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RESIDUAL CLOSENESS FOR HELM AND SUNFLOWER GRAPHS

A.AYTAÇ1, Z.N.O.BERBERLER2, §

Abstract. Vulnerability is an important concept in network analysis related with the
ability of the network to avoid intentional attacks or disruption when a failure is produced
in some of its components. Often enough, the network is modeled as an undirected and
unweighted graph in which vertices represent the processing elements and edges represent
the communication channel between them. Different measures for graph vulnerability
have been introduced so far to study different aspects of the graph behavior after removal
of vertices or links such as connectivity, toughness, scattering number, binding number
and integrity. In this paper, we consider residual closeness which is a new characteristic
for graph vulnerability. Residual closeness is a more sensitive vulnerability measure than
the other measures of vulnerability. We obtain exact values for closeness, vertex residual
closeness (VRC) and normalized vertex residual closeness (NVRC) for some wheel related
graphs namely helm and sunflower.

Keywords: network vulnerability, closeness, network design and communication, stabil-
ity, communication network, Helm graph; Sunflower graph.
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1. Introduction

Networks are used for modeling different systems such as chemical systems, neural
networks, social systems or the Internet and the World Wide Web. The stability of a com-
munication network, composed of processing nodes and communication links, is of prime
importance to network designers. The vulnerability of a communication network measures
the resistance of the network to disruption of operation after the failure of certain stations
or communication links. Communication networks must be constructed to be as stable
as possible, not only with respect to the initial disruption, but also with respect to the
possible reconstruction of the network. If we think of a graph as modeling a network,
there have been several proposals for measures of the stability of a communication net-
work including connectivity, toughness, scattering number, binding number and integrity
[3, 4, 10, 14].

The concept of residual closeness is introduced as a measure of graph vulnerability by
Chavdar Dangalchev [6]. The vulnerability of a network can be measured by the residual
closeness of the graph describing the network. The aim of residual closeness is to measure
the vulnerability even when the removal of the vertices do not disconnect the graph while
other parameters except binding number measure vulnerability so the resulting graph is

1 Department of Mathematics, Faculty of Science, Ege University 35100, Izmir, Turkey.
e-mail: aysun.aytac@ege.edu.tr, ORCID: http://orcid.org/0000-0003-2086-8969;

2 Department of Computer Science, Dokuz Eylul University, 35160, Izmir, Turkey.
e-mail: zeynep.berberler@deu.edu.tr, ORCID: http://orcid.org/0000-0001-9179-3648;
§ Manuscript received: March 11, 2016; accepted: June 06, 2017.

TWMS Journal of Applied and Engineering Mathematics Vol.7, No.2; c© Işık University, Department
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disconnected. Consider two different graph having the same graph vulnerability charac-
teristics: their connectivity, toughness, integrity, binding number and scattering number
is equal. In such a case, residual closeness recognizes the difference between these two
graphs. As a measure for the graph vulnerability, the need and advantages of residual
closeness is explained in [6], and examples are given to show that the residual closeness
can reflect the vulnerability of graphs better than or independent of the other parameters
in existing literature. Clearly, this parameter is of particular interest because it is consid-
ered to be a reasonable measure for the vulnerability of graphs and can be studied as a
useful parameter.

In this paper, we consider simple finite undirected graphs without loops and multi-
ple edges. Let G = (V,E) be a graph with a vertex set V = V (G) and an edge
set E = E(G). For vertices u and i of a graph G, the open neighborhood of u is
N(u) = {v ∈ V (G)|(u, v) ∈ E(G)} and Ni(u) = {v ∈ V (G\i)|(u, v) ∈ E(G\i)}. We
define analogously for any S ⊆ V (G) the open neighborhood N(S) = ∪u∈SN(u) and
S ⊆ V (G\i) the open neighborhood Ni(S) = ∪u∈SN(u). The distance d(u, v) between
two vertices u and v in is the length of a shortest path (or geodesic) between them. If u
and v are not connected, then d(u, v) =∞, and for u = v, d(u, v) = 0. The eccentricity of
a vertex v in G is the distance from v to a vertex farthest away from v in G, denoted by
e(v). The diameter of G, denoted by diam(G), is the largest distance between two vertices
in V (G). The degree degG(v) of a vertex v ∈ V (G) is the number of edges incident to
v. A vertex of degree one is called a pendant vertex, and its neighbor is called a support
vertex [13, 7]. We shall use bxc for the largest integer not larger than x.

