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PARTITIONING A GRAPH INTO MONOPOLY SETS

AHMED MOHAMMED NAJI1, SONER NANDAPPA D1, §

Abstract. In a graph G = (V,E), a set M ⊆ V (G) is said to be a monopoly set of

G if every vertex v ∈ V −M has, at least, d(v)
2

neighbors in M . The monopoly size
of G, denoted by mo(G), is the minimum cardinality of a monopoly set. In this paper,
we study the problem of partitioning V (G) into monopoly sets. An M-partition of a
graph G is the partition of V (G) into k disjoint monopoly sets. The monatic number of
G, denoted by µ(G), is the maximum number of sets in M-partition of G. It is shown
that 2 ≤ µ(G) ≤ 3 for every graph G without isolated vertices. The properties of each
monopoly partite set of G are presented. Moreover, the properties of all graphs G having
µ(G) = 3, are presented. It is shown that every graph G having µ(G) = 3 is Eulerian
and have χ(G) ≤ 3. Finally, it is shown that for every integer k /∈ {1, 2, 4}, there exists
a graph G of order n = k having µ(G) = 3.
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1. Introduction

The concept of monopoly in a graph was introduced by Khoshkhak K. et al. [10]. Some
mathematical properties of monopoly in graphs have been studied in [12], other types
of monopoly in graphs have been subsequently proposed by the authors ([13]-[16]). In
particular, the monopoly in graphs is a dynamic monopoly (dynamos) that, when colored
black at a certain time step, will cause the entire graph to be colored black in the next
time step under an irreversible majority conversion process. Dynamos were first intro-
duced by Peleg D. [17]. For more details in monopoly and dynamos in graphs, we refer
the reader to [2, 3, 7, 11, 19]. In this paper, we focus our attention on the problem of
partitioning of the vertex set of a graph G into disjoint monopoly sets. We denote by M -
partition to the partition of V (G) into k disjoint monopoly sets. The idea of M-partition
of G closely related to unfriendly partition [5, 1], and an offensive k-alliances partition [18].

We begin by stating the terminology and notations used through this article. A graph
G = (V,E) is a simple graph, that is finite, having no loops no multiple and directed edges.
As usual, we denote by n = |V | and m = |E| to the number of vertices and edges in a
graph G, respectively. For a vertex v ∈ V , the open neighborhood of v in a graph G,
denoted N(v), is the set of all vertices that are adjacent to v and the closed neighborhood
of v is N [v] = N(v) ∪ {v}. The degree of vertex v in G is d(v) = |N(v)|, and the degree
of a vertex v with respect to a subset S ⊂ V (G) is dS(v) = |N(v) ∩ S|. We denote by
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∆(G) and δ(G) to maximum and minimum degree among the vertices of G, respectively.
bxc (dxe) denotes the greatest (smallest) integer number less (greater) than or equal to x.
An isolated vertex in G is a vertex with degree zero. As usual, G denotes the complement
of G, for a subset S ⊆ V , S = V − S and kG denotes the k disjoint copies of G. A
k-partite graph is a graph G whose vertex set V (G) can be partitioned into k disjoint
sets so that no two vertices within the same set are adjacent. A k-partite graph in which
each partite set has the same number of vertices is said to be a balanced k-partite graph.
The Friendship graph Fn, for n ≥ 2, is the graph constructed by joining n copies of K3

graph with a common vertex. A set I ⊆ V is independent if no two vertices in I are
adjacent. The independent sets of maximum cardinality are called maximum independent
sets. The number of vertices in a maximum independent set is the independence number
(or vertex independence number) of G and is denoted by α(G). For more terminologies
and notations in graph theory, we refer the reader to the books [4, 8].

A set D ⊆ V (G) is called a dominating set of a graph G if every vertex v ∈ V (G)−D
adjacent to some vertex in D. The minimum cardinality of such set is called the domina-
tion number of G and denoted by γ(G). A dominating set of cardinality γ(G) is called a
γ-set for G. A thorough treatment of domination in graphs can be found in the book by
Haynes at el. [9]. The domatic number d(G) of a graph G is the maximum positive integer
k such that V (G) can be partitioned into k pairwise disjoint dominating sets. A partition
V into pairwise disjoint dominating sets is called a domatic partition. The concept of a
domatic number was introduced by E. J. Cockayne at el. [6]. A proper coloring of a graph
G is a k-coloring in which each color class is an independent set. The minimum k for
which a graph is k-colorable is called its chromatic number and denoted by χ(G) [4].

