
TWMS J. App. Eng. Math. V.3, N.1, 2013, pp. 10-32

HAAR BASIS METHOD TO SOLVE SOME INVERSE PROBLEMS

FOR TWO-DIMENSIONAL PARABOLIC AND HYPERBOLIC

EQUATIONS

R. POURGHOLI1, S. FOADIAN1, A. ESFAHANI1 §

Abstract. A numerical method consists of combining Haar basis method and Tikhonov
regularization method. We apply the method to solve some inverse problems for two-
dimensional parabolic and hyperbolic equations using noisy data. In this paper, a stable
numerical solution of these problems is presented. This method uses a sensor located at
a point inside the body and measures the u(x, y, t) at a point x = a, 0 < a < 1. We also
show that the rate of convergence of the method is as exponential. Numerical results
show that a good estimation on the unknown functions of the inverse problems can be
obtained within a couple of minutes CPU time at Pentium IV-2.53 GHz PC.

Keywords: Inverse problems, Haar basis method; Error analysis, Tikhonov regularization
method, Noisy data.

AMS Subject Classification: 65M32, 35K05, 35L02, 65T60.

Inverse problems are applied in many important scientific and technological fields.
Hence, analysis, design implementation and testing of inverse algorithms are also the
great scientific and technological interest.

The inverse heat conduction problem in a one-dimensional composite slab with rate-
dependent pyrolysis chemical reaction and outgassing flow effects is investigated using the
iterative regularization approach. The thermal properties of the composites are considered
to be temperature-dependent, [32].

Cheng-Hung Huanga, Chun-Ying Yeha, and Helcio R.B. Orlande presented an itera-
tive regularization method based on an inverse algorithm. The algorithm is applied to
simultaneously determine the unknown temperature, concentration-dependent heat, and
mass production rates for a chemically reacting fluid. This work is done using interior
measurements of temperature and concentration [17].

Kim et al. [27] solved an inverse heat conduction problem to estimate the surface
temperature from temperature readings. Su and Neto [28] solved a two-dimensional inverse
heat conduction problem to estimate the radial and circumferential transient dependence
of the strength of a volumetric heat source in a cylindrical rod. Huang and Tsai [16] solved
a three-dimensional inverse heat conduction problem to estimate the local time-dependent
surface heat transfer coefficients for plate finned-tube heat exchangers.

However, only few works have been done on the two-dimensional problems because of
the complicated interaction and reflection of the thermal wave [9, 8]. Yang Ching-yu,
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[9] developed the two-dimensional hyperbolic heat conduction equations in an arbitrary
body-fitted coordinate grid and used non-oscillatory numerical schemes to approach the
problem. Chen and Lin [8] formulated a numerical scheme involving the Laplace transform
technique and the control volume method for the problem.

Mathematically, the inverse problems belong to the class of problems called the ill-
posed problems, i.e. small errors in the measured data can lead to large deviations in
the estimated quantities. As a consequence, their solution does not satisfy the general
requirement of existence, uniqueness, and stability under small changes to the input data.
To overcome such difficulties, a variety of techniques for solving inverse problems have been
proposed [32]-[29] and among the various methods such as: Tikhonov regularization [31],
iterative regularization [2], mollification [22], BFM (Base Function Method) [25], SFDM
(Semi Finite Difference Method) [21], and the FSM (Function Specification Method ) [3].

Beck et al. [3] compared the FSM, the Tikhonov regularization and the iterative reg-
ularization, using experimental data. Beck and Murio [5] presented a new method that
combines the function specification method of Beck with the regularization technique of
Tikhonov. Murio and Paloschi [23] proposed a combined procedure based on a data fil-
tering interpretation of the mollification method and FSM.

Haar functions have been used from 1910 when they were introduced by the Hungarian
mathematician Haar [12]. The Haar transform is one of the earliest of what is known
now as a compact, dyadic, orthonormal wavelet transform. The Haar function, being an
odd rectangular pulse pair, is the simplest and oldest orthonormal wavelet with compact
support. In the mean time, several definitions of the Haar functions and various general-
izations have been published and used. They were intended to adopt this concept to some
practical applications as well as to extend its in applications to different classes of signals.
Haar functions appear very attractive in many applications as for example, image coding,
edge extraction and binary logic design.

Recently, Haar wavelets, [14], have been applied extensively for signal processing in
communications and physics research, and have proved to be a wonderful mathematical
tool. After discretizing the differential equations in a conventional way like the finite
difference approximation, wavelets can be used for algebraic manipulations in the system
of equations obtained which lead to better condition number of the resulting system.

The previous work, [14], in the system analysis via Haar wavelets was led by Chen
and Hsiao [7], who first derived a Haar operational matrix for the integrals of the Haar
functions vector and put the application for the Haar analysis into the dynamical systems.
Then, the pioneer work in state analysis of linear time delayed systems via Haar wavelets
was laid down by Hsiao [15], who first proposed a Haar product matrix and a coefficient
matrix. Hsiao and Wang proposed a key idea to transform the time-varying function and
its product with states into a Haar product matrix. Kalpana and Raja Balachandar [18]
presented Haar wavelet based method of analysis for observer design in the generalized
state space or singular system of transistor circuits.

In this paper, a numerical method is presented based on Haar wavelet method and 0th,
1st, and 2nd Tikhonov regularization.

The organization of this paper is as follows: 1 is divided to two subsection. In subsec-
tion 1.1, we formulate and solve an inverse problem for the two-dimensional heat equation.
Solution of an inverse problem for the two-dimensional wave equation will be discussed
in subsection 2.1. Furthermore, in subsections 1.1 and 2.1, to regularize the resultant
ill-conditioned linear system of equations, we apply the Tikhonov (of 0th, 1st and 2nd or-
ders) regularization method to obtain the stable numerical approximation to the solution.
Finally some numerical experiments will be given in section 3.
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1. Mathematical formulation

Definition 1.1. The Haar wavelet family for x ∈ [0, 1) is defined as follows, [14],

hi(x) =


1, x ∈ [ km , k+0.5

m ),

−1, x ∈ [k+0.5
m , k+1

m ),

0, elsewhere.