Our aim in this paper is to consider the computing the closeness, vertex residual close-
ness (VRC) and the normalized vertex residual closeness (NVRC) of some wheel related
networks. In section 2 and 3, definitions and known results for closeness, VRC and NVRC
are given, respectively. In section 4 and 5, closeness, VRC and NVRC of helm and sun-
flower are, respectively, determined and exact values are given. Conclusions are addressed
in Section 6.

2. Closeness, Residual Closeness and Normalized Residual Closeness

The closeness, VRC and NVRC of a graph are a new characteristic for graph vulnera-
bility introduced in [6]. Their definitions are in the following:

• The closeness of a graph is defined as C =
∑
i
C(i), where C(i) is the closeness of

a vertex i, and defined as C =
∑
j 6=i

1
2d(i,j)

. We can also use this definition for not

connected graphs.

Let dk(i, j) be the distance between vertices i and j in the graph, received from
the original graph where all links of vertex k are deleted. Then the closeness after
removing vertex k is defined as Ck =

∑
i

∑
j 6=i

1
2dk(i,j) . This definition can also be used

for disconnected graphs. For a connected graph G, the polynomial H(G;x) is the
Hosoya (or Wiener) polynomial defined as H(G;λ) =

∑
k≥1

d(G, k)λk where d(G, k)

is the number of vertex pairs at distance k and introduced in [9]. Clearly, the
closeness of a connected graph can be derived in terms of the Hosoya polynomial
as C =

∑
i
C(i) =

∑
i

∑
j 6=i

2−d(i,j) = 2H(G; 1/2) [1, 2, 5, 6, 11]
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• The VRC of the graph is defined as R = min
k
{Ck}.

• The NVRC of the graph is defined as dividing the residual closeness by the closeness
C; R′ = R/C.

3. Basic Results

Theorem 3.1. [1, 6] The closeness of

(a) the complete graph Kn with n vertices is C(Kn) = (n(n− 1))/2;

(b) the star graph Sn with n vertices is C(Sn) = (n−1)(n+2)
4 ;

(c) the path Pn with n vertices is C(Pn) = 2n− 4 + 1
2n−2 ;

(d) the cycle Cn with n vertices is C(Cn) =

{
2n(1− 1/2(n−1)/2), if n is odd,

n(2− 3/2n/2), if n is even.

Theorem 3.2. [1, 6, 11] The VRC of

(a) the complete graph Kn with n vertices is R(Kn) = ((n− 1)(n− 2))/2;
(b) the star graph Sn with n vertices is R(Sn) = 0;
(c) the cycle Cn with n vertices is R(Cn) = 2n− 6 + 1/2n−3.

Theorem 3.3. [6] For a graph G, 0 ≤ R′(G) < 1.

Theorem 3.4. [6] If H is a proper subgraph of graph G, then R(H) < R(G).

Theorem 3.5. [5] If a vertex k does not belong to any unique geodesic (shortest path) of
graph G, then C(G\k) = C(G)− 2C(k).

Corollary 3.1. [2] Let G be a graph. Then, for an endvertex u of G, Cu(G) = C(G) −
2C(u).

Corollary 3.2. [2] If a vertex v has eccentricity two in G, then C(v) = (|V (G)|+deg(v)−
1)/4 .

Lemma 3.1. [12] For any two graphs G1 and G2,

H(G1 ◦G2) = (1 + |G2|x)2H(G1) + |G1|(
(
|G2|

2

)
)− |E(G2)|)x2 + |G1|(|G2|+ |E(G2)|)x.

Theorem 3.6. [2] Let G be a graph and {u, v} ∈ V (G). If u is an endvertex of the support
vertex v in G, then Cv(u) = 0.

4. Residual Closeness of Helm

Helm Hn is a graph of order 2n + 1 obtained from a wheel Wn with cycle Cn having
a pendant edge attached to each vertex of the cycle. Helm Hn consists of the vertex set
V (Hn) = {vi|0 ≤ i ≤ n− 1} ∪ {ai|0 ≤ i ≤ n− 1} ∪ {c} and edge set E(Hn) = {vivi+1|0 ≤
i ≤ n− 1} ∪ {viai|0 ≤ i ≤ n− 1} ∪ {vic|0 ≤ i ≤ n− 1}, where i+ 1 is taken modulo n [8].