A pigeonhole principle states that if n items are put into m containers, with n > m,
then at least one container must contain more than one item. The pigeonhole principle has
several generalizations and can be stated in various ways. In a more quantified version:
for natural numbers k and m, if n = km + 1 objects are distributed among m sets, then
the pigeonhole principle asserts that at least one of the sets will contain at least k + 1
objects. For arbitrary n and m this generalizes to k + 1 = bn−1

m c+ 1 [20].

A set M ⊆ V (G) is called a monopoly set of G if for every vertex v ∈ V (G)−M has

at least d(v)
2 neighbors in M . The monopoly size of G, denoted by mo(G), is the mini-

mum cardinality of a monopoly set in G. An M-partition of a graph G is the partition
of V (G) into k disjoint monopoly sets. The monatic number of G, denoted by µ(G), is
the maximum number of sets in M-partition of G. The word ”monatic” was created from
monopoly and chromatic in the same way the word ”domatic” which created from domi-
nation and chromatic. It is shown that 2 ≤ µ(G) ≤ 3 for every graph G without isolated
vertices. The properties of each monopoly partite set of G are presented. Moreover, the
properties of all graphs G having µ(G) = 3, are presented. It is shown that every graph G
having µ(G) = 3 is Eulerian and have χ(G) ≤ 3. Finally, it is shown that for every integer
k /∈ {1, 2, 4}, there exists a graph G of order n = k with µ(G) = 3.

The following are some fundamental results which will be required for many of our
arguments in this paper:

Theorem 1.1. [8] A graph G is eulerian if and only if every vertex of G is of even degree.

The following results appear in paper [6].



156 TWMS J. APP. ENG. MATH. V.7, N.1, 2017

Proposition 1.1. (a): For any graph G, d(G) ≤ δ + 1.
(b): d(G) ≥ 2, if and only if G has no isolated vertices.
(c): For any tree T with n ≥ 2 vertices, d(T ) = 2.

2. Partitioning Vertex Set of a Graph into Monopoly sets

Theorem 2.1. Any non-trivial graph G without isolated vertices has an M-partition.

Proof. Let {X,Y } be a partition of V (G) such that the edge-cut between X and Y has
maximum cardinality. Then X and Y are dominating sets. Moreover, for every vertex

x ∈ X, has at least d(v)
2 neighbors in Y , then we have that Y is a monopoly set in G.

Analogously, we obtain that X is a monopoly set in G. Hence, {X,Y } is a partition of
V (G) into two monopoly sets in G. This complete the proof. �

Since any monopoly set M of a graph G must be contain every isolated vertices in G,
then we have the following result.

Proposition 2.1. Let G be a graph of order n. Then µ(G) = 1, if and only if G having
an isolated vertex.

Accordingly to Theorem 2.1 and Proposition 2.1, we obtain the following fundamental
result.

Theorem 2.2. For any graph G without isolated vertices,

2 ≤ µ(G) ≤ 3.

Proof. By Theorem 2.1 and Proposition 2.1, we have µ(G) ≥ 2. For the upper bound,
since, the M -partition of G is a partition of V (G) into k monopoly subset, it follows by

the definition of a monopoly set, every vertex v ∈ V (G) must be adjacent to, at least, d(v)
2

vertices in every subset other then its own. If a graph G has µ(G) = k, then every vertex

v ∈ V (G) must be adjacent to, at least, (k − 1)d(v)
2 vertices, d(v)

2 vertices in each partite

set of an M -partition. Hence, we have (k−1)d(v)
2 ≤ d(v), this implies that (k−3)d(v) ≤ 0.

But since d(v) > 0, for every v ∈ V (G), it follows that k−3 ≤ 0. Therefore, µ(G) ≤ 3. �

Corollary 2.1. For any graph G, 1 ≤ µ(G) ≤ 3.

Theorem 2.3. For any graph G without isolated vertices. If G has a vertex of odd degree,
then µ(G) = 2.

