) = o1 (O (0, un)”w (1) dtday...day
+ an € (8§1un)2 w (t) dtdzy...dzy + 1 an (¢h)? (aglun)Z w (t) dtdz;...dzy.

Lemma 3.2 yields

%an (¢h)? (3§1un)2w (t) dtdzy...dz N

< Kol [, (1) [pa(t) — o1 (8)]* (0, un)” w (t) diday...dy.
Thus,

2
L < K[, [I% | [p2(t) — o1 (O] + £ (21)* [ia(t) — @1(75)]4} (0z,un)” w () dt...dzy

+ an (8§1un)2w (t) dtdzy...dx N
(Ka+1)e [, (0% un)’w (t) dtde, ...duy,

IN

since | (p2(t) — @1(2))? [(2(t) — 1(t)) — ¥} (@2(t) — ¢1(t))?]| < € thanks to the condi-
tion (6). Finally, taking K3 = (K2 + 1), we obtain

‘11’ ngHﬁg

IN

1“nHLg(Q")'

The inequality
12|

IA

Kse Haill‘nHLg(an

can be proved by a similar argument.
2) Estimation of 2(8tun,8§kun>, k=2,...,N : We have
Ortin O wn = By (Ot 03 ) — Dy, (D Ot 02, ) + 18, (92, u)”.
Then
2<8tun,8§kun> = 2an atun.aikun.w (t) dtdzy...dxy
= faQn [( 92 n)2 v+ 2 (8tun.8§’kun — &Ckatun.(‘)%kun) l/gck} w(t)do
—fQ (82 un) w ,(t) dtd:l?l...dl‘]\[.

Using the Cauchy-Dirichlet boundary conditions, we see that the above boundary integral
is nonnegative. Consequently in virtue of (4), we have

2<8tun,8§kun> > 0. (8)
3) Estimation of 2(8§jun,8§kun>,j =1,..N—1,k=47+1,..., N: We have

Ok un O e = O,y (03 0002 un ) = Oy (0210000, 0%, un ) + 0y, 03, 10,00, 02, .
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Then
20L un, 02 un) = 2 [o O un. 0k unw(t) dt dy...dey
= 2an O (8§jun.8§kun> w(t) dt dry...dxy
—2 an aﬂvk agjunaxjagkun) W (t) dt dl‘l...de
+2 an 8Ij @;kun&pk@ﬁjunw (t) dt dxy...dxy
= 2ana 03 Unaxkagjunw (t) dt dxq...dxn

Lj Tk

+2 faQn |:8§jun'a;lkunyxj - agjun-a O3 upvy, | w(t)do.

Tj-xy

We shall rewrite the boundary integral making use of the boundary conditions. On the
parts of the boundary of ), where t = %, ., =0,k=2,...Nand zp =by_1,k=2,...., N,
we have 0;,u, = 0 and consequently 3§jun = 0. The corresponding boundary integral
vanishes. On the part of the boundary where ¢ = T, we have v,, = 0. Accordingly
the corresponding boundary integral vanishes. By using again Green formula and the

Cauchy-Dirichlet boundary conditions, we obtain

2 /Q Dy O3 -0, 02w (1) dt davy..day = 2)8§j8§kun .
Finally,
4 4 _ 2 92 s 4
20w, O ) = Q\axjazkun pigy =L N =LE= 4L N (9)

0

Proof of Proposition (3.1): We have
1Fall 720 = (Dettn + D5y 1, tn, Ostin + Y4, O3, tin)
N 2
= 0unllzz g, + et 105,12 o,
N N-
2 k—1(Orun, a;:lkun> +2 Zj:ll Zk:j+1<8§juna aikun>-
Summing up the estimates (7), (8) and (9) of the inner products and making use of Lemma
3.4, we then obtain
N 2
falZz @y = 10aunllZa g, + i 108, unll7s o,
=[] =[]

N— N
2N N (02 02

T X

LE(Qn)

v

Hatun”%g(gn) + (1 - 2K3¢) Haﬁl“”Hi‘%(Qn)
+ ZkN:Q H%%Hig(@n) +2 Z;'V;ll Zg:j“ ‘ L2(Qn)

Then, it is sufficient to choose € such that (1 —2K3e) > 0 to get a constant Ky > 0
independent of n such that

2 92
arj 0y, Un

1 fnll 2@y = Kollunllgra,) -
and since

Ifnllz < Ifllz(q)>
there exists a constant M > 0, independent of n satisfying

||UnHH(};4(Qn) <M anHLg(Qn) <M Hf”Li(Q)'
This completes the proof of Proposition (3.1).
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4. MAIN RESULTS
We are now able to prove the main results of the paper.
4.1. Local in time result.