Let c be the central vertex of Hn. The central vertex c has a vertex degree of n. The
vertices of Hn\{c} are of two kinds: vertices of degree four and one, respectively. The
vertices of degree one will be referred to as pendant vertices and vertices of degree four to
as support vertices [9].

Theorem 4.1. If Hn is a helm, then the closeness for the helm Hn with 2n + 1 vertices
is

C(Hn) =
n(9n+ 49)

16
.
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Proof. We have three cases depending on the vertices of Hn:
Case 1. Let c be the central vertex of Hn. Then, c is adjacent to all support vertices and

pendant vertices are at distance 2 from c. Thus, deg(c) = n and e(c) = 2. By Corollary
3.2, the closeness of c is

C(c) =
(2n+ 1)− 1 + n

4
=

3n

4
.

Case 2. Let vi be a major vertex. Then, vi is adjacent to one of the pendant vertices,
the central vertex c, and two support vertices. Since d(vi, c) = 1, other remaining n − 3
support vertices and n− 3 pendant vertices attached to support vertices are at distance 2
and 3, respectively, from vi. If the distance between vi and two support vertices is 1, then
two pendant vertices attached to two support vertices are at distance 2 from i. Thus,

C(vi) = 4(
1

21
) + (n− 3 + 2)(

1

22
) + (n− 3)(

1

23
) =

3n+ 11

8
.

Case 3. Let ai be a minor vertex. Since ai is only adjacent to a major vertex vi, by
Case 2 of this theorem, the closeness of a minor vertex ai is

C(ai) = 1(
1

21
) + 3(

1

21+1
) + (n− 3 + 2)(

1

22+1
) + (n− 3)(

1

23+1
) =

3n+ 15

16
. (1)

By Case 1, 2 and 3, the closeness of helm is C(Hn) = C(c) +
n−1∑
i=0

C(vi) +
n−1∑
i=0

C(ai)

C(Hn) =
3n

4
+ n(

3n+ 11

8
) + n(

3n+ 15

16
) =

n(9n+ 49)

16
.

The proof is completed. �

Theorem 4.2. If Hn is a helm with 2n+ 1 vertices, then the VRC of the helm is

R(Hn) =




n
2 (11− 9

2
n−1
2

), if n is odd;

n
2 (11− 27

2
n
2 +1 ), if n is even;

if n > 5;

9n2+31n−58
16 , if n ≤ 5.

Proof. We have three cases depending on the vertices of Hn:
Case 1. Removing the central vertex c of Hn:
If c is removed from Hn, then the remaining graph is G1 = Cn ◦K1. G1 is a thorn graph

C∗n of the graph Cn, with parameters p1 = p2 = ... = pn = 1 [7]. The thorn graph C∗n is
obtained by attaching a degree-one vertex to the every vertex of Cn. By the definition of
closeness, we have

Cc = C(G1) = C(Cn ◦K1) = 2H(Cn ◦K1; 1
2).

By Lemma 3.1, we obtain

Cc = 2((1 + 1
2)22H(Cn; 1

2) + n(1
2)).

By the definition of closeness and Theorem 3.1(d), we have

Cc =


n
2 (11− 9

2
n−1
2

), if n is odd;

n
2 (11− 27

2
n
2 +1 ), if n is even.
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Case 2. Removing a support vertex vi of Hn:
If vi is removed from Hn, then the remaining graph is G2 = Hn\{vi}. We have six subcases
depending on the vertices of G2:

Subcase 1. Let c be central vertex of Hn:
Since the vertex c is adjacent to n − 1 support vertices, the n − 1 minor vertices are at
distance 2 from c. There is not any path between the c and minor vertices ai which are
adjacent to removed vi, that is d(c, ai) =∞. Hence, we have

CG2(c) = (n− 1)(
1

21
) + (n− 1)(

1

22
) + 1(

1

2∞
) =

3n− 3

4
. (2)

Subcase 2. Let x be support vertex in G2 and deg(x) = 3. Then x is adjacent to three
vertices, n − 2 vertices and n − 3 vertices are at distance 2 and 3, respectively, from x.
There is not any path between x and minor vertices ai which are adjacent to vi in Hn.
Thus, we get

CG2(x) = (3)(
1

21
) + (n− 2)(

1

22
) + (n− 3)(

1

23
) + (1)(

1

2∞
)

CG2(x) =
3n+ 5

8
. (3)

Subcase 3. Let y be pendant vertex which is adjacent to any vertex x shuch that deg(x) = 3
in G2. By Subcase 2 of this theorem, we have