(1.1)

integer m = 2j , (j = 0, 1, . . . , J) indicates the level of the wavelet;
k = 0, 1, . . . ,m − 1 is the translation parameter. Maximal level of resolution is J . The
index i is calculated according the formula i = m+ k + 1, such that∫ 1

0
hi(x)hl(x) dx =

1

2j
δil,

where δil is Kronecker delta.
In the case of minimal values m = 1, k = 0 we have i = 2, the maximal value of i

is i = 2J+1 = M . It is assumed that the value i = 1 corresponds to the scaling function
for which h1 ≡ 1 in [0, 1). let us defined collocation points xl =

l−0.5
M , (l = 1, 2, . . . ,M)

and discretis the Haar function hi(x); in this way we get the coefficient matrix H and the
operational matrices of integration P, Q, which are M square matrices, are defined by the
equations

(H)il = (hi(xl)), (1.2)

(PH)il =

∫ xl

0
hi(x) dx, (1.3)

(QH)il =

∫ xl

0

∫ x

0
hi(s) ds dx. (1.4)

The elements of the matrices H, P and Q can be evaluted according to (1.2), (1.3) and
(1.4). For example when M = 2, 4 we have,

H2 =

(
1 1
1 −1

)
, P2 =

1

4

(
2 −1
1 0

)
, Q2 =

1

32

(
5 −4
4 −3

)
,

H4 =


1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

 , P4 =
1

16


8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

 ,

Q4 =
1

128


21 −16 −4 −12
16 −11 −4 −4
6 −2 −3 0
2 −2 0 −3

 .

Remark 1.1. Any function Υ ∈ L2([0, 1)× [0, 1)) can be decomposed as

Υ(x, y) =
∞∑
l=1

∞∑
i=1

cilhi(x)hl(y),

where the coefficients cil are determined by

cil = 2j1+j2

∫ 1

0

∫ 1

0
Υ(x, y)hi(x)hl(y) dxdy,

where

i = 2j1 + k1 + 1, l = 2j2 + k2 + 1, j1, j2 > 0, 0 6 k1 < 2j1 , 0 6 k2 < 2j2 .
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The series expansion of Υ(x, y) contains an infinite terms. If Υ(x, y) is piecewise constant
by itself, or may be approximated as piecewise constant during each subinterval, then
Υ(x, y) will be terminated at finite terms, that is,

Υ(x, y) =

M2∑
l=1

M1∑
i=1

cilhi(x)hl(y) = HT
M1(x)CM1×M2HM2(y),

where the coefficients CM1×M2 and the Haar functions vectors HT
M1(x) and HM2(y) are

defined as,

HT
M1(x) =

(
h1(x) h2(x) . . . hM1(x)

)
,

HM2(y) =
(
h1(y) h2(y) . . . hM2(y)

)T
,

CM1×M2 =


c11 c12 . . . c1(M2)

c21 c22 . . . c2(M2)
...

...
...

c(M1)1 c(M1)2 . . . c(M1)(M2)

 .

Where ′T ′ means transpose and M1 = 2J1+1, M2 = 2J2+1.

1.1. Inverse Problem for the Two-Dimensional Heat Equation. In this section,
we consider the following inverse parabolic problem in the two-dimensionlal form

ut = uxx + uyy, 0 < x < 1, 0 < y < 1, 0 < t < tf , (1.5a)

u(x, y, 0) = f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (1.5b)

u(0, y, t) = g(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf , (1.5c)

u(1, y, t) = h(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf , (1.5d)

u(x, 0, t) = p(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf , (1.5e)

u(x, 1, t) = q(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf , (1.5f)

and the overspecified condition

u(a, y, t) = ϕ(y, t), 0 ≤ y ≤ 1 0 ≤ t ≤ tf , (1.5g)

where 0 < a < 1 is a fixed point, f(x, y) is a continuous known function, h(y, t), p(x, t),
q(x, t) and ϕ(y, t) are infinitely differentiable known functions and tf represents the final
time of interest for the time evolution of the problem; while function g(y, t) is unknown
which should be determined from some interior temperature measurements.

Now, let us divide the interval [0, tf ] into N equal parts of length ∆t =
tf
N and denote

ts = (s − 1)∆t, s = 1, 2, ..., N . We assume that u̇′′◦◦ can be expanded in terms of Haar
basis as,

u̇′′◦◦(x, y, t) =
M2∑
j=1

M1∑
i=1

cs(ij)hi(x)hj(y) = HT
M1(x)CM1×M2HM2(y) (1.6)

where ., ′ and ◦ mean differentiation with respect to t, x and y respectively. the vector
CM1×M2 is constant in the subinterval t ∈ [ts, ts+1].
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Integrating equation (1.6) twice with respect to x from a to x and twice with respect
to y from 0 to y we obtain,

u̇◦◦(x, y, t) = u̇◦◦(a, y, t) + (x− a)u̇′◦◦(a, y, t) + [(QM1HM1)
T (x)

−(QM1HM1)
T (a)− (x− a)(PM1HM1)

T (a)]CM1×M2HM2(y), (1.7)

u̇′′(x, y, t) = u̇′′(x, 0, t) + yu̇′′◦(x, 0, t) +HT
M1(x)CM1×M2(QM2HM2)(y), (1.8)

By the boundary conditions, we obtain,

u̇◦◦(a, y, t) = ϕ̇◦◦(y, t), u̇◦◦(1, y, t) = ḣ◦◦(y, t),

u̇′′(x, 0, t) = ṗ′′(x, t), u̇′′(x, 1, t) = q̇′′(x, t).