Theorem 4.1. Assume that @1 and @o fulfil condition (2) and the weight function w
verifies assumptions (3) and (4). Then for T small enough, the fourth order parabolic

operator
N
L=0,+)» 0,
k=1

is an isomorphism from Héf) (Q) into L? (Q).

Proof. 1) Injectivity of the operator L: Let us consider u € Héﬁ (Q) a solution of
the problem (1) with a null right-hand side term. So,

N
Oru + Z@iku =0in Q.
k=1

In addition u fulfils the boundary condtions
uli—g = ulg, = Onyuly, = ulg,us, = Orptlgus, = - = eyulgyus, = 0,0 =1,2.

Using Green formula, we have
Jo (ru+ S, 04 u) ww (t) dt day...day
= Jag {1 > v + Sy (83w — 92, w0y, u) ka} w(t)do
+Jo <Zk 1 |02, ul ) (t) dt dzy...dzy — [, LuP o' () dt day...dzy

where v, vy, ,...,Vz, are the components of the unit outward normal vector at 9Q). Taking
into account the boundary conditions, all the boundary integrals vanish except
faQ lul?w (t) v; do. We have

5 bn—1 b1 pre2(T) )
/ lu|” w tha—/ / / |u|”w (T) dxidzs...dxN.
oQ

Then

Jo (8tu+ Zk 104 u) ww (t)dt dry...dey

= ObN ! fw(TT) 5 lul?w (T) daydxs...dey — fQ : lu? (t) dt dy...dzy

+Jy (Zk 1\ uf*) w(t) dt dy...dey.
Consequently

/ ((%u—i—z ) )dtdxl dxy =0
yields
/ (Z |02, ) t)dt dzy...dzy =0,

because

bv-1 br re2(T) | 5 1
/ / / —|u|"w (T) dzx1dzsy...dx N — / — |ul“’ (t)dt dzy...dzy >0
0 0 Jp1(T) 2 Q 2
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thanks to the conditions (3) and (4). This implies that Zivzl ’8§ku‘2 = 0 and consequently
u=...= 93, u = 0. Then, the hypothesis dyu + Zgzl 8§ku = 0 gives dyu = 0. Thus, u
is constant. The boundary conditions imply that « = 0 in ). This proves the uniqueness
of the solution of Problem (1).

2) Surjectivity of the operator L: Choose a sequence (Qy),cy- of the domains
defined above (see Section 2), such that @, € Q. Then, we have @, — Q, as n — oo.
Consider the solution u, € Hy? (Qn) of the Cauchy-Dirichlet problem

N .
Oytin + Zk:l 8§kun = fnin Qn
n ’ E)

Un|zo,nuzb7n = 8xz“n|zo,nuzb,n == a:vzv“n|zo,nuzbm =0,

where 3, = {(t, i (1)) e R?: L <t <T} x [12510,bk[, i = 1, 2, o, is the part of
the boundary of @, where x =0, k = 2,..., N, and X, is the part of the boundary of
Q, where x = bg_1, k = 2,..., N. Such a solution u,, exists by Theorem 2.1. Let w, the
0-extension of u, to @. In virtue of Proposition 3.1, we know that there exists a constant
C such that

+ 24 11,82,...,iN =0 :%11 ;3226916%“”
L3 (Q) 1<i1 +io+... iy <4

Il 2 ) + [[Brten < Clflleg-

L2(Q)

This means that u,, Oun, 853118?28;%1;” for 1 < 41 +id9 + ... +ixy < 4 are bounded
functions in L2 (Q). The following compactness result is well known: A bounded sequence
in a reflexive Banach space (and in particular in a Hilbert space) is weakly convergent.
So for a suitable increasing sequence of integers ng, k = 1,2, ..., there exist functions
w, v and v g, iy 1 <i1+i2+...+iy <4in L2 (Q) such that

o i1 i TN . . .
Up, — U, Optly, — U, 071005 ...0N Uny — Viyia,.in> L <1+ i2+ ... +iy <4

weakly in L2 (Q) as k — oc. Clearly,

v = dyu, Uiy fig,efin — 8;118;228;1;’Vu, 1<t1+04+...+iny <4

in the sense of distributions in Q and so in L2 (Q). So, u € H5* (Q) and

N
8tu+zaiku:f in Q.
k=1

On the other hand, the solution u satisfies the boundary conditions
ul,—g = uly, = Opuly, =0,i=1,2
and
u|20u2b = 812u|20U2b =..= GINU|EOUEb =0,
since
Vn € N*¥, “‘Qn = Uuy,.