CG2(y) = (1)(
1

21
) + (2)(

1

22
) + (n− 2)(

1

23
) + (n− 3)(

1

24
) + (1)(

1

2∞
)

CG2(y) =
3n+ 9

16
. (4)

Subcase 4. Let z be support vertex in G2 and deg(x) = 4. Then z is adjacent to four
vertices. n − 2 vertices and n − 4 pendant vertices are at distance 2 and 3, respectively,
from z. There is not any path between z and pendant vertices ai which are adjacent to vi
in Hn. Thus, we get

CG2(z) = (4)(
1

21
) + (n− 2)(

1

22
) + (n− 4)(

1

23
) + (1)(

1

2∞
)

CG2(z) =
3n+ 8

8
. (5)

Subcase 5. Let w be pendant vertex which is adjacent to any vertex z shuch that deg(x) = 4
in G2. By Subcase 4 of this theorem, we have

CG2(w) = (1)(
1

21
) + (3)(

1

22
) + (n− 2)(

1

23
) + (n− 4)(

1

24
) + (1)(

1

2∞
)

CG2(w) =
3n+ 12

16
. (6)

Subcase 6. Let ai be pendant vertex which is adjacent to vi in Hn. Thus, by Theorem 3.6,
we have

C(G2)(ai) = 0. (7)

By summing up (2), (3), (4), (5), (6) and (7), we obtain

C(vi) = C(G2)
C(vi) = CG2(c) + 2CG2(x) + 2CG2(y) + (n− 3)CG2(z) + (n− 3)CG2(w) + CG2(ai)

Cvi = 9n2+31n−58
16 .
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Case 3. Removing a pendant vertex ai of Hn:
Let ai be a pendant vertex. If a pendant vertex ai is removed from Hn, then the remaining
graph is G3 = Hn\ai. Hence , by Corollary 3.1, the closeness of subgraph G3 is

Cai = C(G3) = C(Hn)− 2CHn(ai).

By Theorem 4.1 and (1), we have

Cai =
n(9n+ 49)

16
− 2(

3n+ 5

16
) =

9n2 + 43n− 30

16
.

Consequently, let us show how to deduce min{Cc, cvi , Cai}:
It is easy to see that for n ≥ 3, Cvi < Cai .
If n is odd, then Cc = n

2 (11− 9

2
n−1
2

).

Assume that Cc = n
2 (11− 9

2
n−1
2

) < 9n2+31n−58
16 = Cvi .

Then, we obtain −9n

2
n−1
2

< 9n2−57n−58
8 .

Since n is integer-valued and positive, it is evident that this leads a contradiction for n ≥ 8.
If n is even, the proof is similar to the case when n is odd and is omitted. Moreover the
values for 3 ≤ n < 8 are in the following Table 1.

As seen in Table1 above, R(Hn) = min{Cc, Cvi , Cai} =

{
Cc, if n > 5;

Cvi , if n ≤ 5.

Table 1. The values for 3 ≤ n < 8

n 3 4 5 6 7
Cc 9.75 15.25 21.875 27.9375 34.5625
Cc 7.25 13.125 20.125 28.25 37.5

Thus the proof of Theorem 4.2 is completed.
�

Corollary 4.1. If Hn is a helm with 2n+ 1 vertices, then the NVRC of the helm is

R′(Hn) =




8(11− 9

2
n−1
2

)

9n+49 , if n is odd;
8(11− 27

2
n
2 +1

)

9n+49 , if n is even;

if n > 5;

1− 18n+58
9n2+49

, if n ≤ 5.

5. residual Closeness of Sunflower

Sunflower graph SFn consists of a wheel with central vertex c and an n-cycle v0, v1, v2, ..., vn−1

and additional n vertices w0, w1, w2, ..., wn−1 where wi is joined by edges to (vi, vi+1) for
i = 0, 1, 2, ...n − 1 where i + 1 is taken modulo n. SFn has order 2n + 1 and size 4n [8].
Let c be the central vertex of SFn. The central vertex c has a vertex degree of n. The
vertices of SF\{c} are of two kinds: vertices of degree five and two, respectively. The
vertices of degree two will be referred to as minor vertices and vertices of degree five to as
major vertices [9].