Putting x = 1 in equation (1.7) and y = 1 in equation (1.8), we obtain,

u̇′◦◦(a, y, t) =
1

1− a
ḣ◦◦(y, t)− 1

1− a
ϕ̇◦◦(y, t) + [

1

1− a
(QM1HM1)

T (a)

− 1

1− a
(QM1HM1)

T (1) + (PM1HM1)
T (a)]CM1×M2HM2(y), (1.9)

u̇′′◦(x, 0, t) = q̇′′(x, t)− ṗ′′(x, t)−HT
M1(x)CM1×M2(QM2HM2)(1). (1.10)

Substituting equations (1.9) and (1.10) into equations (1.7) and (1.8), we obtain,

u̇◦◦(x, y, t) =
1− x

1− a
ϕ̇◦◦(y, t) +

x− a

1− a
ḣ◦◦(y, t) + [(QM1HM1)

T (x)

−x− a

1− a
(QM1HM1)

T (1) +
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(y), (1.11)

u̇′′(x, y, t) = (1− y)ṗ′′(x, t) + yq̇′′◦(x, t)

+HT
M1(x)CM1×M2[(QM2HM2)(y)− y(QM2HM2)(1)]. (1.12)

Integrating equations (1.11) and (1.12) with respect to t from ts to t and twice with respect
to y from 0 to y from equation (1.11) we obtain,

u′′(x, y, t) = (t− ts)H
T
M1(x)CM1×M2[(QM2HM2)(y)− y(PM2F2)] + u′′(x, y, ts)

+y[q′′(x, t)− q′′(x, ts)] + (1− y)[p′′(x, t)− p′′(x, ts)], (1.13)

u◦◦(x, y, t) = u◦◦(x, y, ts) +
1− x

1− a
[ϕ◦◦(y, t)− ϕ◦◦(y, ts)]

+
x− a

1− a
[h◦◦(y, t)− h◦◦(y, ts)] + (t− ts)[(QM1HM1)

T (x)

−x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(y), (1.14)

u̇(x, y, t) = [(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2

[(QM2HM2)(y)− y(PM2F2)]

+
x− a

1− a
[ḣ(y, t)− yḣ(1, t) + (y − 1)ḣ(0, t)]

+
1− x

1− a
[ϕ̇(y, t)− yϕ̇(1, t) + (y − 1)ϕ̇(0, t)]

+(1− y)ṗ(x, t) + yq̇(x, t), (1.15)

u(x, y, t) = (t− ts)[(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(y)− y(PM2F2)]

+
1− x

1− a
[ϕ(y, t)− ϕ(y, ts)− y{ϕ(1, t)− ϕ(1, ts)}+ (y − 1){ϕ(0, t)− ϕ(0, ts)}]
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+
x− a

1− a
[h(y, t)− h(y, ts)− y{h(1, t)− h(1, ts)}+ (y − 1){h(0, t)− h(0, ts)}]

+u(x, y, ts) + (1− y)[p(x, t)− p(x, ts)] + y[q(x, t)− q(x, ts)]. (1.16)

Discretizising the results by assuming x → xl, y → yk, t → ts+1 we obtain,

u′′(xl, yk, ts+1) = (ts+1 − ts)H
T
M1(xl)CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

+u′′(xl, yk, ts) + yk[q
′′(xl, ts+1)− q′′(xl, ts)]

+(1− yk)[p
′′(xl, ts+1)− p′′(xl, ts)], (1.17)

u◦◦(xl, yk, ts+1) = u◦◦(xl, yk, ts) +
1− xl
1− a

[ϕ◦◦(yk, ts+1)− ϕ◦◦(yk, ts)]

+
xl − a

1− a
[h◦◦(yk, ts+1)− h◦◦(yk, ts)] + (ts+1 − ts)[(QM1HM1)

T (xl)

−xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(yk), (1.18)

u̇(xl, yk, ts+1) = [(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

+
xl − a

1− a
[ḣ(yk, ts+1)− ykḣ(1, ts+1) + (yk − 1)ḣ(0, ts+1)]

+
1− xl
1− a

[ϕ̇(yk, ts+1)− ykϕ̇(1, ts+1) + (yk − 1)ϕ̇(0, ts+1)]

+(1− yk)ṗ(xl, ts+1) + ykq̇(xl, ts+1), (1.19)

u(xl, yk, ts+1) = (ts+1 − ts)[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T

+
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

+
1− xl
1− a

[ϕ(yk, ts+1)− ϕ(yk, ts)− yk{ϕ(1, ts+1)− ϕ(1, ts)}

+(yk − 1){ϕ(0, ts+1)− ϕ(0, ts)}] +
xl − a

1− a
[h(yk, ts+1)− h(yk, ts)

−yk{h(1, ts+1)− h(1, ts)}+ (yk − 1){h(0, ts+1)− h(0, ts)}]
+u(xl, yk, ts) + (1− yk)[p(xl, ts+1)− p(xl, ts)] + yk[q(xl, ts+1)− q(xl, ts)], (1.20)

where vectors F1 and F2 are defined as

F1 = [1, 0, . . . , 0︸ ︷︷ ︸
(M1−1)

]T , F2 = [1, 0, . . . , 0︸ ︷︷ ︸
(M2−1)

]T ,

and H, P, Q are obtained from equations (1.2), (1.3), (1.4).
In the following scheme

u̇(xl, yk, ts+1) = u′′(xl, yk, ts+1) + u◦◦(xl, yk, ts+1), (1.21)

which leads us from the time layer ts to ts+1 is used, where,

xl =
l − 0.5

M1
, l = 1, 2, . . . , (M1 = 2J1+1),

yk =
k − 0.5

M2
, k = 1, 2, . . . , (M2 = 2J2+1),

are collocation points.
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Substituting equations (1.17), (1.18), (1.19) into equation (1.21), we obtain

[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)− THT
M1(xl)]

CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]− T [(QM1HM1)
T (xl)

−xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(yk)

=
1− xl
1− a

[ϕ◦◦(yk, ts+1)− ϕ◦◦(yk, ts)− ϕ̇(yk, ts+1) + ykϕ̇(1, ts+1) + (1− yk)ϕ̇(0, ts+1)]

+
xl − a

1− a
[h◦◦(yk, ts+1)− h◦◦(yk, ts)− ḣ(yk, ts+1) + ykḣ(1, ts+1) + (1− yk)ḣ(0, ts+1)]

+yk[q
′′(xl, ts+1)− q′′(xl, ts)− q̇(xl, ts+1)]

+(1− yk)[p
′′(xl, ts+1)− p′′(xl, ts)− ṗ(xl, ts+1)]

+u′′(xl, yk, ts) + u◦◦(xl, yk, ts). (1.22)

The wavelet coefficient CM1×M2 can be calculated from the equation (1.22).
Thus the linear system corresponding to the wavelet coefficient CM1×M2 can be ex-

pressed as

ΛΘ = B. (1.23)

The Matrix Λ is ill-conditioned. On the other hand, as ϕ(y, t) is affected by measurement
errors, the estimate of Θ by (1.23) will be unstable so that the Tikhonov regularization
method must be used to control this measurement errors. The Tikhonov regularized
solution [13, 19, 30, 31] to the system of linear algebraic equation (1.23) is given by

zα(Θ) = ∥ΛΘ−B∥22 + α∥R(s)Θ∥22.