This proves the existence of solution to Problem (1). This ends the proof of Theorem
4.1. O
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4.2. Global in time result. In the case where T is not in the neighborhood of zero, we
set ) = D1 U Dy U X7, where
Dy ={(t,x1,..,zn) €EQ:0<t <T1},
Dy = {(t,fbl,‘..,.’EN) e :Ti<t< T},
N-1
S = {(Th,21) € R?: 1 (Th) < 21 < o2 (T1)} x [] 10,01
i=1
with 7} small enough. In the sequel, f stands for an arbitrary fixed element of L2 (Q)
and f; = flp.,i=1,2.
Theorem 4.1 applied to the non-regular domain D;, shows that there exists a unique
solution vy € oL (D1) of the problem
Oy + Y ply 0F v = fr € L2 (Dy),
vy, = Onuily,, =0,i=1,2, (10)
01‘20,1U2b11 = 8$2U1|20’1U2b71 == aﬂ:N”ﬂEoJUEb,l = 07

Y1 are the parts of the boundary of Dy where x1 = ¢; (t), i = 1, 2, o1 is the part of
the boundary of Dy where x;, =0, k = 2,..., N and ¥ ; is the part of the boundary of D
where xp, = b1, k=2,...,N.

Hereafter, we denote the trace ”1’ET1 by ¢ which is in the Sobolev space H2 (Xr,)

because v; € Hy* (Dy) (see [20]). Now, consider the following problem in Dy
Opva + Y py OF v = fo € L2 (D),
UQ‘ETI :¢7 (11)
/02‘21_72 == ax11)2|2i72 == O, /L == ]., 27

UQ‘Z()’QUEb’Q = 8x202|20,2UZb72 = e = aIN/U2|EO72UEb,2 = 0’

Y2 are the parts of the boundary of Dy where 21 = ¢; (t), i = 1, 2, ¥y is the part of
the boundary of Dy where 23, =0, k = 2,..., N and ¥ > is the part of the boundary of D,
where xp = by_1, k=2,...,N.

We use the following result, which is a consequence of [20, Theorem 4.3, Vol.2] to solve
Problem (11).

Proposition 4.1. Let R be the cylinder 10,T[ x 10,1 x T[X,10,b:[, f € L2 (R) and
ug € H? (o). Then, the problem

O + legv:1 afclku = f in R,
= Up,
= Onul =0,i=1,2,

u|8R7(70U’}/i) = 8$2U|BR7("/0U"/Z')
where yo = {0} x 10, 1[ x TT;7 110, b5[, 71 =10, x {0} x [T5"]0,b;] and
v2 =]0,T[ x {1} x Hfi}l 10, b:[, admits a(unique) solution uw € H5* (R) if and only if the
following compatibility conditions are fulfilled

0% o o =0, k=01 j=1,.,N.

0

ul

= axNu‘aRi(,yOU%) == 0, 'L == 1; 2,

The transformation

(taxlvm% 71‘]\7) — (tvylayQa 7yN) = (tv (802 (t) - ¥1 (t))xl + ¢1 (t) y L2y eeey :I:N)
leads to the following result:
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Proposition 4.2. Problem (11) admits a (unique) solution vy € Hy™* (Dy) if and only if
the following compatibility conditions are fulfilled

ok =0,k=0,1; j=1,..,N.
5% os, J

Remark 4.1. We can observe that the boundary conditions of Problems (10) and (11)
yield

Ul\le = 02’2T1
3
and 6§jvi . € Hj(X7); k=0,1; j=1,...,N.. Then the compatibility conditions

T

ok ] —0,k=0,1; j=1,.. N
;Y o5z, J

are satisfied since vllle =1.

Now, consider the function u in @ defined by

U1 in D1
U= .
v9 in Doy

where v; and vy are the solutions of Problem (10) and Problem (11) respectively. Observe
that 1)1|2T1 = ”2|ET1’ see Remark 4.1, so

8’;],111‘ :ag’;jvg‘ k=0,1; j=1,..,N.

1 Sr
This implies that u € Ho* (Q) and w is the (unique) solution of Problem (1) for an
arbitrary 7.

Our second main result is as follows.

Theorem 4.2. Under the assumptions (2), (3) and (4) on the functions 1, p2 and w,
Problem (1) admits a (unique) solution u € HY* (Q).

