
Gottfried Wilhelm Leibniz Universität Hannover
Fakultät für Elektrotechnik und Informatik

Normalization Techniques For Improving The

Performance Of Knowledge Graph Creation

Pipelines

A thesis submitted in fulfillment of the requirements for the degree of
Master of Science in Internet Technologies and Information Systems (ITIS)

BY

Mohammad Torabinejad
Matriculation number: 3203980

E-mail: mohammad.torabinejad@stud.uni-hannover.de

First evaluator: Prof. Dr. Sören Auer
Second evaluator: Prof. (Univ. Simon Bolivar) Dr. Maria-Esther Vidal
First Supervisor: Prof. (Univ. Simon Bolivar) Dr. Maria-Esther Vidal

Second supervisor: Samaneh Jozashoori

September 8, 2020

www.uni-hannover.de
www.et-inf.uni-hannover.de

Declaration of Authorship

I, Mohammad Torabinejad, declare that this thesis titled, ’Normalization techniques for Impro-
ving the performance of knowledge graph creation pipelines’ and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Mohammad Torabinejad

Signature:

Date:

I

You are a treasure, if the gems are your aim.
No more than a grain, if a loaf is your claim!

Recall this secret, when you play this game
Whatever you pursued- is what you became!

— Rumi

Acknowledgements

First of all, I would like to appreciate Prof. (Univ. Simón Boĺıvar) Dr. Maria-Esther Vidal for
her wholeheartedly support and patient guidance. Without her enthusiastic encouragement and
useful critiques during this research work, reaching my thesis’s precious destination would not
be possible. Besides, I would like to thank Prof. Dr. Maria-Esther Vidal for her extraordinary
efforts during the tough time of the pandemic and for her invaluable assistance in keeping my
progress on schedule during this time. I would like to be thankful to Prof. Dr. Auer for providing
me the opportunity to work on my master thesis in the TIB research group and also for accepting
the important role of hosting and evaluating my work.

I would also like to thank Samaneh Jozashoori for her help and support during my thesis and
to offer me the opportunity to discuss hence reassessing my work. I would also like to extend my
gratitude to the TIB and the research group of Scientific Data Management (SDM) to offer me
the resources to develop and run different sections of this thesis. I want to thank every member
of the SDM group for giving me the honour to be part of this family.

I want to be thankful to my friend Javad Kazemi for being patient and supportive during
this challenging time. A special thanks to the lovely and graceful couple, Somayeh Zoghi and
Mohammad Gholami, for their intimacy and companionship. I want to extend my special thanks
to my friends Dr. Hadi Razaghi and Qazi Asim Ijaz Ahmad, for their pure motivation and support
for academic suggestions and their invaluable fellowships during my whole study.

Finally, and most importantly, I would like to express my deep love and gratitude to my
family, especially my parents, who have supported me. They are the most precious assets of my
life for their absolute heartening and inspiring morning words, which made not only my day great
but also my whole abroad life energetic. Therefore, I would like to dedicate my most valuable
achievement in my life, especially for them.

Mohammad Torabinejad

III

Abstract

With the rapid growth of data within the web, demands on discovering information within
data and consecutively exploiting knowledge graphs rise much more than we think it does.
Data integration systems can be of great help to meet this precious demand in that they offer
transformation of data from various sources and with different volumes. To this end, a data
integration system takes advantage of utilizing mapping rules– specified in a language like RML –
to integrate data collected from various data sources into a knowledge graph. However, large data
sources may suffer from various data quality issues, being redundant one of them. Regarding this,
the Semantic Web community contributes to Knowledge Engineering with techniques to create
a knowledge graph efficiently. The thesis reported in this document tackles creating knowledge
graphs in the presence of data sources with redundant data, and a novel normalization theory
is proposed to solve this problem. This theory covers not only the characteristics of the data
sources but also mapping rules used to integrate the data sources into a knowledge graph. Based
on this, three normal forms are proposed and an algorithm for transforming mapping rules and
data sources into these normal forms. The proposed approach’s performance is evaluated in
different testbeds composed of real-world data and synthetic data. The observed results suggest
that the proposed techniques can dramatically reduce the execution time of knowledge graph
creation. Therefore, this thesis’s normalization theory contributes to the repertoire of tools that
facilitate the creation of knowledge graphs at scale.

Keywords: Normalization . Mapping rules . Knowledge graph creation . Data integration system
. Database

IV

Indice

1 Introduction 1

1.1 Motivating Example . 1

1.2 Problem And Contributions . 3

1.3 Summary Of The Chapter . 4

2 Background 5

2.1 Semantic Web . 5

2.1.1 Resource Description Framework (RDF) 5

2.2 RML . 7

2.3 Data Integration . 8

2.4 Relational Databases . 8

2.4.1 Database Design . 8

2.4.2 Functional Dependency . 9

2.4.3 Redundancy In Relational Databases . 10

2.4.4 The Armstrong’s Axioms . 10

2.4.5 A Closure Set Of Functional Dependencies 10

2.4.6 Normalization Theory Of Relational Databases 11

2.5 Data Integration Systems . 12

2.6 Summary Of The Chapter . 13

3 Related Work 14

3.1 Normalization Of Relational Databases . 14

3.2 Mining Functional Dependencies . 15

3.3 Transforming Data Integration Systems . 15

3.4 Normalization In Graph Databases . 15

3.5 Summary Of The Chapter . 16

4 A Normalization Theory for Mapping Rules 17

4.1 Problem Statement . 17

4.2 Proposed Solution . 18

4.2.1 A Mapping Rule Normalization Theory 19

4.2.2 Normal Forms For Mapping Rules . 19

4.2.3 An Algorithm For Transforming Mapping Rules 23

4.2.4 Lossless Join Property . 26

4.3 Summary Of The Chapter . 30

V

5 Implementation 31
5.1 Input Formats . 31

5.1.1 Data Source . 31
5.1.2 Mapping Rule . 31
5.1.3 Set of functional dependencies as Input 31

5.2 Python Libraries . 32
5.3 RML-Normalizer . 32

5.3.1 Implementation Of RML-Normalizer . 33
5.4 Summary Of The Chapter . 33

6 Experimental Evaluation 34
6.1 Testbed Generation . 34
6.2 RML Interpreters . 36
6.3 Experimental Configurations . 36

6.3.1 Datasets . 37
6.3.2 RML Mapping Rules . 39
6.3.3 Experimental Parameters . 39
6.3.4 Metrics . 40
6.3.5 Environment Settings . 41

6.4 Evaluations . 41
6.4.1 Different size data sources . 41
6.4.2 Different Cardinalities . 47
6.4.3 Different Number Of Transitive Dependencies 51

6.5 Summary Of The Chapter . 53

7 Conclusion and Future work 54
7.1 Discussions . 54
7.2 Limitations . 55
7.3 Future Works . 55
7.4 Summary Of The Chapter . 56

A RML mapping rules 57

Bibliography 60

VI

Elenco delle figure

1.1 Motivating example . 2

2.1 An example of RDF triples . 6
2.2 An example of RDF graph . 6
2.3 A sample RML mapping rule with join . 7

4.1 An example of 2nd normal form of mapping rules . 21
4.2 Sample output RDF graphs before and after normalization of mapping rules and sources

into 2NF . 22
4.3 An example of 3rd normal form of mapping rules . 23
4.4 Sample output RDF graphs before and after normalization of mapping rules and data

sources into 3NF . 24
4.5 Decomposition of genomic data source after applying novel normalization theory 27
4.6 Decomposition of genomic RML mapping rule after applying novel normalization theory . 27

5.1 Set of functional dependencies as input to RML-Normalizer 32
5.2 Sample portion of Python code to decompose RML mapping rules 33
5.3 Sample portion of Python code to decompose data sources 33

6.1 A sample configuration file for generating synthetic data 36
6.2 RML mapping rules containing 1 join over synthetic data sources 39
6.3 Performance evaluation of RML-Normalizer over genomic data sources with regard to

different data volumes . 42
6.4 Performance of RML-Normalizer over synthetic data sources with regard to different data

volumes . 43
6.5 Performance evaluation of RML-Normalizer over genomic data sources with regard to

different cardinalities . 48
6.6 Performance evaluation of RML-Normalizer over synthetic data sources with regard to

different cardinalities . 49
6.7 Performance evaluation of RML-Normalizer over synthetic data sources with regard to

different numbers of transitive dependencies . 51

A.1 RML mapping rules with 2 joins over synthetic data sources 58
A.2 RML mapping rules with 3 joins over synthetic data sources 59

VII

Elenco delle tabelle

2.1 A sample relation in relational databases . 8

4.1 Results of lossless testing algorithm regarding motivating example 28

6.1 Data domain specifications of genomic dataset . 37
6.2 Data domain specifications of synthetic dataset . 38
6.3 Experimental Parameters . 40
6.4 Experimental Metrics . 41
6.5 Space savings of genomic data in terms of data size regarding different data volumes while

using RML-Normalizer . 43
6.6 Space savings of synthetic data in terms of data size regarding different data volumes

while using RML-Normalizer . 44
6.7 Space savings of genomic data in terms of the number of generated RDF triples regarding

different data volumes while using RML-Normalizer . 44
6.8 Space savings of genomic data in terms of generated RDF graph’s size while using RML-

Normalizer and different data volumes . 45
6.9 Execution time of RML-Normalizer on different data volume of data sources 46
6.10 Space savings of genomic data in terms of data size regarding different cardinalities while

using RML-Normalizer . 49
6.11 Space savings of synthetic data in terms of data size regarding different cardinalities while

using RML-Normalizer . 50
6.12 Space savings of genomic data in terms of generated RDF graph’s size while using RML-

Normalizer and different cardinalities . 50
6.13 Execution time of RML-Normalizer on data sources with different number of dependencies 53

VIII

Listings

1.1 Functional dependencies holding in motivating example 2
2.1 A sample set of functional dependencies . 10
4.1 Functional dependencies holding in genomic dataset . 20
6.1 A sample set of functional dependencies for generating testbed 35
6.2 Functional dependencies holding in synthetic dataset . 38

IX

Acronimi

1NF first Normal Form

2NF second Normal Form

3NF third Normal Form

BCNF Boyce-Codd Normal Form

DBMS Database Management System

FD functional dependency

GAV global-as-view

LAV local-as-view

RDF Resource Description Framework

RML RDF Mapping Language

X

Capitolo 1

Introduction

The tremendous amount of web data and its exponential growth demands for scalable techno-
logies to generate actionable knowledge. Despite knowledge graphs that can naturally represent
heterogeneous data, techniques for scaling up to data variety, volume, and velocity are still requi-
red. Data integration systems have been responsible for transforming these data into knowledge
graphs, e.g., RDF knowledge graph, with mapping languages[1]. Moreover, with the evolution of
source-independent mapping languages such as RDF Mapping Language (RML), data integra-
tion has been facilitated to a high degree. Although such mapping languages offer the advantage
of integrating heterogeneous data and language extensibility, large data volumes are still chal-
lenging when the transformation task of data comes to play. Albeit extensive size data, it will be
shown that a considerable part of it contains redundant data. This chapter’s content is devoted
to an example which is the motivation for the work of this thesis. In addition, our contribution
to the community of semantic web is presented in the last section.

1.1 Motivating Example

To motivate this thesis’s work, consider a table with 1M tuples of genomic mutations described
in terms of five attributes and having a low amount of distinct values concerning most of these
attributes. This means that many of the data items within the data source are repeating for
some small number of attributes, hence a significant number of redundancies. Now consider
the data integration system, in the middle of a knowledge graph creation process, presented in
figure 1.1, which transforms data within a data source with the help of mapping rules to an
RDF graph[2] and later to a unified global schema. The data mentioned above, the table, and
a mapping rule defined over that data are given input to this system. As shown in the figure,
most of the low cardinality domains are involved in this mapping rule. Thus a significant portion
of redundant data is subject to transformation. As an illustration, SDM-RDFizer[3], a mapping
rule interpreter for RML[1, 4], is used to semantify the data according to the mapping rule in
two rounds, one with duplicate elimination functionality and other without. As a result, there
is almost 75% reduction in the size of the intermediate results and the size of the data source
itself. Therefore, it is perceived that the RDF graph resulting from the integration process over
the data above leads to duplicated RDF triples, as depicted in figure 1.1.

With further investigations, it can be realized that the existing redundancies are originating
from the concept of functional dependencies in relational databases. For instance, it is clear in the
data shown in 1.1 that Mutation somatic status is functionally implied by MUTATION ID
hence a former’s value can be repeated as many as all the latter’s unique values. In contrast, it is

1

Capitolo 1. Introduction

{MUTATION ID} → {Gene CDS length}
{MUTATION ID} → {Mutat ion Descr ipt ion }
{Mutat ion Descr ipt ion } → {Mutat ion somat i c s ta tus }

Listing 1.1 – List of functional dependencies holding in genomic data table depicted in data
integration process of figure 1.1

not true in the opposite direction, and each MUTATION ID is always about the same value,
Mutation somatic status. However, these redundancies are escalated when redundant functio-
nal dependencies come to play. These redundant functional dependencies are implied logically
from the current set of dependencies using Armstrong’s axioms[5]. To exemplify, combination
of SAMPLEID and MUTATION ID functionally determines MUTATION ID and due to
large number of unique values of SAMPLEID, MUTATION ID repeats numerous times hence
values of Mutation somatic status. Listing 1.1 depicts whole list of functional dependencies by
which table in our example is characterized.

Removing redundancies from data sources may not only improve the velocity of the data
integration process but also decreases the volume of intermediate data to be transferred and
later reduce the time of query execution over the generated graphs. The normalization theory of
relational databases [6, 7] is tightly connected to eliminating redundant functional dependencies
hence removing redundancies in data. The decomposition of the original table needs to be
lossless. However, it can not guarantee that the output RDF graph resulted from the data
integration system is also lossless or even if it does not contain extraneous RDF triples. Albeit
important role of decomposing relation databases in improving the knowledge graph creation

Figura 1.1 – Motivating example A data integration system receiving a unified schema, a data source,
and an RML mapping rule defined over the data source as inputs and generates RDF graph accordingly.
Input data source and resulted RDF graph contains redundant data.