Theorem 5.1. If SFn n > 4 is a sunflower graph, then the closeness for the sunflower
graph SFn with 2n+ 1 vertices is

C(SFn) =
n(9n+ 67)

16
.
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Proof. We have three cases depending on the vertices of SFn:
Case 1. For the central vertex c of SFn, as being adjacent to all the support vertices,

|N(c)| = n. Since a minor vertex wi is adjacent to exactly two support vertices, d(c, wi) =
2. Thus, deg(c) = n and e(c) = 2. By Corollary 3.2, the closeness of c is C(c) =
(2n+1)−1+n

4 = 3n
4 .

Case 2. Let vi be a major vertex of SFn. Major vertex vi is exactly adjacent to
five vertices: two major vertices, two minor vertices and the central vertex c. Since
d(vi, c) = 1, other remaining n− 3 major vertices are at distance 2 from vi. Moreover two
minor vertices are joined by edges to two major vertices which vi is adjacent to. Thus,
these minor vertices are also at distance 2 from vi . Consequently, there remain n − 4
minor vertices joined by edges to major vertices which are at distance 3 from vi. Hence,
we have C(vi) = 5( 1

21
) + (n− 1) 1

22
+ (n− 4)( 1

23
) = 3n+14

8 .
Case 3. Let wi be a minor vertex of SFn. Since wi is joined by edges to two major

vertices, |N(wi)| = 2. Then, wi is at distance 2 to five vertices: two major vertices, two
minor vertices and the central vertex c. If d(wi, c) = 2, then other remaining n− 4 major
vertices and 2 minor vertices are at distance 3 from wi. Thus, remaining n − 5 minor
vertices are at distance 4 from wi. Hence, we have

C(wi) = 2(
1

21
) + (5)

1

22
+ (n− 2)(

1

23
) + (n− 5)(

1

24
) =

3n+ 27

16
. (8)

Thus, by Case 1, 2 and 3, the closeness of SFn is

C(SFn) = C(c) +

n−1∑
i=0

C(vi) +

n−1∑
i=0

C(wi)

C(SFn) =
3n

4
+ n(

3n+ 14

8
) + n(

3n+ 27

18
) =

n(9n+ 67)

16
.

The proof is completed.
�

Theorem 5.2. If SFn n > 4 is a sunflower graph with 2n+ 1 vertices, then the VRC of
a sunflower graph is

R(SFn) =


9n2+55n−74

14 , if n = 5,n(7− 17

2
n
2 +1 ), if n is even;

n(7− 12

2
n+1
2

), if n is odd;
if n > 5.

Proof. We have three cases depending on the vertices of:
Case 1.Removing the central vertex c of SFn:

If c is removed from SFn, then the survival subgraph is G1 = SFn\{c}. The closeness of
G1 is calculated in a similar manner to Cn . We have two cases depending on the vertices
of G1;
Subcase 1. Let vi be a vertex which is deg(vi) = 4 of G1. The closeness of vi is

CG1(vi) =


(

n
2
−1∑

j=1
4( 1

2j
)) + 3( 1

2
n
2

), if n is even

(

n−1
2∑

j=1
4( 1

2j
)) + 1

2
n+1
2
, if n is odd

Subcase 2. Let wi be a vertex which is deg(wi) = 2of G1. The closeness of wi is
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CG1(wi) =


(2) 1

21
+ (

n
2∑

j=2
4( 1

2j
)) + 3( 1

2
n
2 +1 ), if n is even

(2) 1
21

+ (

n−1
2∑

j=2
4( 1

2j
)) + 1

2
n+1
2
, if n is odd

By summing up Subcase 1 and Subcase 2, the closeness of G1 is

Cc = C(G1)
n−1∑
i=0

CG1(vi) +
n−1∑
i=0

CG1(wi)

Cc = n(CG1(vi)) + n(CG1(wi))