On the case of the zeroth-, first-, and second-order Tikhonov regularization method the
matrix R(s), for s = 0, 1, 2, is given by, see e.g. [20]:

R(0) = IM1×M1 ∈ RM1×M1 ,

R(1) =


−1 1 . . . 0 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

...
0 0 . . . −1 1 0
0 0 . . . 0 −1 1

 ∈ R(M1−1)×M1 ,

R(2) =


1 −2 1 0 . . . 0 0
0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 1 −2 1 0
0 0 . . . 0 1 −2 1

 ∈ R(M1−2)×M1 ,

where M1 = (γ + 1)× (ι+ 1).
Therefore, we obtain the Tikhonov regularized solution of the regularized equation as

Θα =
[
ΛTΛ + α(R(s))TR(s)

]−1
ΛTB.

In our computation, we use the gcv scheme to determine a suitable value of α [10, 11].
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2. Error Analysis

In this section, the convergence of the Haar basis method is investigated for inverse
problem with two-dimensional heat equation.

At the first, suppose that u̇′′◦◦(x, y, t) = Υ(x, y, t). We show that if Υ(x, y, t) is
continuous and it satisfies Lipschitz condition with respect to one of its variables and
M1 = M2 = 2J+1, then the method is convergence.

Now, assume that Υ(x, y, t) satisfies Lipschitz condition on [0, 1]× [0, 1], that is,

∃ L > 0, ∀ (x, y1), (x, y2) ∈ [0, 1]× [0, 1] : |Υ(x, y1, t)−Υ(x, y2, t)| ≤ L|y1 − y2|. (2.1)

Also, suppose that Υ∗(x, y) is an approximation of Υ(x, y) as follows:

Υ∗(x, y, t) =

M2∑
i2=1

M1∑
i1=1

ci1i2hi1(x)hi2(y),

and

Υ∗(x, y, t) =

M∑
i2=1

M∑
i1=1

ci1i2hi1(x)hi2(y),

where the coefficients ci1i2 are determined by

ci1i2 = 22j
∫ 1

0

∫ 1

0
Υ(x, y)hi1(x)hi2(y)dxdy,

where

i1 = i2 = 2j + k + 1, j > 0, 0 6 k < 2j .

Therefore, we can compute the error as follows:

e∗(x, y) = Υ(x, y, t)−Υ∗(x, y, t)

=

∞∑
i2=M+1

∞∑
i1=M+1

ci1i2hi1(x)hi2(y)

=
∞∑

i1,i2=M+1

ci1i2hi1(x)hi2(y)

Hence, ∥e∗∥22 is as:

∥e∗∥22 =
∫ 1

0

∫ 1

0
(

∞∑
i1,i2=M+1

ci1i2hi1(x)hi2(y))
2dxdy

=

∫ 1

0

∫ 1

0
(

∞∑
i1,i2=M+1

ci1i2hi1(x)hi2(y)

∞∑
l1,l2=M+1

cl1l2hl1(x)hl2(y))dxdy

=
∞∑

i1,i2=M+1

∞∑
l1,l2=M+1

ci1i2cl1l2(

∫ 1

0

∫ 1

0
hi1(x)hl1(x)hi2(y)hl2(y)dxdy)

=

∞∑
i1,i2=M+1

c2i1i2
1

22j
.
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Since ci1i2 = 22j
∫ 1
0

∫ 1
0 Υ(x, y, t)hi1(x)hi2(y)dxdy, according to (1.1), we can write

ci1i2 = 22j(

∫ k+0.5

2j

k

2j

∫ k+0.5

2j

k

2j

Υ(x, y, t)dydx−
∫ k+0.5

2j

k

2j

∫ k+1

2j

k+0.5

2j

Υ(x, y, t)dydx

−
∫ k+1

2j

k+0.5

2j

∫ k+0.5

2j

k

2j

Υ(x, y, t)dydx+

∫ k+1

2j

k+0.5

2j

∫ k+1

2j

k+0.5

2j

Υ(x, y, t)dydx).

Now, using the mean value theorem, we can conclude

∃x1 ∈ [
k

2j
,
k + 0.5

2j
], y1 ∈ [

k

2j
,
k + 0.5

2j
], s.t.

∫ k+0.5

2j

k

2j

∫ k+0.5

2j

k

2j

Υ(x, y, t)dydx =
1

22j+2
f(x1, y1, t),

∃x2 ∈ [
k

2j
,
k + 0.5

2j
], y2 ∈ [

k + 0.5

2j
,
k + 1

2j
], s.t.

∫ k+0.5

2j

k

2j

∫ k+1

2j

k+0.5

2j

Υ(x, y, t)dydx =
1

22j+2
Υ(x2, y2, t),

∃x3 ∈ [
k + 0.5

2j
,
k + 1

2j
], y3 ∈ [

k

2j
,
k + 0.5

2j
], s.t.

∫ k+1

2j

k+0.5

2j

∫ k+0.5

2j

k

2j

Υ(x, y, t)dydx =
1

22j+2
Υ(x3, y3, t),

∃x4 ∈ [
k + 0.5

2j
,
k + 1

2j
], y4 ∈ [

k + 0.5

2j
,
k + 1

2j
], s.t.