2

1.2. Problem And Contributions

process’s performance, this does not suffice to solve the problem of redundant data within data
integration systems, since both data sources and mapping rules are involved intensely with the
task of data transformation in the process. Naturally, one can consider removing duplicate triples
in a generated RDF graph after data integration to solve the recent problem. Regarding this,
factorization and compression approaches can be employed to remove these redundancies within
knowledge graphs [8, 9]. Nevertheless, eliminating redundancies after the semantification process
of data costs expensive and does not offer the possibility to speed up the data integration process,
i.e., knowledge graph creation pipelines. With these limitations in mind, our approach tackles
the problem of redundant data in both data sources and output RDF triples and performance
improvement of data integration systems.

1.2 Problem And Contributions

This work will present a normalization theory considering both mapping rules and their
corresponding data sources. This, in turn, can lead to performance improvement of the data
integration process and significant space savings in terms of data sources and knowledge graph.
Although there is no doubt in the usefulness of normalization relational databases, a mapping rule
[1, 4] violating normal forms may have redundancies too. Therefore, we find it necessary for both
the source and the mapping rules to be normalized. Accordingly, it is essential to define a theory
of normalization correctly matching the concept and structure of corresponding mapping rule
language. Lastly, normalized rules and data sources must produce the same knowledge graph as
the original ones. Based on the above, new normalization theory considering both mapping rules
and data sources and related definitions are presented in this work. It is determined accordingly
that the lossless join property holds for transformed mapping rules.

To eliminate the redundancies existing in data sources and those generated as output by
mapping rules and improve the knowledge graph creation process’s performance, both mapping
rule and its corresponding data source need to be in certain normal forms. Normalization of
data sources not only prevents anomalies concerning insertion, updating, and deletion of data
but also remove existing data redundancies [6]. Normalization of a relational table may lead to
a decomposition of that table into several new tables that might have a much smaller total size
than the original table. These new tables do not present any more recent problems. Considering
the original table as an input source to a mapping rule [1, 10], current work presents a new form
of normalization which is applicable for mapping rules. In addition, this work also includes efforts
to normalize a specific type of mapping rules, namely RML. As a result of this normalization,
decrements in the size of intermediate sources, i.e., input data sources and generated RDF graph
will be shown and proved. Furthermore, an algorithm will be proposed for transforming existing
mapping rules alongside their corresponding input sources into normal forms. This algorithm
offers the advantages of using a new normalization theory called Mapping Rule Normalization
Theory. A Python implementation of this algorithm for RML mapping rules and CSV data
sources is a part of this work to investigate the impacts of this theory on different dimensions
and be helpful to the community of semantic web.

In addition to the efforts mentioned above, this work proves performance improvement when
creating knowledge graphs based on Mapping Rule Normalization Theory. This may lead to
decompositions of rules and data sources as well as using join operator between the rules in
order to generate the same RDF graph. Although the join operator is the most expensive one,
especially in relational algebra, we mostly show performance improvement where the original
data source contains numerous redundancies. Concerning scientific experiments, there is a need
for generating testbeds, which is part of the current work. To that end, a tool for generating

3

Capitolo 1. Introduction

relational tables has been developed. This tool is generating data based on a specified functional
dependency set. Thus, in the end, the data implies every functional dependency existing in the
set. Furthermore, it is proven that the new normalization form fulfills lossless join property,
therefore using joins does not result in losing data. All in all, the current thesis place emphasize
on the following novel contributions:

• Normalization of input sources and mapping rules concurrently.

• The definition of normalization theory over mapping rules.

• An Algorithm for normalizing mapping rules

• RML-Normalizer - an implementation of the proposed algorithm.

• Lossless join decomposition of mapping rules based on the proposed algorithm.

• A tool for generating synthetic testbeds based on a desired set of functional dependencies.

• Experimental evaluations demonstrating the performance improvement in knowledge graph
creation process as well as space savings.

The rest of this work is organized as follows. In Section 2, preliminaries and backgrounds
related to the work of this thesis are described. The following section presents an analysis of
the related work done in the area of data integration. In Section 4, the proposed normal forms
are formalized, and the approach is explained. An implementation of the proposed algorithm
is presented in Section 5. Section 6 shows different experiments accompanied by their results.
Furthermore, to support the position of this work, Section 7 contains some discussions and
analyses of experiments in the previous section. Finally, this section exhibits limitations of this
work as well as an outlook for future works open in this area to the community.

1.3 Summary Of The Chapter

To conclude, this chapter introduces to the working area of this thesis as well as a motivating
example to explain the existing problem. In addition, this chapter described the contribution of
this thesis.

4

Capitolo 2

Background

Databases play a crucial role in organizing data produced by users and, more specifically,
to make instances of the real world. Due to dramatic advances in database systems, they are
used in different scientific areas and implemented other underlying platforms, particularly web-
based platforms. There is no doubt that these data are of great importance to both users and
machines. Considering these two consumers of data and significant growth of produced data
within the web, web technologies like semantic web influences almost every aspect of our life
much more than we think it does. In addition, semantic web technologies need to be fed with
the data produced in different formats with relational tables the most popular of them [1, 11]. In
this section, some basic concepts of semantic web and data integration systems are introduced.
Finally, some fundamentals of relational databases are explained.

2.1 Semantic Web

Data existing in Web documents and utilizing them further in different types of applications
require a framework available to other communities and organizations. The semantic web pro-
vides different communities, organizations, and applications with this opportunity. Thus data
within web documents can be used to discover new information. In addition, the semantic web
plays a vital role in connecting different objects, whether in the real-world or abstract. With this
in mind, the existing data will be extended with new additional data, which they are connected
with other types of data and so forth. To this end, the semantic web deals with large quantities
of data stored in different applications and even with different formats [12]. According to Tim
Berners-Lee, the inventor of the World Wide Web, �The Semantic Web is an extension of the
current web in which information is given well-defined meaning, better enabling computers and
people to work in cooperation�. To have such a kind of framework, one needs to consider a
data-model and a formal language. As a result, the Resource Description Framework (RDF)
language has been adopted by W3C and applied in semantic web applications [13].

2.1.1 Resource Description Framework (RDF)

RDF provides different communities with a common framework for describing the information
in the web. It is a vendor- and operating system-independent infrastructure which is accessible
and extensible in different domains of knowledge. A semi-structured data model can be designed
and built based on semantic of RDF. This, however, may need different communities to define
their own new vocabulary in order to collect, process, and share the data. Of course, this new

5

Capitolo 2. Background

Figura 2.1 – An example set of RDF triples; RDF triples serialized in turtle format and describing
an entity existing in DBpedia

Figura 2.2 – An example of an RDF graph; Nodes represents resources and literals while pointed
arcs are properties and show relations between nodes.

vocabulary is operational, as long as, an RDF vocabulary is in use. This means that a new
vocabulary is always defined based on RDF vocabulary [2, 14]. The following definitions state
the two fundamental concepts of RDF.

Definition 2.1 (RDF triple). Given sets of URIs, blank nodes, and literals defined over U, B,
and L respectively, an RDF triple is a tuple of the form (s, p, o) in which s, p, and o stand for
Subject, Property, and Object. Note that each pair of these sets are disjoint. A sample of some
RDF triples can be observed in figure 2.1

Definition 2.2 (RDF graph). An RDF graph is a collection of RDF triples that may show
different resources along with their properties and property values. Like any other graph, it
is based on node and arcs in which arcs are directed, i.e., it is a directed graph. Nodes are
representative of resources or literals, and a directed arc shows a property of that resource.
Figure 2.2 shows a example of RDF graph.

6

2.2. RML

Figura 2.3 – a sample RML mapping rule; This rule contains a join between two triples maps,
i.e., NBA P (child triples map) and NBA Team (parent triples map) each of which has references to
different sources and different number of columns

2.2 RML

The RDF Mapping Language (RML) extends the W3C-standard mapping language R2RML
with the possibility of supporting heterogeneous formats (e.g., CSV, Relational, JSON, and
XML) [4, 15]. As the W3C-standard R2RML, TriplesMap corresponds to mapping rules where
the resources (a.k.a. subjectMap) of an RDF class and their properties (a.k.a. predicateMap) are
assigned to values (a.k.a. objectMap) based on logical data sources (a.k.a. logicalSource). An
objectMap can be also defined as a reference or a join with the subjectMap in another TriplesMap
(a.k.a. RefObjectMap and joinCondition, respectively). An example of an RML mapping rule,
with two triples map joining to each other, is shown in the figure 2.3.

7

Capitolo 2. Background

2.3 Data Integration

With the rapid increase of data produced within the web and the need to discover knowledge
behind this data and making decisions and actions based on them, data integration has been
playing a vital rule in the semantic web and specifically knowledge graph creation process. Data
integration refers to collecting data from different sources, represented whether in heterogeneous
or homogeneous formats and providing users with a unified structure for further uses [16].

2.4 Relational Databases

To begin with, a relational database is based on the concept of set theory in mathematics [6].
Having one or more domains, a subset of the Cartesian product of these domains provides us with
the concept of relation in relational databases. For instance, a subset of the Cartesian product
with regard to NBA player”s data can be observed in table 2.1. This subset and any other subset
of that product is basically a relation. Each member of the above Cartesian product is called
a tuple when we talk about relations. Each row of the table is the corresponding concept of a
tuple. One can consider names for each component of the above relation. If it is so, these names
are called attributes. With regard to this, a relation scheme is defined as a set of attributes
assigned with each component of a relation. A relation scheme with K attributes, i.e., domains,
is called of arity K. If a relation has the same arity and same domains as a relation scheme, then
it is a possible relation for that scheme that can be an instance of the specified scheme. Thus,
the above-mentioned relation can be seen as the table shown in the figure in which each row and
each column are representative for a tuple and a component, respectively.

2.4.1 Database Design

A properly designed database offers advantages of competitive query execution times over it
and efficient space usage. However, it is necessary to understand facts about poorly designed
databases so perceiving well structures is much more easier. A low quality design of a database
can hold the following drawbacks [6]:

• Redundancy: This happens when a column’s value is repeating for more than one another
column’s value. One reason for that is the presence of redundant function dependencies
within a data relation. In table 2.1 values of Player nationality and team name are two
examples of redundancies.

• Update anomalies: As a result of the first drawback, modifying an existing value forces an
update overall occurrences of the same value, otherwise the data will present inconsistencies.

Name Player nationality team id team name
Lebron James USA 20 Cleveland cavaliers
Ron Harper USA 20 Cleveland cavaliers
Mo Williams USA 20 Cleveland cavaliers
Dirk Nowitzki Germany 30 DalLas Mavericks

Dennis Rodman USA 30 DalLas Mavericks

Tabella 2.1 – A sample relation holding data about NBA basketball players; This
relation is a subset of the Cartesian product of four domains Name, Player nationality, team id,
team name

8

2.4. Relational Databases

In our current example, any modification to the value ”Cleveland cavaliers” within the
column Team name needs to be applied to all three entries existing in the column.

• Insertion anomalies: This occurs when creating a new row is impossible since one of the
columns, which is always optional in reality, must have a value. Based on our example,
suppose we need to create a new row in the table, but there is not yet any assigned
Team name for the intended row. From a database point of view, we must have a value
for this column. One can consider allowing null values in this column. Accordingly, we
need to delete this row, the moment that the real value, is assigned. Moreover, when this
issue is happening in one of several attributes in a compound key, it prevents the actual
task of the primary index.

• Deletion anomalies: This issue is the one that occurs when for example we want to
delete one specific value of Teamname. So then we need to delete every and each row
containing the same value for Teamname. Consequently, we delete every other value too,
and exactly at this moment, we lose the track of all other information in current relation
for this specific row, e.g., the name of a player.

Through the normalization of tables, the above-mentioned problems of a poor design database
can be solved[6]. However, due to the nature of join operators and the fact that they cost
expensive for a database, there needs to be some trade-off between decomposing a table and
using Join operations.

2.4.2 Functional Dependency

It is stated in [6, 7, 17] that functional dependencies, FD, are integrity constraints developed
in the real-world through which legal possible relations for a relation scheme will be indicated.
This means that not every possible relation can be an instance of a particular scheme unless
all functional dependencies hold for that relation. A functional dependency f is a function
f1 : X → Y where each of X and Y is subsets of a set of attributes in a relation. To clarify
this, given a specific value of X, Y has only one value associated with the value of X. It is not
necessary for Y to be associated exactly with one value of X. If it is so, then the relationship
between X and Y is a one to one relationship, otherwise it is a Many to one relationship. In fact,
the former shows that there is another functional dependency f2 : Y → X. However, if there are
no such kind of functional dependencies between X and Y, then it can be inferred that at least
one value in X has one or more assigned values of Y and vice versa.

We say a relation r satisfies a functional dependency f : X → Y whenever for each tuple µ
and ν in r one of the following holds:

• µ[X] = ν[X] then µ[Y] = ν[Y]

• µ[X] 6= ν[X]

On contrary, if µ[X] = ν[X] then µ[Y] 6= ν[Y], we say the relation r violates functional dependen-
cy f. In order to investigate whether a functional dependency holds in an existing scheme, it is
necessary to check all of the possible relations for the violation of that dependency. Considering
the relation in the recent example, table 2.1, where Name is the primary key of the relation.
The dependency between Name and all other attributes in the relation is one clear example of a
functional dependencies. List of functional dependencies defined over this relation can be seen in
listing 2.1. It is obvious in table 2.1 that each unique value of Name is in relation with exactly
one value from all other domains. Therefore the related functional dependency is holding in the
relation.