Proof. Let v ∈ V (G) be a vertex with odd degree. i.e., d(v) = 2k + 1, for any k ≥ 0.
Suppose, to the contrary, that µ(G) = 3 and let {M1,M2,M3} be the M -partition of G.
Assume, without loss of generality, that v ∈M1. Then by the definition of a monopoly set,

dM2(v) ≥ d(v)
2 ≥ k+ 1 and also, dM3(v) ≥ k+ 1. Hence, d(v) ≥ dM2(v) + dM3(v) ≥ 2k+ 2,

a contradiction. Therefore, by Theorem 2.2, µ(G) = 2. �

Corollary 2.2. For any graph G. If G has µ(G) = 3, then every vertex of G is of even
degree.

Theorem 2.4. Let G be a graph without isolated vertices and every vertex of G is of even
degree. If G has a cycle, of order k ≡ 1, 2 (mod 3), as an endblock. Then µ(G) = 2.

Proof. LetG be a graph with a cycle endblock Ck, for k ≡ 1, 2 (mod 3), and let {v1, v2, ..., vk}
be the vertex set of Ck, such that v1 is the cut vertex of G on Ck. Clearly, d(v1) ≥ 4
and d(vi) = 2, for every 2 ≤ i ≤ k. Suppose, to the contrary, that µ(G) = 3 and let
{M1,M2,M3} be the M-partition of G. Assume, without loss of generality, that v1 ∈M1
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and v2 ∈ M2, then v3 ∈ M3. Furthermore, M1 = {vi : i ≡ 1 (mod 3)}, M2 = {vi : i ≡ 2
(mod 3)} and M3 = {vi : i ≡ 0 (mod 3)}. Then we have the following two cases.

Case 1: If k ≡ 1 (mod 3), then vk ∈M1 and hence, dM3(v1) = 0, a contradiction.
Case 2: If k ≡ 2 (mod 3), then vk ∈ M2 and hence a gain, dM3(v1) = 0, a contra-

diction.

Therefore, µ(G) 6= 3. �

Theorem 2.5. For any graph G, µ(G) ≤ d(G). Furthermore, if ∆(G) ≤ 2, then µ(G) =
d(G).

Proof. Clearly, from the definition of the monopoly set that any monopoly set of a graph
G is a dominating set. Then, µ(G) ≤ d(G). Now, letG be a graph with ∆(G) ≤ 2. and let

D1, D2, ..., Dk be the partition of G into k dominating set. Since, dDi(v) ≥ 1 ≥ ∆
2 ≥

d(v)
2 ,

for every vertex v /∈ Di, and for every i = 1, 2, .., k, it follows that Di is a monopoly set
of G, for every i = 1, 2, .., k. Hence, d(G) ≤ µ(G), but we have µ(G) ≤ d(G). Then
µ(G) = d(G). �

The converse of Theorem 2.5, is not true. For example, the star graph K1,n, for every
n ≥ 3, has d(K1,n) = µ(K1,n) = 2, but ∆(K1,n) ≥ 3. The following result immediate
consequences of Proposition 1.1 and Theorem 2.5.

Corollary 2.3. For any tree T with n ≥ 2 vertices, µ(G) = d(G) = 2.

In the following result, the exact values of the monatic number µ(G) for some standard
graphs G are determined.

Proposition 2.2. .

(1) µ(Pn) = 2, for every n ≥ 2.

(2) µ(Cn) =

{
3, if n ≡ 0 (mod 3);
2, otherwise.

(3) µ(Kn) = 1, for every n ≥ 2.

(4) µ(Kn) =

 1, if n = 1;
3, if n = 3;
2, otherwise.

(5) µ(Kr,s) = 2, for 1 ≤ r ≤ s.
(6) µ(Fn) = 3, for every n ≥ 2.