∫ k+1

2j

k+0.5

2j

∫ k+1

2j

k+0.5

2j

Υ(x, y, t)dydx =
1

22j+2
Υ(x4, y4, t),

Thus, we can compute ci1i2 as follows:

ci1i2 = 22j [
1

22j+2
(Υ(x1, y1, t)−Υ(x2, y2, t)−Υ(x3, y3, t) + Υ(x4, y4, t))]

=
1

4
[Υ(x1, y1, t)−Υ(x1, y2, t) + Υ(x1, y2, t)−Υ(x2, y2, t)

−Υ(x3, y3, t) + Υ(x3, y4, t)−Υ(x3, y4, t) + Υ(x4, y4, t)]

≤ L

4
[(y1 − y2) + (x1 − x2) + (y3 − y4) + (x3 − x4)]

≤ L

4
[
1

2j
+

1

2j
+

1

2j
+

1

2j
]

= (
L

4
)(

4

2j
) =

L

2j
.
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The first inequality is obtained with regard to relation (2.1). On the other hand, we have

∥e∗∥22 =
∞∑

i1,i2=M+1

c2i1i2
1

22j

≤
∞∑

i1,i2=M+1

L2

22j
1

22j

=
∞∑

i1,i2=M+1

L2

24j

= L2
∞∑

i1,i2=M+1

1

24j

= L2
∞∑

j=J+1

2j−1∑
k=0

1

24j

= L2
∞∑

j=J+1

2j − 1 + 1

24j

= L2
∞∑

j=J+1

1

23j

=
8

7
L2(

1

2J+1
)3

Since M = 2J+1, we have

∥e∗∥22 ≤
8

7
L2(

1

M
)3,

and

∥e∗∥2 ≤
√

8

7
L(

1

M
)
3
2 .

Therefore, the Haar basis method will be convergent, i.e.

lim
J→∞

e∗ = 0

Moreover, the convergence is of order exponential, that is,

∥e∗∥2 = O(
1

2J+1
)
3
2 = O(

1

M
)
3
2 .

2.1. Inverse Problem for the Two-Dimensional Wave Equation. In this section,
we consider the following inverse parabolic problem in the Two-dimensionlal form

utt = uxx + uyy, 0 < x < 1, 0 < y < 1, 0 < t < tf , (2.2a)

u(x, y, 0) = f1(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (2.2b)

ut(x, y, 0) = f2(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (2.2c)

u(0, y, t) = g(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf , (2.2d)

u(1, y, t) = h(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf , (2.2e)

u(x, 0, t) = p(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf , (2.2f)

u(x, 1, t) = q(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf , (2.2g)
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and the overspecified condition

u(a, y, t) = ϕ(y, t), 0 ≤ y ≤ 1 0 ≤ t ≤ tf , (2.2h)

where 0 < a < 1 is a fixed point, f1(x, y) and f2(x, y) are continuous known functions,
h(y, t), p(x, t), q(x, t) and ϕ(y, t) are infinitely differentiable known functions and tf rep-
resents the final time of interest for the time evolution of the problem; while the function
g(y, t) is unknown which should be determined from some interior temperature measure-
ments.

Now, let us divide the interval [0, tf ] into N equal parts of length ∆t =
tf
N and denote

ts = (s − 1)∆t, s = 1, 2, ..., N . We assume that ü′′◦◦ can be expanded in terms of Haar
basis as

ü′′◦◦(x, y, t) =
M2∑
j=1

M1∑
i=1

cs(ij)hi(x)hj(y) = HT
M1(x)CM1×M2HM2(y), (2.3)

where ., ′ and ◦ means differentiation with respect to t, x and y respectively. the vector
CM1×M2 is constant in the subinterval t ∈ [ts, ts+1].

Integrating equation (2.3) twice with respect to x from a to x and twice with respect
to y from 0 to y, we obtain the following equations

ü◦◦(x, y, t) = ü◦◦(a, y, t) + (x− a)ü′◦◦(a, y, t) + [(QM1HM1)
T (x)

−(x− a)(PM1HM1)
T (a)− (QM1HM1)

T (a)]CM1×M2HM2(y), (2.4)

ü′′(x, y, t) = ü′′(x, 0, t) + yü′′◦(x, 0, t) +HT
M1(x)CM1×M2(QM2HM2)(y). (2.5)

By the boundary conditions, the following equations are resulted

ü◦◦(a, y, t) = ϕ̈◦◦(y, t), ü◦◦(1, y, t) = ḧ◦◦(y, t),

ü′′(x, 0, t) = p̈′′(x, t), ü′′(x, 1, t) = q̈′′(x, t).

Putting x = 1 in equation (2.4) and y = 1 in equation (2.5), we obtain,

ü′◦◦(a, y, t) =
1

1− a
ḧ◦◦(y, t)− 1

1− a
ϕ̈◦◦(y, t) + [

1

1− a
(QM1HM1)

T (a)

+(PM1HM1)
T (a)− 1

1− a
(QM1HM1)

T (1)]CM1×M2HM2(y), (2.6)

ü′′◦(x, 0, t) = q̈′′(x, t)− p̈′′(x, t) +HT
M1(x)CM1×M2(QM2HM2)(1). (2.7)

Substituting equations (2.6) and (2.7) into equations (2.4) and (2.5), we obtain,

ü◦◦(x, y, t) =
1− x

1− a
ϕ̈◦◦(y, t) +

x− a

1− a
ḧ◦◦(y, t) + [(QM1HM1)

T (x)

−x− a

1− a
(QM1HM1)

T (1) +
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(y), (2.8)

ü′′(x, y, t) = (1− y)p̈′′(x, t) + yq̈′′(x, t)

+HT
M1(x)CM1×M2[(QM2HM2)(y)− y(QM2HM2(1))]. (2.9)

Integrating equations (2.8) and (2.9) twice with respect to t from ts to t and twice with
respect to y from 0 to y from equation (2.8) we obtain,

u◦◦(x, y, t) =
1− x

1− a
[ϕ◦◦(y, t)− ϕ◦◦(y, ts)− (t− ts)ϕ̇

◦◦(y, ts)]

+
x− a

1− a
[h◦◦(y, t)− h◦◦(y, ts)− (t− ts)ḣ

◦◦(y, ts)]

+
1

2
(t2 + t2s − 2tts)[(QM1HM1)

T (x)− x− a

1− a
(PM1F1)

T
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+
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(y)

+u◦◦(x, y, ts) + (t− ts)u̇
◦◦(x, y, ts), (2.10)

u′′(x, y, t) =
1

2
(t2 + t2s − 2tts)H

T
M1(x)CM1×M2[(QM2HM2)(y)− y(PM2F2)]

+y[q′′(x, t)− q′′(x, ts)− (t− ts)q̇
′′(x, ts)] + (1− y)[p′′(x, t)− p′′(x, ts)