9

Capitolo 2. Background

2.4.3 Redundancy In Relational Databases

Redundancy and inconsistencies in databases are generated by the lack of satisfaction of
integrity constraints. One typical example that generates usually redundancies is the lack of
enforcement of functional dependencies. As an illustration, violating functional dependencies
causes that specific columns to have repeated values. This will cause certain problems described
in section 2.4.1. One example is when two functional dependencies f1 : X → Y and f2 : Y → Z
hold in a relation concurrently. To put it simply, based on the nature of functional dependency
f1, values in Y can be repeated several times for each different value of X, yet each unique value
of Y must not have more than one unique value. Now the values of Z are repeating per value in
Y. Therefore for each repeating value of Y, the corresponding value of Z will be repeated extra.
Principally, the presence of the redundant functional dependency f3 : X → Z, which can be
inferred using Armstrong’s axioms [5], results in redundancies in the relation. To help clarify
the point, consider the relation in our current example. In table 2.1 and according to set of
functional dependencies presented in listing 2.1, the functional dependency Name → teamname
is implied logically over the relation using Armstrong’s axioms. Them, it is called a redundant
dependency and it needs to be removed to tackle the problem described in 2.4.1.

2.4.4 The Armstrong’s Axioms

In the current section some of the inference rules defined on top of the Armstrong’s axioms
[5, 6] are described; they are used for discovering new functional dependencies as well as keys in
a relation. Given a relation with a set of attributes X, a set Y ⊆ X, a set Z ⊆ Y , a set W ⊆ X
and a set of functional dependency F over its attributes the following rules are valid and sound:

• Reflexivity: Y → Z can be inferred logically from F and more specifically it is called a
trivial dependency.

• Augmentation If Y → Z holds in X, then Y ∪W → Z ∪W can be implied logically from
F.

• Transitivity if both Y → Z and Z →W holds in X, then based on this rule Y →W is a
logical implication in F.

There are some other rules stated in [6, 7] which can be built based on the above-mentioned
rules.

2.4.5 A Closure Set Of Functional Dependencies

The inference rules described in the last section can be used to discover and build a full set
of functional dependencies upon attributes in a relation. This complete set, which contains all
of the explicit and implicit dependencies, is called a closure set of functional dependencies. It is
stated in [6] that the closure set of functional dependencies plays an essential role in database
design. For one thing, it aims strongly in finding the violations of normal forms. Another thing

{Name} → { p l a y e r n a t i o n a l i t y }
{Name} → { team id }
{ team id } → {team name}

Listing 2.1 – List of functional dependencies holding in sample relation in 2.1

10

2.4. Relational Databases

is, this set can be used to find the keys existing in a relation. Finally, it can be used to define
different methods to bring a relation to a specific normal form, e.g., Third Normal Form. The
next section aims to describe the basics of normal forms in relational databases.

2.4.6 Normalization Theory Of Relational Databases

In order to understand different normal forms, it is necessary to have some basic definitions
first. Given a relation R with set of attributes X, the followings are definitions explained in [6,
7, 18].

Definition 2.3 (Candidate key). A set of attributes Y ⊆ X is a candidate key if it functionally
determines all attributes within X, even its own elements, yet there is no other set Z ⊆ Y which
has the same property.

Definition 2.4 (Primary key). One of the candidate keys within R can be chosen as the
primary key of the relation. Primary is often and generally called just ”Key”.

Definition 2.5 (Superkey). Any set of attributes Y ⊆ X containing any candidate key is
called a superkey. Therefore set X is a trivial superkey based on set theory.

Definition 2.6 (Prime attribute). An attribute is called prime whenever it is an element of
any key in a relation.

Definition 2.7 (Partial dependency). Given a single attribute A ∈ X and a set Y ⊆ X, where
Y = Y1, Y2, ..., Yk, ..., Ym and a functional dependency f1 : Y → A in F , a partial dependency
occurs whenever there exists a set Z = Y1, Y2, ..., Yk for which f2 : Z → A holds also in X.
Subsequently, it can be seen that attributes Yk+1, Yk+2, ..., Ym are extraneous.

Definition 2.8 (Full dependency). Considering the definition in 2.7, if there is no such a set
Z, then A is fully dependant on Y .

Definition 2.9 (Transitive dependency). Given a single attribute A ∈ X, two sets Y ⊆ X
and Z ⊆ X, a transitive dependency occurs whenever there exists functional dependencies f1 :
Y → Z and f2 : Z → A in F , yet A /∈ Y and A /∈ Z and f3 : Y 6→ X in F .

Definition 2.10 (First Normal Form). The relation R is in First Normal Form (1NF) if all of
its domains are atomic and any attributes belonging to R have only single values of its domain.

Definition 2.11 (Second Normal Form). The relation R is in Second Normal Form (2NF) if
it is in first normal form and for each attribute A ∈ X and each key Y ⊆ X, either A is a prime
attribute or it is fully dependant on Y .

Definition 2.12 (Third Normal Form). A relation R is in Third Normal Form (3NF) if it is
in Second Normal Form and for each nonprime attribute A ∈ X, there is no key Y ⊆ X yet A
is transitively dependant upon Y.

Definition 2.13 (Lossless join decomposition into Third Normal Form). Decomposition
of relations play an important role when there is a need to remove violations of normal forms.
However, not every decomposition is possible and it is because of lossy property of some decom-
positions. It is claimed in [6], that a lossless join decomposition shows always the same results. A
lossless decomposition of the relation R into relation R1, R2, ..., Rn is basically defined as below:

• R = ΠR1
R ./ ΠR2

R ./ ...ΠRn
R

11

Capitolo 2. Background

2.5 Data Integration Systems

A Data Integration System (DIS) defines the components that allow for the integration of
heterogeneous data sources into a unified schema following a set of mapping rules. A seminal
article by Lenzerini [16] presents an abstract structure of DISs based on the following definitions:

Definition 2.14 (Data Integration System [16]). A data integration system I is defined in terms
of a triple 〈O,S,M〉, where

• O is the global schema or ontology, expressed in a language LO over an alphabet AO. The
alphabet comprises a symbol for each element of O (i.e., relation if O is relational, class if
O is an ontology, etc.).

• S is a set of data sources expressed in a language LS over an alphabet AS . The alphabet
AS includes a symbol for each element of the sources.

• M is a set of mappings O and S of the form:

qS qO,

qO qS

where qS and qO are two queries of the same arity over the source schema S, and over
the global schema/ontology. Queries qS are expressed in a query language LM,S over the
alphabet AS , and queries qO are expressed in a query language LM,O over the alphabet
AO. Intuitively, an assertion qS qO specifies that the concept represented by the query
qS over the sources corresponds to the concept in the global schema represented by the
query qO (similarly for an assertion of type qO qS).

Mappings among sources and the global schema can be specified in following different para-
digms, e.g., global-as-view (GAV) [19], and local-as-view (LAV) [20].

Mappings established using the local-as-view (LAV) approach represents the data sources as
views over the global schema. The mappings in M associate each element s in source schema S
with a query qO defined over the global schema. The mappings established by LAV comprise a
set of assertions, one for each element s of source schema S, given as:

s qO

where s ∈ S and qO is a query defined over the global schema O
Global-as-view (GAV) approach represents the concepts in the global schema as a set of views

over the data sources. The mappings inM associate each element g in the global schema with a
query qS over the data source. The mappings established by GAV encompass a set of assertions,
one for each element g of O, given as:

g qS

where g ∈ O and qS is query defined over the sources in S.

The mapping language RML follows the Global-as-view (GAV) approach, i.e., it enables the
definition of each entity of a class and their predicates in terms of the attributes of a set of data
sources. Furthermore, RML allows for the definition of mapping rules among data sources in
diverse formats, e.g., CSV, JSON, XML, and relational databases.

12

2.6. Summary Of The Chapter

2.6 Summary Of The Chapter

This chapter presented all the concepts required to understand the problem addressed in this
thesis, as well as the proposed solution and the empirical evaluation conducted for validating the
efficiency of the proposed approach.

13

Capitolo 3

Related Work

With the growing popularity trend of knowledge graphs day by day and the development
of novel technologies, the role of data, especially web data, is much more obvious to us than
before. However, the presence of redundancies within the data can cause serious problems,
being inefficient execution of knowledge graph creation processes one of them. To tackle the
problem of redundant data, some efforts have been done in both communities of Semantic Web
as well as Database. Although there are approaches which are concentrating on discovering
unknown dependencies in data[21], the main parts of the works are dealing with Normalization
of Relational Databases in order to eliminate redundancies in databases [22, 23]. However, the
problem of redundancies in intermediate resources during the knowledge graph creation process
as well as in existing knowledge graphs is of great value too. This is investigated and solved to
some extent in existing works [24]. What is certain, the latter works are often working on the
same problem as this thesis.

3.1 Normalization Of Relational Databases

. The facts demonstrate that the normalization of relational databases is still a controversial
problem. To speak more specifically, bringing relational tables into Boyce-Codd Normal Form
(BCNF) is one most challenging tasks and works in this area are highly appreciated. Papenbrock
et al. [23] propose NORMALIZE, a semi-automatic data-driven algorithm to normalize datasets
into BCNF. In addition to that, this work presents two algorithms to calculate closure set of
functional dependencies which can be helpful not only in normalization but also for query opti-
mization and data cleansing. Demba et al. [22] also propose an algorithm for normalizing relation
databases but only up to third normal form. The proposed algorithm requires pre-processing
to discover minimal cover of the functional dependency set. Although these works are carried
out to normalize relational databases, they differ from the work of this thesis at some points.
First of all, current work is focused on normalizing mapping rules and their corresponding data
sources concurrently. Secondly, our approach considers the set of functional dependencies as
input instead of discovering dependencies from within instances of data. Finally, since the input
to our algorithm is already minimal, there is no need for our approach to finding the minimal
cover of dependencies.

14

3.2. Mining Functional Dependencies

3.2 Mining Functional Dependencies

Metadata of relational databases, e.g., functional dependencies and candidate keys, are not
always available and that relational schemes in some case are numerous, there has been a strong
demand to mine data to find extra information. This in turn helps to reduce the amount of
work done by users to specify those metadata manually. FD Mine [21] aims at discovering
functional dependencies from the extension of a relational scheme by finding equivalent sets of
attributes within a dataset and ignoring logically implied functional dependencies in the hope of
reducing the search space. To that purpose, 4 rules are explained in that work for pruning the
search space, i.e., set of attributes and functional dependencies. Like FD Mine, FDTool[25] is
also tool for discovering minimal set of functional dependencies, candidate keys and equivalent
attributes. It is re-implemented in hopes of performance and process improvement. Although
these works have a novel contribution to the relational database community, the work of our
thesis is not focused on the mining of functional dependencies and finding equivalences, since
the set of functional dependencies is considered as an input to our approach. However, it should
be noted that FDtool is utilized in testbed generations within our work and particularly for
checking the satisfaction of functional dependencies in the generated relational tables.

3.3 Transforming Data Integration Systems

During recent years great efforts have been done in order to solve the problem of knowledge
graph creation and in particular to speed up the process of big data integration. An ongoing issue
in this area of knowledge is the scale of data which is the subject of transformation to a knowledge
graph. MapSDI [24], a scaled-up Data Integration framework for knowledge graph creation, is
relying on the transformation of a mapping rule’s data source to solve the problem. Moreover, it
is exploiting the semantic data within mapping rules to project out referred attributes from data
sources. Subsequently, MapSDI eliminates redundancies within the recent set of attributes and
select the relevant data. Despite the second to none contribution of MapSDI, it is focusing to solve
the problem by eliminating redundancies in data, e.g., remained after attribute projection process
or by merging different datasets. Our work is different in the sense that we are normalizing a
mapping rule along with its corresponding data source and accordingly eliminating redundancies
caused by specific functional dependencies. Nevertheless, MapSDI targets also the same problem
as in this thesis. Needless to say, it can be used to preprocess the input data source to our
approach in the hope of reducing normalization time and further performance improvement in
the knowledge graph creation process.

3.4 Normalization In Graph Databases

Nowadays, scientists in the semantic web community inform us about data redundancies hap-
pening in existing knowledge graphs and discuss the advantages of normalizing these graphs in
order to reduce those redundancies. In this respect, redundant data within the graphs increases
their size without being necessary. Another thing is, the redundancies can be a serious problem
when processing queries over knowledge graphs. Karim et al.[9] solve the problem of redundant
data within knowledge graphs on the basis of factorization techniques. In this innovative work,
the concept of factorized RDF graphs is formulated which is based on so-called frequent star pat-
terns. The aim is to have a compressed knowledge graph whose size of redundant properties and
objects are reduced. The amount of data that is streamed from sensor networks and is stored in
the knowledge graph is unprecedentedly large and it grows rapidly without any doubt. Needless

15

Capitolo 3. Related Work

to say, measurements by sensors observed often many times and this results in redundancies of
data. A factorization approach is proposed also to eliminate the redundant entries within a kno-
wledge graph consisting of sensor data [8]. Besides, an algorithm is presented to evaluate queries
over the tabular representation of a factorized RDF graph. In spite of the fact that precious
works have been done in this area, none of the above-mentioned works on removing redundan-
cies prior to creating knowledge graphs. Our proposed approach presents normalization in the
level of data integration and proves the lossless decomposition of mapping rules. Therefore this
work can be also helpful to the above-mentioned works by reducing the number of redundancies
within the RDF knowledge graph.

3.5 Summary Of The Chapter

In the current chapter reviews of some relevant works in different areas of knowledge were
explained and accordingly they were compared to the work of this thesis.

16

Capitolo 4

A Normalization Theory for
Mapping Rules

In the present thesis, we aim at explaining the problem of knowledge graph creation concer-
ning the scale of data to be transformed. Accordingly, in current section we first attempt to
formalize the problem of data integration systems. After that, a novel normalization theory for
mapping rules, including different definitions, is introduced. On basis of this theory, redundancies
caused by functional dependencies, holding over a set of attributes mentioned by mapping rules,
are exemplified. Then, a solution to the problem of data integration system is proposed. This
includes an algorithm to transform mapping rules and corresponding data sources into decompo-
sitions respecting newly defined normal forms. Lastly, lossless property of recent decompositions
is proved theoretically.