Cc =


n(((

n
2
−1∑

j=1
4( 1

2j
)) + 3( 1

2
n
2

)) + (2( 1
21

) + (

n
2∑

j=2
4( 1

2j
)) + 1

2
n
2 +1 )), if n is even

n(((

n−1
2∑

j=1
4( 1

2j
)) + 1

2
n+1
2

) + (2( 1
21

) + (

n−1
2∑

j=2
4( 1

2j
)) + 3( 1

2
n+1
2

))), if n is odd

Cc =


2(n(

n
2
−1∑

j=1
(2) 1

2j
) + 1

2
n
2

) + n

2
n
2

+ n(1 + 4(

n
2∑

j=2

1
2j

) + 1

2
n
2 +1 ), if n is even

2(n(

n−1
2∑

j=1
(2) 1

2j
)) + n

2
n+1
2

+ n(1 + 4(

n−1
2∑

j=2

1
2j

) + 3

2
n+1
2

), if n is odd

By Theorem 3.1(d), we have

Cc =


2C(Cn) + n

2
n
2

+ n(1 + 4(

n
2∑

j=2

1
2j

) + 1

2
n
2 +1

), if n is even

2C(Cn) + n

2
n+1
2

+ n(1 + 4(

n−1
2∑

j=2

1
2j

) + 3

2
n+1
2

), if n is odd

To calculate the above sums, we start from the equation 1 +X+X2 + ...+Xn−1 = Xn−1
X−1 .

We have,

Cc =

2C(Cn) + n

2
n
2

+ n(1 + (4) 1
22

(1 + 1
21

+ ...+ 1

2
n
2 −2 ) + 1

2
n
2 +1 ), if n is even

2C(Cn) + n

2
n+1
2

+ n(1 + (4) 1
22

(1 + 1
21

+ ...+ 1

2
n−1
2 −2

) + 3

2
n+1
2

), if n is odd

Cc =

2C(Cn) + n

2
n
2

+ n(1 + (4)1
2(1− 1

2
n
2 −1 ) + 1

2
n
2 +1 ), if n is even

2C(Cn) + n

2
n+1
2

+ n(1 + (4)1
2(1− 1

2
n−3
2

) + 3

2
n+1
2

), if n is odd

Cc =

2C(Cn) + 3n− 5n

2
n
2 +1 , if n is even

2C(Cn) + 3n− 4n

2
n+1
2
, if n is odd

By Theorem 3.1(d),we have

Cc =

n(7− 17

2
n
2 +1 ), if n is even

n(7− 12

2
n+1
2

), if n is odd
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Case 2. Let vi be vertex which is deg(vi) = 5 of SFn except central vertex c. Removing
vertex vi of SFn, then the survival subgraph is G2 = SFn\{vi}. There are six subcases
depending on the vertices of G2:

Subcase 1. Let c be a central vertex of SFn. c is adjacent to n − 1 vertices in G2. n
vertices are at distance 2 from c in G2. Thus, degG2(c) = n − 1 and eG2(c) = 2. By
Corollary 3.2, the closeness of c in G2 is

CG2(c) =
(2n+ 1− 1)− 1 + (n− 1)

4
=

3n− 2

4
. (9)

Subcase 2. Let x be a vertex of SFn except central vertex c which is adjacent to vi
and the degree of x is 5 in SFn. There are two vertices like this. Since x is adjacent to 4
vertices in G2, |NG2(x)| = 4, remaining n− 2 major vertices and n− 3 minor vertices are
at distance 2 and 3, respectively from x in G2. Thus, the closeness of x in G2 is

CG2(x) = (4)
1

21
+ (n− 2)

1

22
+ (n− 3)

1

23
=

3n+ 9

8
. (10)

Subcase 3. Let y be a vertex of SFn which is not adjacent to vi and the degree of y
is 5 in SFn. There are n − 3 vertices like this. Since y is adjacent to 5 vertices in G2,
|NG2(y)| = 5, remaining n − 2 major vertices and n − 4 minor vertices are at distance 2
and 3, respectively from y in G2. Thus, the closeness of y in G2 is

CG2(y) = (5)
1

21
+ (n− 2)

1

22
+ (n− 4)

1

23
=

3n+ 12

8
. (11)

Subcase 4. Let z be a minor vertex which is adjacent to vi in SFn. There are two vertices
like this. z is adjacent to one vertex in G2. Hence, z is at distance 2 to three vertices: a
major vertex, a minor vertex and the central vertex c. It is easily to see that remaining
n − 2 major vertices and n − 3 minor vertices are at distance 3 and 4, respectively, from
z. Thus, the closeness of z in G2 is

CG2(z) = (1)
1

21
+ (3)

1

22
+ (n− 2)

1

23
+ (n− 3)

1

24
=

3n+ 13

16
. (12)

Subcase 5. Let u be a minor vertex which is at distance 2 from vi in SFn. There are
two vertices like this. u is adjacent to two vertices in G2. Hence, z is at distance 2 to four
vertices. It is easily to see that remaining n − 3 major vertices and n − 4 minor vertices
are at distance 3 and 4, respectively, from u. Thus, the closeness of u in G2 is