−(t− ts)ṗ
′′(x, ts)] + u′′(x, y, ts) + (t− ts)u̇

′′(x, y, ts), (2.11)

ü(x, y, t) =
x− a

1− a
[ḧ(y, t)− yḧ(1, t) + (y − 1)ḧ(0, t)]

+
1− x

1− a
[ϕ̈(y, t)− yϕ̈(1, t) + (y − 1)ϕ̈(0, t)]

+[(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(y)− y(PM2F2)] + (1− y)p̈(x, t) + yq̈(x, t), (2.12)

u(x, y, t) = (1− y)[p(x, t)− p(x, ts)− (t− ts)ṗ(x, ts)]

+y[q(x, t)− q(x, ts)− (t− ts)q̇(x, ts)]

+
1− x

1− a
[ϕ(y, t)− ϕ(y, ts)− (t− ts)ϕ̇(y, ts)− y{ϕ(1, t)− ϕ(1, ts)− (t− ts)ϕ̇(1, ts)}

+(y − 1){ϕ(0, t)− ϕ(0, ts)− (t− ts)ϕ̇(0, ts)}]

+
x− a

1− a
[h(y, t)− h(y, ts)− (t− ts)ḣ(y, ts)− y{h(1, t)− h(1, ts)− (t− ts)ḣ(1, ts)}

+(y − 1){h(0, t)− h(0, ts)− (t− ts)ḣ(0, ts)}] +
1

2
(t2 + t2s − 2tts)

[(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2

[(QM2HM2)(y)− y(PM2F2)] + u(x, y, ts) + (t− ts)u̇(x, y, ts), (2.13)

where,

u̇◦◦(x, y, ts) = (t− ts)[(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T

+
x− 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(y) +
1− x

1− a
[ϕ̇◦◦(y, t)− ϕ̇◦◦(y, ts)]

+
x− a

1− a
[ḣ◦◦(y, t)− ḣ◦◦(y, ts)] + u̇◦◦(x, y, ts), (2.14)

u̇′′(x, y, t) = (t− ts)H
T
M1(x)CM1×M2[(QM2HM2)(y)− y(PM2F2)]

+y[q̇′′(x, t)− q̇′′(x, ts)] + (1− y)[ṗ′′(x, t)− ṗ(x, ts)] + u̇′′(x, y, ts), (2.15)

u̇(x, y, t) = (t− ts)[(QM1HM1)
T (x)− x− a

1− a
(PM1F1)

T +
x− 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(y)− y(PM2F2)]

+
1− x

1− a
[ϕ̇(y, t)− ϕ̇(y, ts)− y{ϕ̇(1, t)− ϕ̇(1, ts)}+ (y − 1){ϕ̇(0, t)− ϕ̇(0, ts)}]

+
x− a

1− a
[ḣ(y, t)− ḣ(y, ts)− y{ḣ(1, t)− ḣ(1, ts)}+ (y − 1){ḣ(0, t)− ḣ(0, ts)}]

+y[q̇(x, t)− q̇(x, ts)] + (1− y)[ṗ(x, t)− ṗ(x, ts)] + u̇(x, y, ts). (2.16)

Discretizising the results by assuming x → xl, y → yk, t → ts+1 we obtain,

u◦◦(xl, yk, ts+1) =
1− xl
1− a

[ϕ◦◦(yk, ts+1)− ϕ◦◦(yk, ts)− (ts+1 − ts)ϕ̇
◦◦(yk, ts)]
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+
xl − a

1− a
[h◦◦(yk, ts+1)− h◦◦(yk, ts)− (ts+1 − ts)ḣ

◦◦(yk, ts)]

+
1

2
(t2s+1 + t2s − 2ts+1ts)[(QM1HM1)

T (xl)−
xl − a

1− a
(PM1F1)

T

+
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(yk)

+u◦◦(xl, yk, ts) + (ts+1 − ts)u̇
◦◦(xl, yk, ts), (2.17)

u̇◦◦(xl, yk, ts) = (ts+1 − ts)[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T

+
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(yk) +
1− xl
1− a

[ϕ̇◦◦(yk, ts+1)

−ϕ̇◦◦(yk, ts)] +
xl − a

1− a
[ḣ◦◦(yk, ts+1)− ḣ◦◦(yk, ts)] + u̇◦◦(xl, yk, ts), (2.18)

u′′(xl, yk, ts+1) =
1

2
(t2s+1 + t2s − 2ts+1ts)H

T
M1(xl)CM1×M2[(QM2HM2)(yk)

−yk(PM2F2)] + yk[q
′′(xl, ts+1)− q′′(xl, ts)− (ts+1 − ts)q̇

′′(xl, ts)]

+(1− yk)[p
′′(xl, ts+1)− p′′(xl, ts)− (ts+1 − ts)ṗ

′′(xl, ts)]

+u′′(xl, yk, ts) + (ts+1 − ts)u̇
′′(xl, yk, ts), (2.19)

u̇′′(xl, yk, ts+1) = (ts+1 − ts)H
T
M1(xl)CM1×M2[(QM2HM2)(yk)

−yk(PM2F2)] + yk[q̇
′′(xl, ts+1)− q̇′′(xl, ts)]

+(1− yk)[ṗ
′′(xl, ts+1)− ṗ(xl, ts)] + u̇′′(xl, yk, ts), (2.20)

ü(xl, yk, ts+1) =
xl − a

1− a
[ḧ(yk, ts+1)− ykḧ(1, ts+1) + (yk − 1)ḧ(0, ts+1)]

+
1− xl
1− a

[ϕ̈(yk, ts+1)− ykϕ̈(1, ts+1) + (yk − 1)ϕ̈(0, ts+1)]

+[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

+(1− yk)p̈(xl, ts+1) + ykq̈(xl, ts+1), (2.21)

u(xl, yk, ts+1) = (1− yk)[p(xl, ts+1)− p(xl, ts)− (ts+1 − ts)ṗ(xl, ts)]

+yk[q(xl, ts+1)− q(xl, ts)− (ts+1 − ts)q̇(xl, ts)] +
1− xl
1− a

[ϕ(yk, ts+1)− ϕ(yk, ts)