4.1 Problem Statement

The problem of knowledge graph creation which is described in this thesis, is basically the
one originating from two components of a data integration system, namely source schema and
mapping. Given a data integration system DISG = 〈U,D,M〉 [16, 24], modeled as Global as
view (GAV), the components are defined as following:

• U is a unified global schema, i.e., ontology, which is a triple in form of U = (C,P,A). C and
P are referring to vocabulary of U , i.e., classes and properties, while A is a set containing
axioms used for interpreting the content of vocabulary in a given domain of discourse.

• D is set of data sources, later utilized by mapping rules, which is defined over alphabet
set 〈DAttr1

1 , DAttr2
2 , ..., DAttrn

n 〉 with each Dn an element of D , e.g., relation in relational
databases or object in object oriented data model etc. In addition, each Attrn specifies set
of attributes corresponding to element Dn.

• M is set of mapping rules defined in a mapping language of choice which is defined as
following:

rk : cj(X,X)︸ ︷︷ ︸
head of the rule

: –D1(X1), D2(X2), ..., Dm(Xm)︸ ︷︷ ︸
body of the rule

(1)

where cj is a class in C and it is a conjunctive query on the sources and attributes in D. X
is a variable in the above definition and X is a set of pairs (Pi,j , Xi,j) with Pi,j a property

17

Capitolo 4. A Normalization Theory for Mapping Rules

of type C and Xi,j a variable. The above rule is safe since all of the variables are involved in
the body of rule. In addition, Dz(Xz) is a source in D with Xz as a set of pairs (ai,z, Xi,z)
where Xi,z is a variable and ai,z is an attribute in Dz.

Let V be set of all variables in the rules existing in M and set I be union of all data items within
D. Then the evaluation of each rule rk in the above mentioned definition of data integration
system leads to generation of an RDF knowledge graph G and it is defined as following.

µ : V → I. (2)

Based on 1 and 2, evaluation Dz(Xz) on µ, i.e., eval(Dz(Xz), µ), corresponds to a set µDz

composed of pairs (ai,z, Xi,z) in Xz, each of which hold both of the followings:

• The pair (Xi,z, µ(Xi,z)) belongs to µDz

• If 〈a1,z, ..., aq,z〉 are the attributes of Dz in Xz, then the tuple
〈(a1,z, µ(X1,z)), ..., (aq,z, µ(Xq,z))〉 belongs to the data extension of Dz

Let t be an RDF triple of the form t = (s p o). Then the evaluation of each rule rk in (1)
over µ defined as Eval(rk, µ) results in a set of RDF triples t obtained as one of the following:

• rk : cj(X,X) : –D1(X1)

If the pair (X,µ(X)) exists in µS1
, then for each (Pi,1, Xi,1) ∈ X and each (Xi,1, µ(Xi,1)) ∈

µS1
, t = (µ(X) Pi,1 µ(Xi,1))

• rk : cj(X,X) : –D1(X1), D2(X2), ..., Dm(Xm)

If the pair (X,µ(X)) exists in at least one µDz
, then for each (Pi,z, Xi,z) ∈ X and each

(Xi,z, µ(Xi,z)) ∈ µDz
, t = (µ(X) Pi,z µ(Xi,z))

Let RDFize(.) be a function that maps DISG〈U,D,M〉 with the resulted knowledge graph
from evaluation of all rules rk utilizing sources D, then result of this function can only be
impacted by rules rk or Dz. In fact, the execution time of RDFize(.) plays an important role
in this thesis which is strongly increased by redundancies resulted from functional dependencies.
Based on this, we intend to rewrite a data integration system DIS′G〈U,D′,M ′〉 with the following
properties:

• The execution time of RDFize(DIS′G〈U,D′,M ′〉) is minimized.

• RDFize(DISG〈U,D,M〉) and RDFize(DIS′G〈U,D′,M ′〉) produce the same results, i.e.,
RDFize(DISG〈U,D,M〉) = RDFize(DIS′G〈U,D′,M ′〉).

4.2 Proposed Solution

In this thesis, we propose a normalization theory to solve the above-mentioned problem. We
hypothesize that data integration systems composed of mappings and data sources that are free
of redundancies will enable the generation of knowledge graphs in less time. Thus, we consider
as a solution to the problem a data integration system DIS′G〈U,D′,M ′〉 that meets the following
conditions:

• All mapping rules in M ′ and their corresponding data sources in D′ are normalized up to
third normal form.

18

4.2. Proposed Solution

• The data sources in D′ meet the lossless join property with respect to the data sources in
D.

• The intermediate results of RDFize(DIS′G〈U,D′,M ′〉) meet the lossless join property re-
specting to the intermediate results generated by the execution ofRDFize(DISG〈U,D,M〉).

In this section, normal forms for mapping rules and data sources are defined.

4.2.1 A Mapping Rule Normalization Theory

With variety and velocity of data produced and used in the web nowadays, and considering
the fact of huge redundancies existing in those data, we find it necessary for mapping rules to hold
certain normal forms in order to avoid redundancies. In fact, when it comes to data integration
systems and mapping rules, it does not suffice to normalize only the relations, i.e., data sources
and normalization of mapping rules plays a vital role in knowledge graph creation due to several
reasons. For one thing, execution of mapping rule, violating normal forms, generates intermediate
data containing redundancies. As a consequence, execution of other related mapping rules will
be influenced so the pace of knowledge graph creation process, specially when the data sources
are huge. Another thing is execution of this mapping rule alone produces duplicate RDF triples.
Naturally, this can be of great impact, when it comes to big data.

Suppose a mapping rule along with its corresponding data source is not normalized with
respect to some set of functional dependencies. Accordingly, the mapping rule dominates which
subsets of attributes should be utilized to transform the data within data sources into a knowled-
ge graph. As a result, existence of redundant functional dependencies not only in data sources
but also in mapping rules generate duplicated results, thus both of them must to be normalized.
For one thing, decomposing data sources embodying redundant dependencies results in elimina-
ting redundancies in data following by improving the performance of data integration process.
Another thing is that normalization of mapping rules prevents the generation of redundant RDF
triples prior to evaluation of a data integration system. This offers the advantage of eliminating
redundancies with lower costs compared to other solutions such as removing duplication com-
pletely at data level. All in all, it is necessary for a data integration system that both of a data
source and a mapping rule are normalized according to the set of functional dependencies.

4.2.2 Normal Forms For Mapping Rules

First, the proposed normal forms will be presented, and an algorithm for normalizing mapping
rules will be shown in the following section. Lastly, it will be proved that the corresponding
decomposition of a mapping rule, based on the algorithm, generates no different knowledge
graph compared to original rule.

Mapping Rule First Normal Form

The main goal of First Normal Form of mapping rules is to have atomic data types as well
as atomic data domains with respect to attributes mentioned in mapping rules.

Definition 4.1. Given a data integration system DISG〈U,D,M〉, source Dz ∈ D, with sets
of attributes Attrz, and mapping rule rk defined over Dz, with object maps defined over the
attributes T = {T1, T2, ..., Tn} such that S ⊆ T as the subject map and T ⊆ Attrz. Mapping
rule rk is in First Normal Form, whenever Dz is in First Normal Form and both of the followings
holds:

19

Capitolo 4. A Normalization Theory for Mapping Rules

{MUTATION ID} → {Gene CDS length}
{MUTATION ID} → {Mutat ion Descr ipt ion }
{Mutat ion Descr ipt ion } → {Mutat ion somat i c s ta tus }

Listing 4.1 – List of functional dependencies holding in genomic datasets of 4.1

• For each object map within rk, it is referring to exactly one attribute Tz, i.e., column.

A mapping rule is not in First Normal Form whenever its object maps are are composed of
one attributes existing in the related data source. It is essentially suggested to check violations of
1NF of mapping rules with all object maps presented in that mapping rule, whether it contains
column-valued or template-valued term.

Mapping Rule Second Normal Form

Like second normal form of relational databases [6, 7], this normal form is defined over
mapping rules based on definitions of partial and full dependency.

Definition 4.2. Given a data integration system DISG〈U,D,M〉 and sets of functional de-
pendencies F , source Dz ∈ D, with sets of attributes Attrz characterized by set of functional
dependencies Fz, and mapping rule rk defined over Dz, with object maps defined over the attri-
butes T = {T1, T2, ..., Tn} such that S ⊆ T as the subject map and T ⊆ Attrz. Mapping rule
rk is in second normal form with respect to set of functional dependencies Fz, whenever both rk
and Dz are in first normal forms and both of the followings holds:

• f : S → Ti ∈ Fz holds in T , then either Ti is fully dependant upon S or Ti ⊆ S

• Y ⊆ T and f : Y → S ∈ Fz holds in T , then S is fully dependant upon Y or S ⊆ Y

A mapping rule is not in second normal form, when one of the aforementioned conditions is
not satisfied. Like relational databases [6], a violation of 2NF must not be looked for only in set
of functional dependencies but also in closure set of functional dependencies. This violation in
the mapping rules will be removed by placing the related attributes, which caused the partial
dependency, in a different mapping rules. In other words, Logical References to these attributes
in current mapping rule must be replaced with Referencing Object Maps.

Example 4.3. It can be seen in Figure 4.1 that the RML rule is violating the second nor-
mal form defined above. It is happening to be the case since the second condition mentioned
in definition 4.2 is not satisfied. To make it clear, the rule is mentioning attributes Muta-
tion somatic status and Gene CDS length which both are dependant upon MUTATION ID, yet
MUTATION ID is part of another functional dependency, i.e., {SAMPLE ID,MUTATION ID}.
It turns out that this violation leads to redundancies in both attributes Mutation somatic status
and Gene CDS length which results also redundancy in intermediate data generated during the
evaluation of the mapping rules. Consequently, this can increase the execution time of mapping
rules in the process of knowledge graph creation. In addition, the redundancies caused by viola-
tion of second normal form generate duplicate RDF triples, thus, affects the further applications
over resulted RDF graph, i.e., query execution. Figure 4.2 presents the RDF graphs resulted
by executing original version of the mapping rule versus normalized version. The duplicates
generated by the original version is clear in Figure 4.2.

20

4.2. Proposed Solution

Example 4.4. Unlike the mapping rule shown in figure 4.1a, the mapping rule in figure 4.1b is
completely in second normal form with respect to its set of functional dependencies, thus there
is no need to normalize this mapping rule. These two mapping rules differ in that the latter
does not mention attribute SAMPLE ID, thus all attributes within this mapping rule are fully
dependant on the subject.

Mapping Rule Third Normal Form

Although a mapping rule is in second normal form following the definition 4.2, it may still
need to deal with issues described in 4.2.1. In fact a mapping rule can still have redundancies,
since it holds transitive functional dependencies with regard to set of functional dependencies
defined over its set of attributes.

Definition 4.5. Given a data integration system DISG〈U,D,M〉 and sets of functional de-
pendencies F , source Dz ∈ D, with sets of attributes Attrz characterized by set of functional
dependencies Fz, and mapping rule rk defined over Dz, with object maps defined over the attri-
butes T = {T1, T2, ..., Tn} such that S ⊆ T as the subject map and T ⊆ Attrz. Mapping rule rk
is in third normal form with respect to set of functional dependencies Fz, whenever both rk and
Dz are in second normal forms and exactly one of the followings holds:

• functional dependency f : S → Ti ∈ Fz holds in T for every Ti

• for each Ti, a functional dependency f : Y → S ∈ Fz holds in T where Y ⊆ T and Ti ∈ Y

Similar to Mapping Rule Second Normal Form, to examine and discover violations of third normal
form in a mapping rule, it is necessary to consider always closure set of functional dependencies.

(a) RML mapping rule violating the 2NF

(b) RML mapping rule holding the 2NF

Figura 4.1 – RML mapping rules defined over genomic data source with set of func-
tional dependencies shown in 4.1 defined over its set of mentioned attributes; (a):
An RML mapping rule containing a set of attributes that violate 2NF (b): An RML mapping
rule containing a set of attributes that respect 2NF

21

Capitolo 4. A Normalization Theory for Mapping Rules

(a) Output RDF graph with duplicates

(b) Output RDF graph without duplicates

Figura 4.2 – Output RDF graph resulted by executing (a): RML rule described in example
4.3 and (b): normalized version of RML rule described in example 4.3

Example 4.6. Figure 4.3b depicts an RML mapping rule which is in second normal form, yet
violating the third normal form. This rule is not in third normal form according to set of func-
tional dependencies expressed in 4.1, since the transitive dependency between MUTATION ID
and Mutation somatic status through Mutation Description is holding in the RML mapping ru-
le. This dependency, which is a redundant one, is the main reason of redundancies appearing
in the data. This leads later to redundancies in the output RDF graph which is shown in the
figure 4.4a. Furthermore, this dependency creates redundant data in the intermediate data. As a
matter of fact, performance of knowledge graph creation process will be strongly affected. Third
normal form of mapping rules eliminate this transitive dependency and hence the redundancy
in the data as well as output RDF graph. The latter is presented in figure 4.4b. By comparing
RDF graph appeared in figure 4.4, one can see the difference between the original and normalized
version of RML mapping rules in terms of output results.

22

4.2. Proposed Solution

(a) SDM-RDFizer (b) RMLMapper

Figura 4.3 – RML mapping rules defined over genomic data source with set of func-
tional dependencies shown in 4.1; (b): An RML mapping rule containing a set of attributes
which violate 3NF together (a): An RML mapping rule containing a set of attributes that respect
3NF

Example 4.7. An RML mapping rule which is in both second and third normal form is presented
in figure 4.3a. It is obvious that there is no transitive functional dependency implied by any subset
of attributes within the rule.

On the basis of the above, in the next section, we present an algorithm to bring mapping rules
in third normal form and accordingly second normal form. This will include a decomposition of
existing mapping rules.