There are Two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|, |E1| = |E2|
and the sequence degrees Sd(G1) = Sd(G2), where Sd(G) = {d1, d2, ..., dn} and di is the
degree of vertex in G. But µ(G1) 6= µ(G2). Figure 1, shows two graphs G1 and G2 with
n1 = n2 = 7, m1 = m2 = 9 and Sd(G1) = Sd(G2) = {4, 4, 2, 2, 2, 2, 2}. But µ(G1) = 3 and
µ(G2) = 2.

v v v
v v v

v v v
vvv

vvG1 : G2 :

Figure 1
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A bipartition (V1, V2) of a vertex set V (G) of a graph G is called an unfriendly partition;
if every vertex u ∈ V1 has at least as many neighbors in V2 as it does in V1, and every
vertex v ∈ V2 has at least as many neighbors in V1 as it does in V2. This type of partition
were defined and studied by Borodin et al. [5] and Aharoni et al. [1]. Clearly, for any
graph G, if µ(G) = 2, then the idea of M -partitions of a graph G is closely related to
unfriendly partitions. Hence, in the following section, we shall focus our attention on the
problem of partitioning a graph G into three monopoly sets.

3. Properties of the Monopoly Partite sets of Graphs G having µ(G) = 3

In this section, we study the properties of every monopoly partite set of a graph G
having µ(G) = 3, number of edges which incident with every partite set.

Theorem 3.1. For any graph G, if µ(G) = 3, then every partite set in M-partition of G
is an independent set.

Proof. Let G be a graph with µ(G) = 3 and let {M1,M2,M3} be the M-partition of G.
On the contrary, suppose, without loss of generality, that M1 is not an independent. Then
there exists, at least, a vertex v ∈M1 such that |N(v)∩M1| ≥ 1. Since M2 is a monopoly
set in G and v /∈M2, it follows by definition of a monopoly set that

dM2(v) = |N(v) ∩M2| ≥
d(v)

2
. (1)

Similarly,

dM3(v) = |N(v) ∩M3| ≥
d(v)

2
. (2)

Hence, by the definition of the degree of a vertex in a graph G and by equations 1 and 2,
we obtain d(v) = dM1(v) + dM2(v) + dM3(v) ≥ d(v) + 1, a contradiction. Therefore, M1

must be an independent set. For M2 and M3 the proof is similar to the proof of M1. �

In the following two results, we investigate the sum of the degrees of vertices in every
monopoly partite set of a graph G with µ(G) = 3 and the edges which connected between
any two monopoly partite sets in M-partition of G.

Proposition 3.1. Let {M1,M2,M3} be an M-partition of a graph G. Then

dMi(v) = dMj (v) =
d(v)

2

for every v ∈Mk, where i, j and k ∈ {1, 2, 3} and k 6= i 6= j.

Theorem 3.2. Let {M1,M2,M3} be the M-partition of G. Then∑
v∈Mi

d(v) =
2m

3
, for every 1 ≤ i ≤ 3.

Proof. Let G be a graph with µ(G) = 3 and let {M1,M2,M3} be the M-partition of a
graph G. By Theorem 3.1, every partite set Mi and for 1 ≤ i ≤ 3, in M-partition of G is
an independent. Then d(v) = |N(v) ∩ (V −Mi)| = dMi

(v), for every v ∈ Mi, 1 ≤ i ≤ 3.

Also, by Observation 3.1, we have dMi(v) = dMi
(v), for every v ∈Mi.
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now, for every 1 ≤ i ≤ 3,

2m =
∑

v∈V (G)

d(v) =
∑
v∈Mi

d(v) +
∑
v∈Mi

d(v);

=
∑
v∈Mi

dMi(v) +
∑
v∈Mi

dMi
(v) +

∑
v∈Mi

dMi(v) +
∑
v∈Mi

dMi
(v);

= 0 +
∑
v∈Mi

dMi
(v) + 2

∑
v∈Mi

dMi(v);

= 3
∑
v∈Mi

dMi
(v) = 3

∑
v∈Mi

d(v).

Therefore,
∑
v∈Mi

d(v) =
2m

3
, for every i = 1, 2, 3. �

For any graph G with µ(G) = 3, Theorem 3.2 shows that the number of edges between
any partite set and both the others partite sets in M-partition of G is equal to 2m

3 . In
the following result, m(Mi,Mj) denotes the number of edges between Mi and Mj , i, j ∈
{1, 2, 3}.

Corollary 3.1. Let {M1,M2,M3} be an M-partition of a graph G. Then

m(Mi,Mj) =
m

3
, for every i, j ∈ {1, 2, 3} and i 6= j.