CG2(u) = (2)
1

21
+ (4)

1

22
+ (n− 3)

1

23
+ (n− 4)

1

24
=

3n+ 22

16
. (13)

Subcase 6. Let t be a minor vertex which is at distance 3 from vi in SFn. There are
n− 4 vertices like this. t is adjacent to two vertices in G2. Hence, t is at distance 2 to five
vertices. It is easily to see that remaining n − 3 major vertices and n − 5 minor vertices
are at distance 3 and 4, respectively, from t. Thus, the closeness of t in G2 is

CG2(t) = (2)
1

21
+ (5)

1

22
+ (n− 3)

1

23
+ (n− 5)

1

24
=

3n+ 25

16
. (14)

By summing up (9), (10), (11), (12), (13) and (14), we have

Cvi = C(G2)

Cvi = CG2(c) + 2CG2(x) + (n− 3)CG2(y) + 2CG2(z) + 2CG2(u) + (n− 4)CG2(t)

Cvi =
9n2 + 55n− 74

16
.

Case 3. Removing a minor vertex wi of SFn:
If a minor vertex wi is removed from SFn, then the remaining graph is G3 = SFn\{wi}. wi
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do not lie in between any geodesics. Thus, by Theorem 3.5, the closeness of subgraph G3 is

Cwi = C(G3) = C(SFn)− 2CSFn(wi).

By Theorem 5.1 and (8), we have

Cwi =
n(9n+ 67)

16
− 2(

3n+ 27

16
) =

9n2 + 61n− 54

16
.

Consequently, let us show how to deduce min{Cc, Cvi , Cwi} :
It is easy to see that Cvi < Cwi.
If n is odd, then Cc = n(7− 12

2
n+1
2

).

Assume that Cc = n(7− 12

2
n+1
2

) < 9n2−55n−74
8 = Cvi .

Then, we obtain
−12n

2
n+1
2

< 9n2−57n−74
8 .

Since n is integer-valued and positive, it is evident that this leads a contradiction for
n ≥ 8. If n is even, the proof is similar to the case when n is odd and is omitted.
Moreover the values for 4 < n < 8 are in the following Table 2.

Table 2. The values for 4 < n < 8

n 5 6 7
Cc 27.75 35.625 43.75
Cvi 26.625 36.25 47

As seen in Table 2 above, R(SFn) = min{Cc, Cvi , Cwi} =

{
Cc if n > 5,

Cvi if n = 5.

Thus the proof of Theorem 5.2 is completed. �

Corollary 5.1. If SFn (n > 4) is a sunflower graph with 2n+ 1 vertices, then NV RC of
a sunflower graph is

R′(SFn) =


1− 12n+74

n(9n+67) , if n = 5,
16(7− 17

2
n
2 +1

)

9n+67 , if n is even;
16(7− 12

2
n+1
2

)

9n+67 , if n is odd;

if n > 5.

Moreover the values of C(SFn), R(SFn) and R′(SFn) for n ≤ 4 are in the following Table
3.

Table 3. The values of C(SFn), R(SFn) and R′(SFn) for n ≤ 4

n 3 4

C(SFn) 33
2

51
2

R(SFn) 43
4

137
8

R′(SFn) 43
66

137
204
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6. Conclusion

In this paper, we calculate the residual closeness of some wheel related networks. Resid-
ual closeness is a new characteristic for graph vulnerability introduced in Ref. [2] and more
sensitive than the other known vulnerability measures. Calculation of closeness and resid-
ual closeness for simple graphs is important because the closeness and residual closeness
of more complex graphs can be calculated (e.g. using formula 3 of [2]) by using closeness
and residual closeness of its (simple) parts. It is important the residual closeness to be
introduced to CS community. Very good practical results can be achieved if the residual
closeness is calculated for some real networks (e.g. the Power grid). This parameter is of
particular interest because it is considered to be a reasonable measure for the vulnerabil-
ity of graphs. The residual closeness is not so closely related to connectivity, degrees or
closeness as it seems [2]. The vertex supplying the smallest residual closeness may not be
the one maintaining the same connectivity of the graph for example the helm Hn and a
sunflower graph SFn. The vertex supplying the smallest residual closeness may not be the
one with the highest degree for example the helm H5. The vertex with maximal closeness
not always has the minimal residual closeness for example the helm H5 and a sunflower
graph SF5.
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