4.2.3 An Algorithm For Transforming Mapping Rules

We rely on the definition in 4.2.1 and based on that, we propose a solution for the problem
described in 4.1. To start with, the redundancies show negative effects on the performance of the
knowledge graph creation. For instance, the interpreter of a mapping rule, i.e., RDFizer, needs
to load a huge amount of data although full of redundancies. Additionally, these redundancies
lead to having large intermediate data which can be be expensive for a data integration system.
As an illustration, a join between two mapping rules lasts extremely long. Naturally, the pos-
sible solution is to eliminate the redundancies. It is already demonstrated that the problem of
redundancies existing in data sources and further produced in a resulted RDF knowledge graph
is mainly because of violation of some normal forms within a data source and a mapping rule
over that. To tackle this problem, our approach offers a novel solution to transform mapping
rules alongside data sources into normal forms.

Our approach transforms a data integration system DISG = 〈U,D,M〉 into an equivalent
DIS′G = 〈U,D′,M ′〉 such that the sources in D′ and the mapping rules in M ′ up to third normal
form. The algorithm 1 depicts the steps required to perform normalization over the above
mentioned components of DISG. It receives a mapping rule as well as its data source and a set

23

Capitolo 4. A Normalization Theory for Mapping Rules

(a) Output RDF graph with duplicates

(b) Output RDF graph without duplicates

Figura 4.4 – Output RDF graph resulted by executing (a): RML rule described in example
4.6 and (b): normalized version of RML rule described in example 4.6

of functional dependencies defined over its attributes as input. The idea behind the algorithm is
to remove attributes from their original location, i.e., mapping rule or data source, where they
cause violations of normal forms. For instance, line 31 shows an attribute Ti which is selected
out from the original source into another source and later its corresponding reference in mapping
rule, i.e., Logical Reference, will be removed to a new mapping rule. To be clear, the algorithm
decomposes each input mapping rule and data source therefore two effective components of DIS′G
resulted from our approach, D′ and M ′, will be in third normal form.

Normalizing above mentioned components of a data integration system is strongly connected
with functional dependencies over set of attributes utilized in a mapping rule. To this end, these
attributes need to be selected out from the original data source. As it can be seen can see in
line 3 of algorithm 1, only mentioned attributes are moved to a new data source. After that, a
redundant functional dependency holding within this set of attributes must be eliminated. In fact,
these redundancies are the main reason of partial and transitive dependencies and specifically
redundancies in data. Functional dependencies involving recent attributes will be used later as
a basis for removing attributes and respectively eliminating redundancies. Overall, data sources
are decomposed into third normal form based on left side and right of these dependencies.

24

4.2. Proposed Solution

On the basis of our problem defined in 4.1, both of components M and D play vital roles in
solving the problem. With regard to this, our proposed decomposition consider the principles of
mapping rules as the key point for normalization. To make it clear, the decomposition is carried
out by taking subject map of a mapping rule into account. The reason is that a subject map
generates URI of RDF triples produced by a mapping rule and basically it can not be removed
from a mapping rule. Therefore for decomposing into certain normal forms, e.g., 2NF and 3NF,
it is necessary to remove attributes which are not implied by the subject of a mapping rule. To
that end, each such attribute will be selected out from the input source and moved to a new
data source and based on that new source, a new mapping rule with the regarding attribute as
Subject Map will be created.

Algorithm 1: for decomposing a mapping rule and its data source to 3NF
Input: A data source Dz with set of attributes Attrz , a set of functional dependencies Fz over Attrz and a

mapping rule rk composed of a triples map mk defined over the data source Dz , with object maps

defined over the attributes T = T1, T2, ..., Tn such that S ⊂ T as the subject map and T ⊂ Attrz
Output: Decomposed mapping rule r′k and its related set of data sources D′z holding corresponding third

normal forms

1 r′k=rk
2 if T 6= Attrz then

3 DS = ΠXDz

4 end

5 else

6 DS = Dz

7 end

8 for Y ⊂ T do

9 if f : Y → T ∈ F then

10 D′z = DS

11 return r′k, D
′
z

12 end

13 end

14 foreach Ti /∈ S do

15 if @Y ⊂ T such that f : Y → Ti ∈ Fz then

16 D′STi
= ΠS∪Ti

Dz

17 D′z = D′z ∪D′STi

18 Add a new triples map mTi
to r′k with Ti as Subject Map

19 Transform Object Map Ti in original triples map mk to a referencing object map with a join to mTi
over S.

20 end

21 else if ∃Y ⊂ T such that Y 6= S and f : Y → Ti ∈ Fz then

22 D′Y Ti
= ΠY∪Ti

Dz

23 D′z = D′z ∪D′Y Ti

24 Add a new triples map mTi
to r′k with Ti as Subject Map

25 Transform Object Map Ti in original triples map mk to a referencing object map with a join to mTi
over Y .

26 end

27 D′S = D′S − Ti

28 end

29 foreach Ti ∈ S do

30 if ∃ Y ⊂ T and W ⊂ T such that Y 6= W and S * W and f1 : Y → W ∈ Fz and f2 : W → Ti ∈ Fz then

31 D′WY = ΠW∪Y Dz

32 D′z = D′z ∪D′WY

33 foreach Ti ∈ Y do

34 Add a new triples map mTi
to r′kwith Ti as Subject Map

35 Transform Object Map Ti in original triples map mk to a referencing object map with a join to

mTi
over W .

36 end

37 end

38 D′S = D′S − Y

39 end

25

Capitolo 4. A Normalization Theory for Mapping Rules

Algorithm 1: for decomposing a mapping rule and its data source to 3NF

40 foreach Ti /∈ S do

41 if ∃Y ⊂ T such that S 6= Y and f1 : Y → S ∈ Fz and f2 : S → Ti ∈ Fz then

42 D′SY = ΠS∪Y Dz

43 D′z = D′z ∪D′SY

44 foreach Ti ∈ Y do

45 Add a new triples map mTi
to r′k with Ti as Subject Map

46 Transform Object Map Ti in original triples map mk to a referencing object map with a join to

mTi
over S.

47 end

48 end

49 D′S = D′S − Y

50 end

51 D′z = D′z ∪D′S
52 return r′k, D

′
z

Given a data integration system DISG〈U,D,M〉, source Dz ∈ D, with sets of attributes
Attrz, and mapping rule rk defined over Dz, with object maps defined over the attributes T =
{T1, T2, ..., Tn} such that S ⊆ T as the subject map and T ⊆ Attrz, our proposed algorithm
1 decompose mapping rule rk and data source Dz in four different steps. To begin with, it
removes any attribute which is not functionally dependant on any other set of attributes (possibly
singleton) in the set T , yet it is not part of S. This can be seen in line 15. In addition, each
attribute that is partially or transitively dependant on S need to be removed. Line 21 of the
algorithm guarantees this point. Moreover, if S itself is involved in the right side of a partial or
transitive dependency, then all attributes in the right side must be eliminated. This is depicted in
line 30. Finally, there may be a subset of attributes in T remaining which may imply transitively
another subset of attributes. This is dealt with in line 41 and basically the set of attributes
(possibly singleton) implying S will be removed. The original data source and mapping rule, as
well as their decompositions are depicted in figures 4.5 and 4.6 respectively. Applying these four
steps, the resulted mapping rule and the data source(s) are in third normal form.

According to the definition of a data integration system and our problem statement mentioned
in 4.1, the evaluation of transformed mapping rules M and data sources D must remains exactly
the same as before. Therefore, the decomposed mapping rules and data sources based on the
above mentioned steps must lead to the same output RDF knowledge graph. First of all, the
algorithm ensures that there will be no extra RDF triples produced. To that end, it takes into
account that every and each decomposed parent triples map have exactly one term map and
that is a subject map, thus the join between two triples map does not lead to any additional
data. This guarantees that the parent triples map does not produce any predicate and object
with regard to its specified resource. This fact is demonstrated in figure 4.6b. Secondly, joining
of the mapping rules, built during the process of algorithm 1, must satisfy the lossless property.
Based on the results generated by the algorithm , the property is determined to be assured and
it can be seen in figure 4.4. However, we need to prove this theoretically. It is actually the main
subject of next section and we will talk about it later. All in all, the RDF knowledge graph
produced remains the same as original one yet the output size is reduced.

4.2.4 Lossless Join Property

In order to ensure the correctness of our approach, it is necessary to prove that applying
normalization forms on each mapping rule and its corresponding source does not lead to any
data loss, whether within data sources or in intermediate results produced by a data integration
system. To that end, the proof of correctness of our proposed algorithm is first explained. Then,
we show that the resulted mapping rules and data sources are guaranteed to be lossless.

26

4.2. Proposed Solution

(a) Original data source
(b) Normalized data source

Figura 4.5 – Data source of motivating example decomposed into 3NF using algorithm
1 (a): Original data source as a flat table (b): Decomposition of original data source holding
3NF

(a) Original mapping rule (b) Normalized mapping rule

Figura 4.6 – RML mapping of motivating example decomposed into 3NF using al-
gorithm 1 (a): Original RML mapping rule containing one triples map (b): Decomposition of
original RML mapping rule with two triples map holding 3NF and using data sources in 4.5b

3NF Decomposition Of Data Sources

We prove that the resulted data sources form our approach described in 1 are in third normal
form. Given the data integration system DISG〈U,D,M〉 defined in 4.1 and source Dz ∈ D, with
sets of attributes Attrz characterized by set of functional dependencies Fz ∈ F , and mapping rule
rk : cj(X,X) : −Dz(Xz) defined over Dz. In our proposed approach, two types of relations, i.e.,
data sources, can be decomposed from the original data source Dz due to normalization process.
One is D′YW or D′SY or D′S that is resulted from having the functional dependencies Y →W or
Y → S and the other one is D′Y Ti

that is the result of presence of functional dependency Y → Ti.
Next, we prove that the decomposed data sources in the former case1 is in third normal form.
To that end, a contradiction proof is employed.

1Proof of D′
Y Ti

being in third normal form can be done in the similar way

27

Capitolo 4. A Normalization Theory for Mapping Rules

Suppose the data source D′YW is not in third normal form, thus there must exist a functional
dependency X → A that make the data source violate third normal form. According definition of
normal form for relational databases, X is not a super key for D′YW , A is not a prime attribute
and A /∈ X. Considering A ∈ W , then it must hold X ⊂ Y ∪ W − {A}. According to our
assumption X ⊂ Y holds as well. Therefore, under all conditions, i.e., X ⊂ Y , X ⊆ W and
X ⊂ Y ∪W − {A}, it is shown that Y → X. Since X → A holds according to our assumption,
then Y → A is an extraneous functional dependency. This in turn contradicts to the concept of
minimal cover in relational databases. Now by considering A ∈ Y , it holds that X ⊂ Y −{A}∪W .
Based on our assumption, Y is a super key since A is not a prime attribute. As a result, there
must exist a Z ⊂ Y for which the functional dependency Z →W holds. The presence of Y →W
and Z → W as well as the fact that Y → Z lead to contradiction to the definition of minimal
cover in relational databases. Accordingly, our contradiction assumption is proved to be wrong
and as the result the relation, i.e., the data source is in third normal form.

Lossless Join Property Of Data Sources

The proof of the lossless property of decomposed data sources, is based on the demonstration
presented by [20]; it inductively demonstrates that the algorithm produces in each iteration a
decomposition that is lossless. One example may help clarify this point. Table 4.1 shows the
result of application of this algorithm over the motivating example in this thesis. In this table
S ID,M ID,M Som and G Length stands for the attributes SAMPLE ID, MUTATION ID,
Mutation somatic status and Gene CDS length, respectively, in the data source of genomic
mutation. In addition, MUTATION SOM GENE and SAMPLE MUTATION are decom-
positions of the original data source produced by our proposed algorithm. The table 4.1 proves
the lossless-join property in the case of our motivating example that reaches after two iterations.
As it can be seen one row of the table, namely SAMPLE MUTATION ’s row, contains only ai’s
after second iteration. According to the definition of testing algorithm[20], the decomposition of
the original source into these data sources does not lead to loss of any data.

S ID M ID M Som G Length
MUTATION SOM GENE b11 a2 a3 a4

SAMPLE MUTATION a1 a2 b23 b24

(a) Initial state of the table

S ID M ID M Som G Length
MUTATION SOM GENE b11 a2 a3 a4

SAMPLE MUTATION a1 a2 a3 a4

(b) Modified state of the table after one iteration

Tabella 4.1 – Results generated after two iteration. After the second iteration, it is shown
that the decomposition is lossless.

The 3NF Decomposition Of RML Mapping Rules

Like the data sources, it is necessary to prove that our proposed algorithm decompose the
mapping rules within a data integration system into the third normal form with respect to
its defined set of functional dependencies. Given the data integration system DISG〈U,D,M〉
defined in 4.1 and source Dz ∈ D, with sets of attributes Attrz characterized by set of functional

28

4.2. Proposed Solution

dependencies Fz ∈ F , and mapping rule rk : cj(X,X) : −Dz(Xz) defined over Dz. Our algorithm
transforms a mapping rule rk with one triples map into a mapping rule r′k composed of one child
triples map and several parent triples maps in order to achieve the goal of normalization up to
3NF. Therefore we need to prove the correctness of our algorithm in the recent two cases. In fact,
generated triples maps mTi

are always composed of exactly one term map and that is subject
map. The subject map is always referring to one attribute, thus it can not indicate any violations
of any forms. However, the proof must be done for the transformation of an existing triples map
to a child triples map according to functional dependency S → O, where O ⊆ T and it refers
to attributes used in object maps. We support this position by using contradiction. Consider
that the child triples map is not in third normal form. Therefore, we suppose that there exist
functional dependencies Y → Ti where Ti /∈ Y and Y is not the subject, i.e., S. The complete
proof is concerned about two cases: (1)Ti ∈ S (2)Ti ∈ O. In both cases, due to presence of
Y → Ti, it can be concluded that S → Ti is redundant. However, in the first case S → Ti is a
trivial dependency. This contradicts to the fact that minimal cover does not include redundant
dependencies. To conclude, all of the transformed triples maps are in third normal form.