−(ts+1 − ts)ϕ̇(yk, ts)− yk{ϕ(1, ts+1)− ϕ(1, ts)− (ts+1 − ts)ϕ̇(1, ts)}
+(yk − 1){ϕ(0, ts+1)− ϕ(0, ts)− (ts+1 − ts)ϕ̇(0, ts)}]

+
xl − a

1− a
[h(yk, ts+1)− h(yk, ts)− (ts+1 − ts)ḣ(yk, ts)

−yk{h(1, ts+1)− h(1, ts)− (ts+1 − ts)ḣ(1, ts)}

+(yk − 1){h(0, ts+1)− h(0, ts)− (ts+1 − ts)ḣ(0, ts)}] +
1

2
(t2s+1

+t2s − 2ts+1ts)[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)]

CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

+u(xl, yk, ts) + (ts+1 − ts)u̇(xl, yk, ts), (2.22)

u̇(xl, yk, ts+1) = (ts+1 − ts)[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T

+
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]
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+
1− xl
1− a

[ϕ̇(yk, ts+1)− ϕ̇(yk, ts)− yk{ϕ̇(1, ts+1)− ϕ̇(1, ts)}

+(yk − 1){ϕ̇(0, t)− ϕ̇(0, ts)}] +
xl − a

1− a
[ḣ(yk, ts+1)

−ḣ(yk, ts)− yk{ḣ(1, ts+1)− ḣ(1, ts)}+ (yk − 1){ḣ(0, ts+1)− ḣ(0, ts)}]
+yk[q̇(xl, ts+1)− q̇(xl, ts)] + (1− yk)[ṗ(xl, ts+1)− ṗ(xl, ts)] + u̇(xl, yk, ts), (2.23)

where vectors F1 and F2 are defined as

F1 = [1, 0, . . . , 0︸ ︷︷ ︸
(M1−1)

]T , F2 = [1, 0, . . . , 0︸ ︷︷ ︸
(M2−1)

]T ,

and H, P, Q are obtained from equations (1.2), (1.3), and (1.4).
In the following scheme

ü(xl, yk, ts+1) = u′′(xl, yk, ts+1) + u◦◦(xl, yk, ts+1), (2.24)

which leads us from the time layer ts to ts+1 is used, where,

xl =
l − 0.5

M1
, l = 1, 2, . . . , (M1 = 2J1+1),

yk =
k − 0.5

M2
, k = 1, 2, . . . , (M2 = 2J2+1),

are collocation points.
Substituting equations (2.17), (2.19), (2.21) into equation (2.24), we obtain

[(QM1HM1)
T (xl)−

xl − a

1− a
(PM1F1)

T +
xl − 1

1− a
(QM1HM1)

T (a)

−1

2
(t2s+1 + t2s − 2ts+1ts)H

T
M1(xl)]CM1×M2[(QM2HM2)(yk)− yk(PM2F2)]

−1

2
(t2s+1 + t2s − 2ts+1ts)[(QM1HM1)

T (xl)−
xl − a

1− a
(PM1F1)

T

+
xl − 1

1− a
(QM1HM1)

T (a)]CM1×M2HM2(yk)

=
1− xl
1− a

[ϕ◦◦(yk, ts+1)− ϕ◦◦(yk, ts)− T ϕ̇◦◦(yk, ts)− ϕ̈(yk, ts+1)

+ykϕ̈(1, ts+1) + (1− yk)ϕ̈(0, ts+1)] +
xl − a

1− a
[h◦◦(yk, ts+1)− h◦◦(yk, ts)

−T ḣ◦◦(yk, ts)− ḧ(yk, ts+1) + ykḧ(1, ts+1) + (1− yk)ḧ(0, ts+1)]

+yk[q
′′(xl, ts+1)− q′′(xl, ts)− T q̇′′(xl, ts)− q̈(xl, ts+1)]

+(1− yk)[p
′′(xl, ts+1)− p′′(xl, ts)− T ṗ′′(xl, ts)− p̈(xl, ts+1)]

+u′′(xl, yk, ts) + u◦◦(xl, yk, ts) + T [u̇′′(xl, yk, ts) + u̇◦◦(xl, yk, ts). (2.25)

The wavelet coefficient CM1×M2 can be calculated from the equation (2.25).
In matrix form, the wavelet coefficient CM1×M2 can be obtained resolution of the fol-

lowing matrix equation

Aλ = b. (2.26)

Similarly, Tikhonov’s regularized solution [30, 13, 19] to the system of linear algebraic
equation (2.26) is given by

λα =
[
ATA+ α(R(s))TR(s)

]−1
AT b.
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3. Numerical Results and Discussion

In this section, we are going to demonstrate numerically, some of results for the unknown
boundary condition in the two inverse problems (1.5) and (2.2). As we know, the inverse
problems are ill-posed and therefore it is necessary to investigate the stability of the present
method by giving a test problem.

Remark 3.1. In an inverse problem there are two sources of error in the estimation; the
first source is the unavoidable bias deviation, and the second source of error is the variance
due to the amplification of measurement errors, [6].

Therefore, we compare exact and approximate solutions by considering total error S
defined by

S =
[ 1

N − 1

N∑
i=1

(Φ̂i − Φi)
2
] 1

2
, (3.1)

where N ,Φ and Φ̂ are the number of estimated values , the estimated values and the exact
values, respectively.

Example 1. In this example we solve the problem (1.5) with given data,

u(x, y, 0) = sin(x) + cos(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(1, y, t) = e−t(sin 1 + cos(y)), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf ,

u(x, 0, t) = e−t(sin(x) + 1), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf ,

u(x, 1, t) = e−t(sin(x) + cos 1), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf ,

u(0.1, y, t) = e−t(sin 0.1 + cos(y)), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf .

The exact solution of this problem is u(x, y, t) = e−t(sin(x) + cos(y)) and g(y, t) =
e−tcos(y). The results obtained for u(0, y, t) with tf = 1, ∆t = 0.1, 0.01, y = 0.625
and M1 = M2 = 4 with noisy data (noisy data=input data+(0.01)rand(1)) are presented
in Tables 1, 2 and Figures 1-6.

t Exact 0th order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.1 0.733790 0.733754 0.733675 0.733675
0.2 0.663960 0.663824 0.663665 0.663835
0.3 0.600776 0.600489 0.600501 0.600456
0.4 0.543605 0.543430 0.543430 0.543314
0.5 0.491874 0.491800 0.491649 0.491684
0.6 0.445066 0.444882 0.444944 0.444996
0.7 0.402712 0.402423 0.402514 0.402475
0.8 0.364389 0.364217 0.364052 0.364142
0.9 0.329713 0.329665 0.329381 0.329643
1 0.298337 0.298281 0.298181 0.298283

S 1.369e− 004 1.933e− 004 1.599e− 004

Table 1. The comparison between exact solution and Tikhonov’s solutions for g(0.625, t)
with the noisy data when ∆t = 0.1.
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t Exact 0th order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 0.802894 0.802883 0.802794 0.802749
0.02 0.794905 0.794792 0.794795 0.794750
0.1 0.733790 0.733543 0.733569 0.733683
0.11 0.726488 0.726247 0.726349 0.726286
0.5 0.491874 0.491679 0.491646 0.491723
0.51 0.486980 0.486713 0.486739 0.486785
0.8 0.364389 0.364160 0.364127 0.364190
0.81 0.360763 0.360536 0.360607 0.360566
0.9 0.329713 0.329528 0.329526 0.329567
0.91 0.326432 0.326244 0.326178 0.326194
1 0.298337 0.298255 0.298105 0.298215

S 1.600e− 004 1.615e− 004 1.471e− 004

Table 2. The comparison between exact solution and Tikhonov’s solutions for g(0.625, t)
with the noisy data when ∆t = 0.01.
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Figure 1. The comparison between the exact solution and 0th order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 2. The comparison between the exact solution and 1st order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 3. The comparison between the exact solution and 2nd order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 4. Difference between the the exact solution and 0th order Tikhonov solution for
g(0.625, t) of problem (1.5) with noisy data when ∆t = 0.01.
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Figure 5. Difference between the the exact solution and 1st order Tikhonov solution for
g(0.625, t) of problem (1.5) with noisy data when ∆t = 0.01.
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Figure 6. Difference between the the exact solution and 2nd order Tikhonov solution for
g(0.625, t) of problem (1.5) with noisy data when ∆t = 0.01.

Example 2. In this example we solve the problem (2.2) with given data,

u(x, y, 0) = sinh(x) + cosh(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

ut(x, y, 0) = sinh(x) + cosh(y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u(1, y, t) = et(sinh 1 + cosh(y)), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf ,

u(x, 0, t) = et(sinh(x) + 1), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf ,

u(x, 1, t) = et(sinh(x) + cosh 1), 0 ≤ x ≤ 1, 0 ≤ t ≤ tf ,

u(0.1, y, t) = et(sinh 0.1 + cosh(y)), 0 ≤ y ≤ 1, 0 ≤ t ≤ tf .

The exact solution of this problem is u(x, y, t) = et(sinh(x) + cosh(y)) and g(y, t) =
et cosh(y). The results obtained for u(0, y, t) with tf = 1, ∆t = 0.1, 0.01, y = 0.625
and M1 = M2 = 4 with noisy data (noisy data=input data+(0.01)rand(1)) are presented
in Tables 3, 4 and Figures 7-12.

t Exact 0th order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.1 1.328143 1.328061 1.328121 1.328117
0.2 1.467825 1.467701 1.467750 1.467738
0.3 1.622198 1.621092 1.622116 1.622079
0.4 1.792806 1.792647 1.792716 1.792670
0.5 1.981357 1.981102 1.981207 1.981103
0.6 2.189738 2.189501 2.189565 2.189370
0.7 2.420035 2.419809 2.419820 2.419651
0.8 2.674552 2.674289 2.674297 2.674155
0.9 2.955837 2.955653 2.955595 2.955440
1 3.266705 3.266575 3.266431 3.266361

S 1.617e− 004 1.500e− 004 2.350e− 004

Table 3. The comparison between exact solution and Tikhonov’s solutions for g(0.625, t)
with noisy data when ∆t = 0.1.
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t Exact 0th order Tikhonov 1st order Tikhonov 2nd order Tikhonov
0.01 1.213832 1.213829 1.213831 1.213830
0.02 1.226031 1.226024 1.226028 1.226026
0.1 1.328143 1.328038 1.328051 1.328086
0.11 1.341491 1.341375 1.341386 1.341426
0.5 1.981357 1.981082 1.981011 1.981148
0.51 2.001270 2.000993 2.000920 2.001058
0.8 2.674552 2.674240 2.674216 2.674274
0.81 2.701432 2.701130 2.701090 2.701157
0.9 2.955837 2.955637 2.955527 2.955637
0.91 2.985544 2.985344 2.985246 2.985352
1 3.266705 3.266459 3.266480 3.266522

S 1.763e− 004 1.998e− 004 1.551e− 004

Table 4. The comparison between exact solution and Tikhonov’s solutions for g(0.625, t)
with noisy data when ∆t = 0.01.
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Figure 7. The comparison between the exact solution and 0th order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 8. The comparison between the exact solution and 1st order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 9. The comparison between the exact solution and 2nd order Tikhonov solution
for g(0.625, t) with noisy data when ∆t = 0.1.
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Figure 10. Difference between the the exact solution and 0th order Tikhonov solution for
g(0.625, t) of problem (2.2) with noisy data when ∆t = 0.01.
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Figure 11. Difference between the the exact solution and 1st order Tikhonov solution for
g(0.625, t) of problem (2.2) with noisy data when ∆t = 0.01.
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Figure 12. Difference between the the exact solution and 2nd order Tikhonov solution
for g(0.625, t) of problem (2.2) with noisy data when ∆t = 0.01.

4. Conclusion

A numerical method, is proposed to estimate unknown boundary condition for these
kinds of inverse problems in two-dimensional parabolic and hyperbolic equations and the
following results are obtained.

1. The present study successfully applies the numerical method to inverse problems for
two-dimensional parabolic and hyperbolic equations.

2. Numerical results show that a good estimation can be obtained within a couple of
minutes CPU time at pentium IV-2.53 GHz PC.

3. The present method has been found stable with respect to small perturbation in the
input data.

4. Numerical results show that, unknown function, evolutions estimated by the 0th
order, 1st order and 2nd order Tikhonov regularization methods give very similar results.
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