Theorem 3.3. Let {M1,M2,M3} be an M-partition of a graph G such that |M1| ≤ |M2| ≤
|M3|. Then

(1) mo(G) ≤ |M1| ≤ bn3 c;
(2) |M1| ≤ |M2| ≤ n−mo(G)

2 ;
(3) dn3 e ≤ |M3| ≤ |M1||M2|.

Proof. Let G be a graph of order n and let {M1,M2,M3} be an M-partition of a graph G
such that |M1| ≤ |M2| ≤ |M3|. Then

(1) Clearly that |M1| ≥ mo(G). For the upper bound of |M1|, assume, to the contrary,
that |M1| ≥ bn3 c+ 1. Since, |M1| ≤ |M2| ≤ |M3|, then by the pigeonhole principle,
|M3| ≥ dn3 e. We have the following Cases.
Case 1: If n ≡ 0 (mod 3), then |M1| ≥ n

3 + 1. Hence, by the hypothesis,
n = |M1|+ |M2|+ |M3| ≥ n+ 3, a contradiction.

Case 2: If n ≡ 1 (mod 3), then |M1| ≥ n−1
3 + 1 and |M3| ≥ n+2

3 . Hence, we

obtain, n ≥ 2(n−1
3 + 1) + n+2

3 = n+ 2, a contradiction.

Case 3: if n ≡ 2 (mod 3), then |M1| ≥ n−2
3 + 1 and |M3| ≥ n+1

3 . Hence, we

obtain, n ≥ 2(n−2
3 + 1) + n+1

3 = n+ 1, a contradiction.
Therefore, |M1| ≤ bn2 c.

(2) Form the hypothesis, we have |M1| ≤ |M2| and the cardinality of M2 is maximum
if and only if |M2| = |M3|. Since, |M2| ≤ n− (|M1|+ |M3|), it follows that and by
the maximality of |M2|,

|M2| ≤
n− |M1|

2
≤ n−mo(G)

2
.

(3) By the hypothesis and the pigeonhole principle, we get |M3| ≥ dn3 e. Since dM1(v) ≥
1, for every v ∈ M3, it follows that

∑
v∈M3

dM1(v) ≥ |M3| and by Observation 3.1,
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v∈M3

dM1(v) =
∑
v∈M2

dM1(v). Hence,

|M3| ≤
∑
v∈M3

dM1(v) =
∑
v∈M2

dM1(v) ≤
∑
v∈M2

|M1| ≤ |M2||M1|.

�

Corollary 3.2. Let {M1,M2,M3} be an M-partition of a graph G, such that |M1| ≤
|M2| ≤ |M3|. If |M1| = 1, then |M2| = |M3| = n−1

2 . Furthermore, G = K3 or G ∼= Fn.

4. Properties of Graphs G having µ(G) = 3

In this section, we investigate the properties of the graphs G having µ(G) = 3 and the
relationships between the monatic number of G and some other parameters of G.

Theorem 4.1. For any graph G, if µ(G) = 3, then G is eulerian.

Proof. The result is an immediate consequences of Theorem 1.1 and Corollary 2.2. �

Theorem 3.1, shows that for every graph G with µ(G) = 3, every partite set in M-
partition of G is independent set. Then we have the following result.

Corollary 4.1. Every graph G having µ(G) = 3 is a 3-partite graph.

The converse of the Corollary 4.1, in general, is not true. For example, the complete
3-partite graph K1,2,3 has a vertex of odd degree, then by Theorem 2.3, µ(K1,2,3) = 2. In
the following result, we characterize each complete 3-partite graph G with µ(G) = 3.

Theorem 4.2. Let G = Kn1,n2,n3 a complete 3-partite graph. Then µ(G) = 3, if and only
if n1 = n2 = n3.

Proof. Let G = Kn1,n2,n3 a complete 3-partite graph with partite sets (V1, V2, V3) such
that |V1| ≤ |V2| ≤ |V3|. Certainly, If n1 = n2 = n3, then every partite set is a monopoly
set of G. Thus, µ(G) = 3.
Conversely, let G = Kn1,n2,n3 a complete 3-partite with µ(G) = 3, and let {M1,M2,M3}
be the M-partition of G such that |M1| ≤ |M2| ≤ |M3|. We claim that |Mi| = |Vi| for every
i = 1, 2, 3. Otherwise, there is at least a monopoly partite set |Mi| form M-partition of G,
for i = 1, 2, 3, such that Mi ∪ Vj and Mi ∩ V − Vj are not empty sets, for some j = 1, 2, 3.
Hence, Mi is not independent set, a contradiction. Then the claim is true. Now, assume,
without loss the generality, that n1 < n2. Then, there exists at least a vertex v ∈ M3

such that dM2(v) = |M2| > |M1| = dM1(v). Hence, either v of odd degree, a contradiction
to Corollary 2.2, or a set M1 is not a monopoly set of G, once again a contradiction to
assumption. This complete a proof. �

.