Lossless Join Property Of Mapping Rules

In this section, it is proven that the decomposition of a mapping rule into several mapping
rules with respect to set of functional dependencies over its used attributes ensures that the same
knowledge graph is created as before. In order to prove that, we rely on the definition of lossless
joins for relational databases [20] and we ground the lossless property of transformed rules.

Given the data integration system DISG〈U,D,M〉 defined in 4.1 and source Dz ∈ D, with
sets of attributes Attrz characterized by set of functional dependencies Fz ∈ F , and map-
ping rule rk : cj(X,X) : −Dz(Xz) defined over Dz. For a lossless decomposition Attr′z =
{Attr′z1, Attr

′
z2, ..., Attr

′
zn} resulted from normalization of Dz with respect to set of functional

dependencies Fz defined over its set of attributes Attrz such that:

• Attr′zg ⊂ Attrz, and 1 ≤ g ≤ n

• Attrz = ∪ng=1Attr
′
zg

• Dz = ./ng=1 ΠAttr′zg
Dz

• D′z = {D′Attr′zg
zg | D′Attr′zg

zg = ΠAttr′zg
Dz , and 1 ≤ g ≤ n}

our approach replaces the source Dz in D′ with all D′zg’s, 1 ≤ g ≤ n. In addition, the rule r′k in
M ′ , the transformed of rk, is defined as following:

r′k : cj(X,X) : −D′z1(X ′z1), D′z2(X ′z2), ..., D′zn(X ′zn).

Now suppose D′z1(X ′z1) as the only source used in the only child triples map existing in r′k
after normalization and also set XH as the set of all variables existing in the head of the rule,
i.e., variables in X and X. Then the rule r′k meets also the following condition for each X ′zg,
1 ≤ g ≤ n:

X ′zg =

{(ai,zg, Xi,zg) | (ai,zg, Xi,zg) ∈ XH and

ai,zg ∈ Attrzg}
g = 1

{(ai,zg, Xi,zg) | (ai,zg, Xi,zg) ∈ XH and

ai,zg ∈ Attrzg and
ai,zg /∈ (Attrzg ∩Attrz1)}

1 ≤ g

29

Capitolo 4. A Normalization Theory for Mapping Rules

and also for all attributes a′i ∈ (Attrzg∩Attrz1), our approach adds new variables that exist only
in the body of the rule, i.e., for joining different data sources, as follows:

X ′zg = X ′zg ∪ {(ai,zg, Xi,zg) | (ai,zg, Xi,zg) /∈ XH and ai,zg ∈ (Attrzg ∩Attrz1)}

Accordingly, our approach guarantees that the generated RDF graph by executingRDFize(DIS′G
〈U,D′,M ′〉) remains the same as that of RDFize(DISG〈U,D,M〉), while in the former the exe-
cution time is improved and the redundancies are removed. We ground lossless property of
approach with respect to the above mentioned conditions:

• According to the lossless property definition, the transformed rule r′k contains the same
attributes as in Attrz and the join of all the data sources D′zg leads to the same tuples
existing in Dz prior to decomposition.

• In order to join the sources D′zg, new variables are added to the body of rule r′k. These are
not appearing in the head of the rule. Thus the rule can transform all values which were
accessible prior to transformation, i.e., by employing rule rk, and head of the rule remains
the same as before too.

• The only variables added to r′k are those for joining different sources. Therefore, our
approach does not force any extra data in the output.

4.3 Summary Of The Chapter

The aim of this chapter was to explain the existing problem as well as new theories and defi-
nitions. In addition, an algorithm for tackling the defined problem in this section was presented.
Finally, it has been proven that transformation of mapping rules and data sources into normal
forms are lossless.

30

Capitolo 5

Implementation

In this chapter, an implementation of the algorithm, described in the last chapter, will be
presented. This is done in Python1 language version 3.7 and it is tailored for the RML2 mapping
language. In fact, it is called RML-Normalizer. In the rest of this chapter, first, the inputs’
formats to the implementation and the utilized python libraries are presented and then RML-
Normalizer and its implementation will be described.

5.1 Input Formats

On the basis of our approach, the implementation receives three inputs namely data source,
mapping rule, and set of functional dependencies. Next, the specific formats of inputs to this
version of implementation are explained.

5.1.1 Data Source

In the current implementation, only CSV files as data sources can be received. Since an RML
mapping rule reads the data within a data source, the input data source is therefore extracted
from inside an RML mapping rule. It is done using the logicalSource of a triples map inside the
mapping rule.

5.1.2 Mapping Rule

As it is mentioned before, this implementation is specifically done for the purpose of transfor-
ming RML mapping rules. These mapping rules are given as input with the Turtle3 serialization.

5.1.3 Set of functional dependencies as Input

Functional dependencies are the main part of our algorithm to decompose mapping rules and
data sources. In order to have a unified format with most of the other resources within the data
integration system as well as to keep track of the dependencies even in our knowledge graph, we
decided to have the input set of functional dependencies in turtle format. Having different data
sources with different sets of functional dependencies over them, this format can be very helpful

1https://www.python.org/
2https://rml.io/
3https://www.w3.org/TR/turtle/

31

https://www.python.org/
https://rml.io/
https://www.w3.org/TR/turtle/

Capitolo 5. Implementation

Figura 5.1 – An example of a FD set as input to RML-Noramlizer

later to discover new patterns. This format can be introduced later as new vocabulary and it
can extend the RML mapping language as a real-world example. This can be seen in figure 5.1.

5.2 Python Libraries

In order to implement the RML-Normalizer, two popular libraries are used, and mainly the
function of RML-Normalizer is based on these two libraries. First of all, the RDFlib4 library
version 5.0.0 is used to load, parse, and edit an existing RML mapping rule. To illustrate
it, this library is used in the first place along with a SPARQL query over the content of an
RML mapping rule to read and parse the content. The result is then processed to remove the
undesired attributes from the input mapping rule. After that, the library is used to add new
triples maps into the mapping rule. In addition, the pandas 5 version 1.0.3 is used to read CSV
data sources as well as to edit them. With regard to this, the RML-Normalizer takes the benefits
of the Pandas library to project out the attributes and extensions of data sources into new data
sources. Needless to say, the duplicate rows within the extensions will be removed by using
pandas.

5.3 RML-Normalizer

RML-Normalizer is a specific implementation of our approach to deal with RML mapping
rules and their input sources. However, our approach can be considered as a basis for processing
other types of mapping rules. As a matter of fact, RML is a language for integrating heteroge-
neous data sources based on different formats, e.g., CSV, JSON, and XML. RML-Normalizer is
publicly available as a resource in Github 6.

4https://rdflib.dev/
5https://pandas.pydata.org/
6https://github.com/SDM-TIB/rml-normalizer

32

https://rdflib.dev/
https://pandas.pydata.org/
https://github.com/SDM-TIB/rml-normalizer

5.4. Summary Of The Chapter

Figura 5.2 – An example of RML-Noramlizer implementation for decomposing RML map-
ping rules Parent triples maps are decomposed from original RML mapping rule and then join conditions
are added

Figura 5.3 – An example of RML-Noramlizer implementation for decomposing data sources
Decomposition and duplicate eliminations are performed in this portion.

5.3.1 Implementation Of RML-Normalizer

As it is mentioned above, the current implementation of RML-Normalizer relies on RML
mapping rules as input mapping rules and CSV files as input data sources. The former is read
by the RDFlib library and it will be decomposed possibly into new triples maps. To this end,
RML-Normalizer uses this library to parse the mapping rule into its elements, e.g., Subject Map,
Object Map, Logical Source and etc. These are used in turn to find the attributes made violations
of normal forms. In other words, the library is used to traverse the set of functional dependencies
and to find the redundant dependencies, thus remove the relevant attributes from the mapping
rule. Having the relevant attributes, RML-Normalizer takes advantage of editing the parsed
graph, by RDFlib, to add new triples maps and to transform existing Logical References into
Referencing Object Maps. Figure 5.2 show portion of the code meant to perform recent function.
Normalizing of data sources via pandas is performed in three main steps and after reading the
data source from within the content of input RML mapping rule. To start with, the undesired
attributes will be removed from the original data source to a new data source holding normal
forms, e.g., 2NF and 3NF. In addition to removing this attribute, RML-Normalizer attaches the
join condition(s) to the set of attributes in a new data source. Another step is to project out
attributes that are fully and directly dependant on the subject map. Last but not least, the
duplicates in each of the decomposed data sources are dropped. This is clearly shown in the
figure 5.3.

5.4 Summary Of The Chapter

An implementation of our approach tailored for RML mapping rules and CSV data sources
is presented. We also described the inputs to this implementation as well as the programming
libraries used in python language to achieve our goal.

33

Capitolo 6

Experimental Evaluation

To investigate the bright and dark side of our work, several experiments are specified and
performed. These experiments aim at evaluating the performance of a knowledge graph creation
pipeline and to compare data space usage of original resources versus the normalized ones based
on our approach. To that end, the research questions to be answered in this work are formulated
as following: RQ1: What is the impact of the proposed approach on space savings? RQ2: What
is the impact of the approach on the knowledge graph creation? The rest of this work is organized
as follows: First, the testbed generation and generated testbeds are described. After that, the
experimental setups are explained. Finally, the results and their corresponding analysis will be
depicted.

6.1 Testbed Generation

There are intense demands to discover the aspects in which each state-of-the-art tool and
technology need to be developed. Proposing new tools and technologies requires these aspects
to be precise. Therefore the existence of data is of great importance for studying the bright
side and dark side of every existing technology and showing the great value of new works.
Similarly, having testbeds for evaluating different tools in the area of data integration systems
can be very helpful to Semantic Web Community. This thesis also includes implementing a
tool for generating testbeds based on the configuration of functional dependencies set related to
relational databases. This tool is developed to run different experiments in this work. However,
this can be used and extended to generate testbeds for other related experiments and study the
shortcomings of current works.

This tool is implemented during this thesis to provide us with data sources to prove our work’s
impacts on existing data integration systems. Our testbed tool is publicly available as a resource
in Github 1. This tool’s basic idea is originating from the concept of functional dependencies
between different attributes in a set. Each an attribute in a set can be functionally dependant
upon another subset (possibly singleton) of the same set [6, 7]. According to this, one can
explicitly determine whether there exists a relation between two single attributes or not. However,
the same configuration can be applied implicitly to sets of attributes. By utilizing FDTool [25]2,
one can ensure that desired functional dependencies holds within a set of attributes. This, in
turn, confirms that our testbed generation tool works well according to the given configurations,
and the data sources are holding certain types of functional dependencies.

1https://github.com/SDM-TIB/rml-normalizer
2https://github.com/mburanosky17/FDTool/tree/v0.1.7

34

https://github.com/SDM-TIB/rml-normalizer
https://github.com/mburanosky17/FDTool/tree/v0.1.7

6.1. Testbed Generation

{NBA ID} → {Name}
{NBA ID} → { p l a y e r p o s i t i o n }
{NBA ID} → { p l a y e r n a t i o n a l i t y }
{NBA ID} → { team id }
{ team id } → {team name}
{ team id } → { league champs }

Listing 6.1 – A sample set of functional dependencies for generating testbed

Our testbed generation tool is implemented in Python 3.7, and basically, its main point is
a recursive function. To feed the tool, we use a configuration file, i.e., INI file, in which each
level acts as one attribute of the output data source. Figure 6.1 depicts one example structure
of this configuration file based on the functional dependencies in 6.1. The number of distinct
attributes within the set of dependencies equals the number of levels in this configuration file.
According to this structure, level7 is representative for the attribute NBA ID and the four
preceding levels are presenting attributes which are directly dependant on that attribute, i.e.,
Name, player position, player nationality and team id exactly in this order. In other words,
level7 is key to the data source to be generated. However, level1 and level2 are related to
attributes team name and league champs. Our tool performs recursive calls based on these
levels starting from level1 to create a tuple of N-arity, in this case, 7-arity, in each row of the
output data source.

This configuration file is presenting much more detail than just a set of attributes. Each level
of the configuration file has at least four properties that are used in order to reach the goal of
having a data source holding certain functional dependencies. To start with, domain cardinality
shows the number of distinct values existing in each level, i.e., for each attribute. Therefore, the
value of this property in the last level, in this case level7, shows the total number of tuples to be
generated. Property number of distinct vals is to specify the number of times each previously
generated value(s), in an iteration, is duplicated. For instance, a value generated in one iteration
in level1 is repeated 2 times with regard to level2 and respectively values, i.e., tuple, generated
in the same iteration by level1 and level2 is repeated 5 times with regard to level3.

The property is parent determines whether a specific attribute implies its preceding levels or
not. In other words, it shows if in a new iteration the same values as the previous iteration should
be used or not. This actually makes sure that there will be some certain functional dependencies
between a level and its preceding levels. For instance, the value of corresponding property in
level3, i.e., True, ensures existence of the last two functional dependencies mentioned in list6.1
within data. In a sense, this property also guarantees that there will be no undesired functional
dependency between some levels. For example, every value in level1 will be duplicated for each
value in the level2. Accordingly, there will be an N-to-N relationship between these two attributes
hence no functional dependency between them, as it is in list 6.1. In a similar way, there will be
no functional dependencies between level4, level5, and level6. Moreover, the property total vals
refers to the number of times that a value of an attribute B is repeated for a value of another
attribute A, holding the functional dependency B → A in the minimal cover. The exception is
the last level in which this property determines total number of tuples to be generated.