REFERENCES

[1] Kheloufi, A., On a fourth order parabolic equation in a nonregular domain of R?*, Mediterr. J. Math.,
doi: 10.1007/s00009-014-0429-7

[2] Sadallah, B. K., (1983), Etude d’un probléme 2m-parabolique dans des domaines plan non rectangu-
laires. Boll. Un. Mat. Ital., 2-B (5), pp. 51-112.

[3] Baderko, E. A., (1992), On the solution of boundary value problems for linear parabolic equations of
arbitrary order in noncylindrical domains by the method of boundary integral equations, Ph D Thesis,
Moscow.

[4] Cherepova, M. F., (2006), On the solvability of boundary value problems for a higher order parabolic
equation with growing coefficients, Doklady Mathematics, 74 (3), pp. 819-820.

[5] Cherepova, M. F., (2013), Regularity of solutions of boundary value problems for a second-order
parabolic equation in weighted Holder spaces, Differential Equations, 1 (49), pp. 79-87.

[6] Galaktionov, V. A.; (2009), On regularity of boundary point for higer-order parabolic equations:
Towards Petrovskii-type criterion by blow-up approach, Nonlinear Differential Equations and Appli-
cations, 16, pp. 597-655.

[7] Baderko, E. A., (1976), On the solution of the boundary value problems for parabolic equations of
high order in domains with curvilinear lateral boundaries, Diff. Urav., 12 (2), pp. 1781-1792.

[8] Mikhailov, V. P., (1963), The Dirichlet problem for a parabolic equation I, Mat. Sb. (N.S.), 61 (103),
pp. 40-64.

[9] Savaré, G., (1997), Parabolic problems with mixed variable lateral conditions: an abstract approach,
J. Math. Pures Appl., 76, pp. 321-351.



A. KHELOUFI : STUDY OF THE FIRST BOUNDARY VALUE PROBLEM FOR A FOURTH ORDER ... 157

[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]
[19]

[20]

Hofmann S. and Lewis J. L., The LP regularity problems for the heat equation in noncylindrical
domains, Journal of Functional Analysis, 220, pp. 1-54.

Labbas, R., Medeghri, A. and Sadallah, B. K., (2002), On a parabolic equation in a triangular domain.
Applied Mathematics and Computation, 2002, (130), pp. 511-523

Labbas, R., Medeghri, A. and Sadallah, B. K., (2005), An L? approach for the study of degenerate
parabolic equation, Elec. J. Diff. Equs., 2005 (36), pp. 1-20.

Kheloufi, A. and Sadallah, B. K., (2010), Parabolic equations with Robin type boundary conditions
in a non-rectangular domain, Elec. J. Diff. Equs., 2010 (25), pp. 1-14.

Kheloufi, A., Labbas, R. and Sadallah, B. K., (2010), On the resolution of a parabolic equation in a
non-regular domain of R3, Differential Equations and Applications, 2 (2), pp- 251-263.

Kheloufi, A., (2012), Resolutions of parabolic equations in non-symmetric conical domains, Elec. J.
Diff. Equs., 2012 (116), pp. 1-14.

Kheloufi, A., (2013), Existence and uniqueness results for parabolic equations with Robin type bound-
ary conditions in a non-regular domain of R®, Applied Mathematics and Computation, 220, pp. 756-
769.

Kheloufi, A. and Sadallah, B. K., (2014), Study of the heat equation in a symmetric conical type
domain of R¥*! Mathematical Methods in the Applied Sciences, 37, pp. 1807-1818.

Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural’tseva, N. N., (1968), Linear and Quasi-Linear
Equations of Parabolic Type, A.M.S., providence, Rhode Island.

Besov, V., (1967), The Continuation of Function in L;}, and Wz}. Proc. Steklov Inst. Math.,89, pp.
5-17.

Lions, J. L. and Magenes, E., (1968), Problemes aux Limites Non Homogenes et Applications, Vol.1,2,
Dunod, Paris.

Arezki Kheloufi is a teacher researcher in the Department of Technology, Bejaia Uni-
versity, Algeria. He obtained his HDR in the year 2014. He has attended to national and
international talks and conferences. His research interests are: Parabolic equations in non

(o ﬂ regular domains, the operator?s sum method, singularities in BVP. He has publications

\', ;‘?J tions.

in various journals like: Electronic journal of differential equations, applied mathematics
= and computation, mathematical methods in the applied sciences, Georgian mathematical
journal, mediterranean journal of mathematics and differential equations and applica-