Theorem 4.3. For any graph G of order n, if µ(G) = 3, then

n ≤ m ≤ n2

3
.

Proof. Let G be a graph with µ(G) = 3 and let {M1,M2,M3} be the M-partition of G.
Then by Corollary 2.2, every vertex in G is of even degree that means δ ≥ 2. Then the
minimum number of edges in G, if G is a cycle graph hence m ≥ n. For the upper bound,
we denote m(M1,M2) to the number of edges between M1 and M2. Since m(M1,M2) ≤
|M1||M2|, it follows that the maximum value of m(M1,M2) is |M1||M2|. Using calculus
we can deduce that m(M1,M2) is maximal when |M1| = |M2| and Theorem 3.3, M1 is
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maximal when |M1| = n
2 . Then by Corollary 3.1, m

3 = m(M1,M2) ≤ n2

9 . Therefore,,

m =
n2

3
. �

These bounds in Theorem 4.3 are sharp. The cycle Cn, for n ≡ 0 (mod 3), gives the
lower bound and the complete 3-partite Kn

3
,n
3
,n
3

gives the upper bound.

Proposition 4.1. For any graph G, if µ(G) = 3, then χ(G) ≤ 3.

Proof. The result is the consequence of Theorem 3.1. �

The bound in Proposition 4.1, is sharp, the cycle graphs C3n, for every n is odd, and the
complete 3-partite graphs Kn1,n2,n3 attending it. The example of graphs G with µ(G) = 3
and χ(G) = 2 is the graphs G = C3n, for every n is even. The converse of the Proposition
4.1, in general, is not true. For example, χ(C5) = 2 but µ(C5) = 2.

Corollary 4.2. For any non-bipartite graph G without isolated vertices. If µ(G) = 3,
then χ(G) = 3.

Theorem 4.4. Let G be a graph with a clique number ω(G). If µ(G) = 3, then ω(G) ≤ 3.

Proof. Let G be a graph with µ(G) = 3 and let {M1,M2,M3} be the M-partition of G.
Suppose, on the contrary, that ω(G) ≥ 4. Then there exists a clique C ⊆ V (G) with
vertex set V (C) = {v1, v2, ..., vk}, k ≥ 4. Hence, by the pigeonhole principle, there is at
least on set from M-partition of G contains at least bk−1

3 c+ 1 vertices from V (C). Since,

k ≥ 4 then bk−1
3 c + 1 ≥ 2. Hence, there is at least one set form M-partition of G is not

independent, a contradiction to Theorem 3.1. Therefore, ω(G) ≤ 3. �

The converse of Theorem 4.4, in general, is not true. For example, the Path graph Pn

with ω(Pn) = 2, but µ(Pn) = 2.

Theorem 4.5. For any graph G of order n, if µ(G) = 3, then α(G) ≥
⌈
n
3

⌉
.

Proof. Let G be a graph of order n and µ(G) = 3 and let {M1,M2,M3} be the M-partition
of G. Then by the pigeonhole principle, there is at least one set from M-partitions of G
contains at least bn−1

3 c + 1 vertices from V (G). Since, by Theorem 3.1, every set in

M-partitions of G is an independent set, it follows that α(G) ≥
⌊
n−1

3

⌋
+ 1 =

⌈
n
3

⌉
. �

Corollary 4.3. For any graph G of order n, if µ(G) = 3, then the independence monopoly
size, imo(G), of G is defined. Furthermore, imo(G) ≤ dn3 e.

The bound in Corollary 4.3, is sharp. The cycle graphs C3n, for every n, is attending
it. The converse of Corollary 4.3, in general, is not true. For example, the star graph K1,n

has imo(K1,n) = 1 but µ(K1,n) = 2. For more details in the independence monopoly size
of a graph, we refer the reader to [15].