35

Capitolo 6. Experimental Evaluation

Figura 6.1 – An example configuration file to generate data according to set of functional
dependencies stated in 6.1

6.2 RML Interpreters

It is generally agreed today that evaluating results of proposed approaches as well as existing
approaches via different tools not only exposes the pros and cons of an intended approach but
also proves the presence of those pros and cons. We run three different RML interpreter engines
over our proposed solution, i.e., the normalized RML mapping rules and their data sources.
SDMrdfizer 3 [3], RMLMapper4 and RocketRML 5 [26] are three interpreters used in these
experiments. Finally, our evaluations for all of these tools are shown. However, the analogy of
these tools is beyond the work of this thesis.

6.3 Experimental Configurations

A necessary set of experimental configurations needs to be set in a proper way to run the de-
sired experiments. Some of these configurations include the environment, e.g., operating system,
hardware, e.g., CPU and memory usage, input data, in our case, data source, RML mapping ru-
les, and set of functional dependency. Next, the testbeds and their characteristics are described.
After that, the input RML mapping rules are presented. Then, we will show which parameters

3https://github.com/SDM-TIB/SDM-RDFizer/tree/v3.2
4https://github.com/RMLio/rmlmapper-java
5https://github.com/semantifyit/RocketRML

36

https://github.com/SDM-TIB/SDM-RDFizer/tree/v3.2
https://github.com/RMLio/rmlmapper-java
https://github.com/semantifyit/RocketRML

6.3. Experimental Configurations

play essential roles in our proposed solution and explain which of them are used, and we reveal
which metrics are defined to evaluate the effects of these parameters. Finally, the evaluations,
i.e., results of experiments, are demonstrated.

6.3.1 Datasets

To evaluate the results produced by our solution, two different types of testbeds are used. First
of all, a real-world data source is used which is mentioned all over this thesis as a motivating or
running example. Secondly, we take advantage of our novel testbed generation tool and produce
synthetic data to investigate additionally those aspects which are not available in the real-world
testbed.

Real-World Dataset

Like in any other area of knowledge, the importance of using real-world data in the semantic
web is noticeable to almost everyone. In the first place, it provides us with real-world issues and
complexities in data, thus we can discover the strengths and weaknesses of a work. In the second
place, the abundance of these types of data will bring us diversity in structures and data source
configurations. As a result, there will be no need to generate data synthetically hence there will
be most probably a great time-saving in developing new ideas and state-of-the-art technologies.

In our work, the running example is used to presents the way our approach solves the problem
of defining a new data integration system described in 4.1 and also to show the effectiveness
of our approach. The dataset is a subset of somatic mutations data provided by COSMIC 6

. Subset of attributes used for our experiments includes SAMPLE ID, MUTATION ID,
Gene CDS length, Mutation somatic status and Mutation Description. This dataset is cha-
racterized with a set of functional dependency upon it as mentioned in 1.1 and it contains 50M
records. However, according to parameters of our experiments and based on different experiments
only some parts of the data is used. A combination of SAMPLE ID and MUTATION ID
is the key of the dataset and every other data item in this dataset is repeating for values in
MUTATION ID with different rates hence for the key. Table 6.1 shows the total number of
distinct values in each domain.

S
A

M
P

L
E

ID

M
U

T
A

T
IO

N
ID

G
en

e
C

D
S

le
n

gt
h

M
u

ta
ti

on
so

m
at

ic
st

a
tu

s

M
u

ta
ti

on
D

es
cr

ip
ti

o
n

100000 500 415 15 8

Tabella 6.1 – Number of distinct values in each domain within dataset of genomic data

6https://cancer.sanger.ac.uk/cosmic/download according to version v91 released 07thApril2020

37

https://cancer.sanger.ac.uk/cosmic/download

Capitolo 6. Experimental Evaluation

{NBA Player ID} → {Team ID}
{Team ID} → {Founded}
{Team ID} → {Div i s i on }
{Team ID} → {Champs Of}

Listing 6.2 – List of functional dependencies holding in synthetic datasets

Synthetic Dataset

Synthetic methods are alternative options for empirical evaluations of state-of-the-art and
newly proposed technologies, whenever differently structured data are not publicly available or
the variety of data is probably not high enough. Therefore, the synthetic data play a vital role,
whenever several different configurations are to be examined. However, synthetically generated
data need to be checked to ensure if they are satisfying the desired configuration. Moreover, one
needs to be sure that the same data are reproducible later. Otherwise, the results can not be
reproduced and the evaluations are useless for a community. In addition, the synthetic data may
need to follow some real-world restrictions. For example, a generated relational data source may
need to hold a set of functional dependencies. All in all, synthetic data is of great importance,
since it can clarify each and every strength point and shortcomings in a work.

We rely on our testbed generation tool and generate different datasets according to the aims of
our experiments. The generated testbed includes three data sets with 4M, 8M, and 16M records
each. These datasets hold the set of functional dependencies over five attributes shown in listing
6.2. Each of the attributes is given different domains and a different number of unique values
similar to the real-world data. Since there are needs to perform experiments for parameters under
study, it does not suffice only to consider different numbers of unique values for each experiment.
To explain it, it is necessary to consider all numbers fixed and just change the diversity of unique
values corresponding to attribute Team ID, since it is the joining condition for our mapping
rules hence specifies join selectivity. Table 6.2 shows clearly the fact mentioned above.

NBA Player ID Team ID Founded Division Champs of

4M

40

5 2 2

80
160
400
800
2K
4K
8K
16K
40K

8M 80 5 2 2
16M 160 5 2 2

Tabella 6.2 – Number of distinct values in each domain within synthetic datasets

38

6.3. Experimental Configurations

(a) Original mapping rule violating 3NF

(b) Normalized mapping rule in 3NF

Figura 6.2 – RML mapping rules over synthetic data characterized with set of functio-
nal dependencies described in listing 6.2 (a): Original RML mapping rule containing two
object maps violating 3NF (b): Normalized RML mapping rule with one join condition holding
3NF

6.3.2 RML Mapping Rules

Mapping rules are part of the defined problem in 4.1 and they have a great effect on the
final results. With regard to this, we need to take into account different mapping rules based
on different sets of functional dependencies and it is essential that there exist different kinds of
violations as to normal forms. Thus the evaluation results make sense regarding the proposed
solution. In addition to the RML mapping rule available in our running example, which is
violating 2NF, a mapping rule violating 3NF is applied over the testbeds. Figure 6.2 depicts
recent RML mapping rule. In fact, this mapping rule is considering the key of the data sources as
the subject and any other attributes act as object maps in this rule. To study different behaviors
of our solution we need to consider a different number of joins as well. In other words, it can be
of great importance to run experiments with different mapping rules in terms of the number of
object maps.

6.3.3 Experimental Parameters

Without any doubt, it is necessary to indicate parameters that affect the behavior of a system
or process which is under study. Chaves-Fraga et al. [27] explain in his work the parameters
that can be effective during the knowledge graph creation process, from mapping to source to
output and platform. Like any other novel works, we identify parameters that play important
rules in the evaluation of a data integration system and knowledge graph creation process as

39

Capitolo 6. Experimental Evaluation

Experimental Parameter
1 Data volume
2 Cardinality of attributes
3 Number of transitive dependencies

Tabella 6.3 – Experimental parameters with regard to evaluation of RML-Normalizer

well as future query processing over the resulted RDF knowledge graph. These parameters are
in correlation with our solution based on the normalization of mapping rules and data sources.

The parameters in our work which mainly affect the evaluation of a data integration system
defined in 4.1 include those originating from transforming mapping rules as well as their corre-
sponding data source. These parameters can be seen in table 6.3. Firstly, the data volume refers
to the number of tuples existing in a dataset utilized by a mapping rule during the process of
data integration. Secondly, cardinality of attributes expresses the number of unique values in one
domain attached to the number of unique values in another domain. This of course can be very
informative within the process, since normalization leads to decomposing of data sources and
mapping rules. Finally, the decomposition results in having different joins to different mapping
rules in order to approve the completeness of the output RDF knowledge graph. This may in
turn affects the execution time of a knowledge graph creation pipeline. For that purpose, we
consider also number of transitive dependencies.

6.3.4 Metrics

As in any other research work in the community, to evaluate the goals of our work, there are
needs to define metrics to observe the end results and analyze them. In our work we defined
three metrics shown in table 6.4. Accordingly, definition of each metric are as follows:

• Space: Size of the results generated by using an approach including intermediate and end
results.

• Execution time: The time needed for the construction of a complete knowledge graph by
executing RML mapping rule(s) over its corresponding CSV data source(s). Needless to
say, the normalization time is considered in execution times of experiments, when it comes
to normalized versions of RML mapping rules and data sources.

• Completeness: Output RDF knowledge graph by the execution of an RML mapping rule
over its corresponding CSV data source.

In fact, normalization may reduce the size of intermediate results leading to occupying fewer
spaces. In addition, it causes the elimination of duplicated output RDF triples. As a result of
these, the construction time of a knowledge graph can be influenced. Therefore the execution
time of a knowledge graph creation process needs to be observed. However, normalization leads
to the decomposition of rules and data sources, thus the execution of joins between rules and
data sources impacts the execution time too. This can be another explanation for observing the
execution time. Last but not least, these joins must present the same RDF graph as the original
RDF graph. To that end, it is necessary to check the completeness of the RDF graph resulted
from our solution.

40

6.4. Evaluations

Experimental Metric
1 Execution time
2 Space saving
3 Completeness

Tabella 6.4 – Experimental metrics to measure efficiency and correctness of RML-
Normalizer

6.3.5 Environment Settings

In this thesis, we utilize the first version of RML-Normalizer, implemented in Python 3.7,
to normalize RML mapping rules and data sources. Intended experiments are carried out on
a Ubuntu 18.04.3 LTS 64 bit machine with two Intel(R) Xeon(R) Platinum 8160 2.10 GHz
CPUs and CPU cores sum up to 96 with 2 threads each. The memory settings installed on
the machine are 755 GiB DDR4 RAM. Moreover, to run experiments we used Docker version
19.03.4 with python:3.7 as the template image for building a docker image. Additionally, the
docker’s resources are limited in terms of numbers of CPUs and used Memory to 20 and 50Gb
respectively.

6.4 Evaluations

In this work and according to experimental parameters, three different experiments are exe-
cuted. In the next sections, each of these experiments with the produced results as well as their
impact on experimental metrics are explained.

6.4.1 Different size data sources

In this section, two experiments and their results are explained in which RML mapping rules
shown in 4.6, i.e., running example, and 6.2 are executed using different RDFizer engines. The
former is violating the second normal form of mapping rules and the latter is violating the third
normal form. In addition, the structure of two mapping rules differs in that the former has
part of the key from the data source as its subject map and part of it as its object map, while
in the latter the key itself is the subject map in the mapping rule. As mentioned before these
mapping rules are characterized by two lists of functional dependencies, namely listing 4.1 and
6.2. Moreover, the volume dimension of data sources plays a great role in these experiments. In
the first experiments shown in figure 6.3a, interpreting of RML mapping rules are over several
subsets of the whole dataset namely 100K, 200K, 300K, 400K, 500K, and 1M tuples. However,
the second experiment includes three datasets of 4M, 8M, and 16M tuples. Last but not least,
in both of the datasets cardinality as well as the number of joins remains unchanged all over
a specific experiment. They both include 1 join, however, the former has a cardinality of 10%
and the latter cardinality of 2.5%. In all the experiments, a timeout of 7,200,000 milliseconds is
considered.

Execution Time

With regard to our metrics and specifically execution time, it is generally reduced, with some
cases showing considerable effects of normalization. It is clear in figures 6.3a and 6.3b that the
execution time of knowledge graph creation process is decreased significantly in all 6 executions
albeit normalization process. The time is improved by more than 95% in all of the cases except

41

Capitolo 6. Experimental Evaluation

(a) SDM-RDFizer (b) RMLMapper

(c) RocketRML

Figura 6.3 – Performance of different RDFizer engines with and without using RML-
Normalizer over genomic mapping rules and data sources violating 2NF Total exe-
cution times, (normalization time is included if any), needed by each RDFizer engine to finish
the assigned tasks based on different data volumes.

for data source with 100K tuples integrated by SDM-rdfizer whose improvement is almost 87%.
Although RMLMapper could not finish the tasks in most of the original cases and could not
produce results, RML-Normalizer improved the execution time of RMLMapper nearly 99.9% in
all cases. Considering RocketRML, there are different behaviors with respect to normalization.
Figure 6.3c depicts that RocketRML offers no improvement in the case of normalized mapping
rules and data sources, though the differences in times are not significant, with 300K data size the
lowest execution time increment. Although RocketRML is finishing all of its assigned tasks in the
specified time, its resulted RDF graphs are always incomplete and only contain triples generated
from child triples map. According to the above-mentioned figures, the execution time of the
knowledge graph creation process is increased slightly as the size of data source increases, with
RocketRML with the highest time increment among all. While RocketRML presents unknown
behaviors regarding different sizes of data, the above-mentioned analysis may explain different
implementations of join operators within all different engines.

It can be seen in Figure 6.4a that RML-Normalizer can improve the processing time of SDM-
RDFizer[3] always compared to using original RML mapping rules and data source. Although
the improvement in the case of 4M tuples is relatively low and near to zero, in other cases up
to 15% performance improvement can be seen. However, the performance of RMLMapper in
the first two cases is highly reduced by applying RML-Noramlizer. This is shown in figure 6.4b.
Actually, RMLMapper takes almost 60 and 180 seconds more to finish the whole tasks of 4M and
8M tuples respectively. Nevertheless, it can be seen that RML-Normalizer helps RMLMapper

42

6.4. Evaluations

(a) SDM-RDFizer (b) RMLMapper

Figura 6.4 – Performance of RDFizer engines with and without using RML-
Normalizer over synthetic mapping rules and data sources violating 3NF Total
execution times, (normalization time is included if any), needed by each RDFizer engine to
finish the assigned tasks based on different data volumes.

to finish the given task of 16M at the specified time limit which is not the case for the original
RML mapping rule and data source. It is observed in experiments that this recent execution
needs nearly less than half of the time for the normalized version compared to the original one,
which is incomplete in terms of execution.