Theorem 4.6. Let G be a graph of order n and maximum degree ∆(G) = n − 1. Then
µ(G) = 3, if and only if G = K3 or G ∼= Fn.

Proof. Certainly, if G = K3 or G = Fn, then ∆(G) = n− 1 and µ(G) = 3.
Conversely, Let G be a graph of order n, maximum degree ∆(G) = n−1 and µ(G) = 3 and
let {M1,M2,M3} be the M-partition of G. Now, let a vertex v ∈ V (G) with d(v) = n− 1
and assume, with loss of generality, that v ∈ M1. Then by Theorem 3.1, M1 = {v} and
by Observation 3.1, |N(v) ∩M2| = |N(v) ∩M3| = n−1

2 .
On the other hand, once again by the Observation 3.1, |N(u)∩M1| = |N(u)∩M3| = 1, for
every u ∈ M2. Hence, d(u) = 2 for every u ∈ M2. Similarly, d(w) = 2, for every w ∈ M2.
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Hence, a graph G has only a vertex v with d(v) = n−1 and each other vertex with degree
two. Therefore, If n = 3, then G = K3 and if n ≥ 4, then G = Fn−1

2
. �

Theorem 4.7. Let G be a graph having µ(G) = 3. Then mo(G) ≤ n
3 .

Proof. Let G be a graph with µ(G) = 3 and let {M1,M2,M3} be the M-partition of G.
Since |Mi| ≥ mo(G), for every i ∈ {1, 2, 3}, it follows that n = |M1| + |M2| + |M3| ≥
3mo(G). Therefore, mo(G) ≤ n

3 . �

This bound is sharp, The cycle graphs Cn, for every n ≡ 0 (mod 3), and a complete
3-partite Kn

3
,n
3
,n
3
, attending it.

Corollary 4.4. For any graph G, µ(G) ≤ n
mo(G) .

It is clear that every graph G of order n ≤ 4, G 6= K3 has µ(G) ≤ 2. In the following
result, we study the existences graph G of order n = k having µ(G) = 3 for every positive
integer number k /∈ {1, 2, 4}.

Theorem 4.8. For every positive integer k /∈ {1, 2, 4}, there exists a graph G of order
n = k having µ(G) = 3.

Proof. For k = 3 and 5, the result is true, since G1 = K3 and G2 = F2 have the required
property. Now, we may assume that k ≥ 6. Then we consider the following cases.

Case 1: If k ≡ 0 (mod 3), then the cycle graph G3 = Ck is holding the property,
since µ(Ck) = 3.

Case 2: If k ≡ 1 (mod 3), let v1, v2, ..., vk be the vertex set of the cycle Ck. Then
the graph G4 which formed from Ck by firstly, removed the edge ek−1 which join
the vertices vk−1 with vk, then insert three new edges e′1, e′2 and e′3, such that e′1
join v1 with vk−1, e′2 join v1 with vk−2 and e′3 join vk−2 with vk. Figure 2, shows
the graph G4.
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Figure 2: The graph G4.

Then the partition {M1,M2,M3} where M1 = {vi : i ≡ 1 (mod 3)} − {vk}, M2 =
{vi : i ≡ 2 (mod 3)} and M3 = {vi : i ≡ 0 (mod 3)} ∪ {vk} is M-partition of G4.
Indeed, every partite set Mi for i = 1, 2, 3 is an independent monopoly set in G4.
Therefore, µ(G4) = 3.

Case 3: If k ≡ 2 (mod 3), Then the graph G5 which formed from the cycle Ck by
removed the edge e which join the vertices vk−2 with vk−1 and then insert two new
edges e′1 join v1 with vk−1 and e′2 join v1 with vk−2. Figure 3, shows the graph G5.
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Figure 3: The graph G5.

Then the partition {M1,M2,M3} where M1 = {vi : i ≡ 1 (mod 3)} − {vk−1},
M2 = {vi : i ≡ 2 (mod 3)} and M3 = {vi : i ≡ 0 (mod 3)} ∪ {vk−1} is M-partition
of G5. Indeed, every partite set Mi for i = 1, 2, 3 is an independent monopoly set
in G5. Therefore, µ(G5) = 3.
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