It is observed in 6.4 that there are less performance improvements regarding the normalized
version compared to the results shown in figure 6.3. Although the performance of SDM-RDFizer
and RMLMapper is improved in general, RocketRML reached time out in almost all cases in-
cluding original and normalized versions hence no RDF graph is produced in this case. This
can be described by the large size of datasets. Compared to the results depicted in figure 6.3,
improvements in times is almost lower for two reasons. For one thing, this is caused by different
cardinalities between two-parent triples maps and child triples maps in genomic data versus syn-
thetic data. In the former, the child triples map is much more selective than the parent triples
map, while in the latter it is contrariwise. Another thing is the former offers a cardinality, i.e.,
join selectivity of 10% while the latter offers 2.5%. Overall, creating knowledge graphs from big
data having large volumes performs much more faster in presence of RML-Normalizer.

Space Savings

Tables 6.5 and 6.6 show the amount of space saved by using RML-Normalizer divided into
genomic data sources and synthetic data sources respectively. It is clear in table 6.5 that sizes

Data source volume Original size (in MB) Size via RML-Normalizer (in MB)
100K 5.9 1.8
200K 12 3.6
300K 18.2 5.7
400K 24.3 7.6
500K 30.4 9.5
1M 59.8 18

Tabella 6.5 – Size of genomic data sources before and after normalizing via RML-
Normalizer; Total size of data source file(s) in MB.

43

Capitolo 6. Experimental Evaluation

Data source volume Original size (in MB) Size via RML-Normalizer (in MB)
4M 175.5 68.7
8M 351.0 137.3
16M 707.7 280.4

Tabella 6.6 – Size of synthetic data sources before and after normalizing via RML-
Normalizer; Total size of data source file(s) in MB.

of data sources are reduced to almost one-quarter of the original size. Since the cardinality is
the same over every genomic data set, it can be expected that the ratio of total normalized
data sources to the original data source with 100K tuples is less than the same number in data
source 1M tuples. Overall, there is an almost 70% reduction in sizes of data sources after using
RML-Normalizer. Although synthetic data volumes demonstrated in Table 6.6 are much more
larger than the genomic data sources, the sizes of data sources are decreased approximately 61%
after applying RML-Normalizer which is slightly less than the same number for genomic data
sources. This can be observed in table 6.6 clearly. This difference can be justified by different
cardinalities between decomposed sources. For instance, within the data source of 4M cardinality
between the sources is 1-100K while in the genomic data source of 100K it is 10-10k. Needless
to say, the ratio of high cardinality column to the whole tuples is greater in genomic data source
compared to one in the synthetic data source, with 10% and 2.5% respectively. In addition,
the structure of RML mapping rules along with the configuration of functional dependencies
play significant roles. Considering genomic data sources, most of the attributes appear in the
same data source where the low cardinality column appears, whereas in synthetic data sources
attributes are equally distributed.

It is obvious according to our problem that the redundancies not only involve the data source
but also the resulted RDF graphs. With regard to this, Table 6.7 depicts a dramatic reduction in
number of generated RDF triples. It can be observed that in all experiments number of output
RDF triples is reduced to nearly 25% of the originally generated RDF triples. This is happening
because MUTATION ID is part of the key in the data source, thus it is repeating for each
value of SAMPLE ID, which is the other attribute in the key. In addition, every dependency
on MUTATION ID is repeating for the whole data source due to partial dependency. By
normalizing the mapping rules and data sources, unnecessary repeating of MUTATION ID
will be avoided. Therefore, all of its dependencies are repeating to the number of unique values
in MUTATION ID. The normalization causes no loss of data and this will be shown empirically
later. The numbers of RDF triples resulted from synthetic data and RML mapping rules over

Data source volume #of original RDF triples #of RDF triples via RML-Normalizer
100K 400,000 100,030
200K 800,000 200,030
300K 1,200,000 300,030
400K 1,600,000 400,030
500K 2,000,000 500,030
1M 4,000,000 1,000,030

Tabella 6.7 – Size of RDF graphs generated from genomic data before and after
normalizing via RML-Normalizer; Total number of generated RDF triples divided by data
volume. RML-Normalizer eliminate duplicates within data.

44

6.4. Evaluations

Data source volume Original size (in MB) Size via RML-Normalizer (in MB)
100K 41 9
200K 81 17
300K 121 25
400K 161 33
500K 201 42
1M 401 82

Tabella 6.8 – Size of RDF graphs generated from genomic data sources before and
after normalizing via RML-Normalizer; Total size of RDF graphs in MB divided by data
volume. RML-Normalizer eliminate portions of RDF triples containing duplicates.

them is however different from the ones over genomic data. These numbers remain exactly
the same as originally generated and exhibit no savings. It is clear from the evidence that
the construction of RML mapping rules, especially its Subject Map, plays a vital role in space
savings. To clarify this, the subject in the synthetic data source is the key to the original data
source which means it is unique in the whole data source as opposed to the genomic data source.
Therefore, after normalization for each subject generated in child triples map exactly one value
from the parent triples map is assigned. This is analogous to the original run over synthetic
data, though the duplicated values in data sources are eliminated and both RML mapping rules
and data sources are in normal forms.

According to table 6.8, size of RDF graphs are highly impacted by the process of RML-
Normalizer. It can be seen that this size is reduced always by almost 80%. Data source with
100K tuples with 78% space reduction compared to the original RDF graph presents the lowest
saving. However, considering RML mapping rules over synthetic data sources, there exist no
space savings with regard to the output graph. This is explicitly correlated with the number of
generated RDF triples described above. The numbers remain the same as before hence the size
of the RDF graph. With regard to this, the nature of no saving in the RDF graph is originating
from the fact of having the key of the original table as the Subject Map of RML mapping rules,
whereas in genomic experiments this is not the case. Therefore it can be concluded that space
savings in output RDF graphs are always a function of the structure of functional dependencies
as well as RML mapping rules rather than the volume of data sources. Generally speaking,
RML-Noramlizer takes advantage of those configurations and reduces the size of intermediate
results as well as the final results, i.e., RDF graphs.

Completeness

It is necessary to ensure that the RDF graph generated by applying RML-Normalizer equals
the RDF graph generated by the traditional process. To this end, investigating number of
generated RDF triples in a graph play as important role as the content of RDF graph too, i.e.,
resulted resources and properties. In our work, it is taken into account in each RDFizer engine
that the resulted graph from traditional process contains no duplicate RDF triples. In fact, each
of the engines has a configuration flag to remove the duplicates and we considered these flags in
each run of experiments. For instance, in SDM-RDFfizer one can remove the duplicates in RDF
graph by setting flag remove duplicate which is responsible for that action.

It is observed in experiments that generally generated graphs are the same as before. Results
generated by most of the engines before normalizing from one side and those generated after
applying normalization theory from another side can be proof of our study. However, in those
cases that RMLMapper could not finish the task successfully, the number of output triples equals

45

Capitolo 6. Experimental Evaluation

zero. In fact, in all such cases, RMLMapper reached the time limit. In addition, RocketRML
generates low numbers of triples while employing RML-Normalizer. The reason is this RDFizer
engine is not able to operate joins generated via RML-Normalizer over decomposed RML mapping
rules, though it finished the tasks in the specified time limit. Apart from that, RocketRML could
finish none of the tasks assigned to it for integrating original synthetic data sources in the defined
time limit, hence no output was generated. Similarly, RMLMapper could not transform 16M
data source into RDF triples via the traditional approach. Therefore the number of output
RDF triples in all the later cases equal to zero. With regard to the experiment performed after
employing RML-Normalizer, none of RocketRML’s try was actually successful. Altogether, large
data sources signify to be challenging for RocketRML engine. In opposite, RMLMapper exploits
the possibility offered by RML-Normalizer to finish its assigned tasks. Overall, depicted results
evidence that RML-Normalizer leads to the same number of RDF triples as expected, though
changes in data volume.

Normalization Execution Time

It is necessary to have the information about the time our approach takes to normalize
mapping rules as well as data sources. Considering this time, one can study effectiveness of
employing the approach in terms of time. Table 6.9 depicts this time in seconds for each of
the experiments based on varying the data volume. As it can be seen the execution time of
RML-Normalizer is tightly coupled with the size of data source. Although in big size data source
like 16M the execution time is considerable, this is still small part of the total execution time
of a knowledge graph creation process. In general, in none of the cases RML-Normalizer is the
cause of the longer execution time compared to the traditional approach.

Data source volume Total execution time (in sec)
100K 0.341
200K 0.667
300K 0.861
400K 1.116
500K 1.407
1M 2.443

(a) Genomic mapping rules and dataset

Data source volume Total execution time (in sec)
4M 10.471
8M 22.106
16M 43.996

(b) Synthetic mapping rules and dataset

Tabella 6.9 – Execution time needed by RML-Normalizer to decompose genomic map-
ping rules and data sources into 3NF while varying data volume; Total execution times
in second with regard to (a) genomic mapping rules and data sources (b) synthetic mapping
rules and data sources.

46

6.4. Evaluations

6.4.2 Different Cardinalities

In addition to the experiments based on different data volumes, two experiments with respect
to different cardinalities between subsets of attributes are considered. Like the first type of
experiment, this is involved with two same RML mapping rules as before. However, in the case
of genomic data, we are considering a different subset of data source than the one before, in
order to provide each run of experiments with different cardinalities. In fact, 6 subsets of the
whole genomic data source are used as data source each of them containing 100K tuples. 10%,
1%, 0.5%, 0.4%, 0.25% and 0.2% are different cardinalities which are taken into consideration for
each run of this experiment. Furthermore, for generating synthetic data the same configuration
of functional dependencies as before is considered, yet the number of distinct values in Team ID
are different, as it is shown in 6.2. Accordingly, cardinalities start from 0.0025% up to 2.5% to
study different impacts of RML-Normalizer on each system while changing cardinalities, i.e., the
join selectivities in case of normalized resources. Needless to say, every other attribute in this
experiment owns the same number of distinct values as before hence the same domain. To put
it simply, the only used data volume is 4M tuples in this case. In order to observe the effects of
different cardinalities over the data sources, other experimental parameters, i.e., the number of
joins and data volume are fixed during the whole experiments.

Execution time

With regard to execution times in these experiments, observations indicate often that changes
in cardinality between two sets of attributes do not lead to great changes in the execution time
of normalized resources. This can be seen in figure 6.5. It can be seen in this figure that the
executions of normalized RML mapping rules along with their normalized data sources over
genomic data via SDM-RDFizer engine are done almost at the same amount of time. Generally
speaking, the performance improvement of SDM-RDFizer in high numbers of cardinality is much
more clear than the low ones. To clarify this, the time needed by SDM-RDFizer to perform
integration over original inputs fell down dramatically when we change cardinalities from 10%
to 1%. Although RMLMapper shows this dramatic change as well, in the case of normalized
mapping rules and data sources it needs more time as the cardinality decreases. It can be
noted that performance of RMLMapper while using RML-Normalizer is not affected strongly by
high cardinalities and it remains always around 98%. Unlike SDM-RDFizer and RMLMapper,
RocketRML exposes different behavior with regard to the use of RML-Normalizer and it needs
less time as the cardinality fells down. However, due to incomplete output RDF graph resulted
from this engine for the case of the normalized version, this result is less reliable. This is again
caused by the incapability of RocketRML to perform joins provided by RML-Normalizer. In
addition to the above-mentioned dataset, we studied another experiment over synthetic data
sources with different cardinalities between two specific attributes. Figure 6.6 determines that
RML-Normalizer does not change the execution time of SDM-RDFizer so severely and in some
cases, this time remains even almost unchanged. For example, the corresponding execution
time for cardinalities of 2.5%, 2.5%, and 0.0025% is almost around 11 seconds. Likewise, the
execution time of original resources by this engine remains steady. In opposite, extreme changes
of cardinalities, i.e., 0.0025%, 0.00625%, and 0.0125% results in time out of RMLMapper when
applying RML-Normalizer. It is observed in experiments that normalizing in the presence of
low cardinality between attributes leads to dramatic increments in the execution time of this
engine. For instance, the execution time of the engine over normalized mapping rules and data
sources with 0.05% is 5 times more than the one done with 0.125%. Nevertheless, RMLMapper
performs always faster in original tasks and finish them. However, the huge difference between the
traditional approach and approach based on normalization theory can be described by different

47

Capitolo 6. Experimental Evaluation

(a) SDM-RDFizer (b) RMLMapper

(c) RocketRML

Figura 6.5 – Performance of different RDFizer engines with and without using RML-
Normalizer over genomic mapping rules and data sources violating 2NF Total execu-
tion times, (normalization time is included if any), needed by each RDFizer engine to finish the
assigned tasks based on different cardinalities in transitive functional dependencies.

implementations of join operators in different RDFizer engines. Moreover, it should be stated that
RocketRML was not successful to finish the tasks due to time out. In general, RML-Normalizer
offers slight performance improvements with regard to the presence of different cardinalities,
especially when it comes to data with large sizes.

Space Savings

It is clear in table 6.10 and 6.11 that change of cardinality does not affect space savings
of RML-Normalizer significantly. However, it can be seen that the ratio of normalized data
sources to original data sources is increased whenever cardinality is reduced. Altogether, RML-
Normalizer reduces the size of genomic data and synthetic data to approximately 30% and 40%
of the original data source respectively. Comparing two similar cardinalities of 0.25% in both
data sources, we observe a difference in space savings. Actually, the structure of RML mapping
rules in these two data sources are different. RML mapping rules of genomic data result in
transforming the data source such that most of the attributes appear in the same data source
where the attribute with low cardinality domain set is, whereas in synthetic data attributes are
divided equally in the decomposed source. Therefore, the saving in the former is greater than
the latter indeed.

48

6.4. Evaluations

(a) SDM-RDFizer (b) RMLMapper

Figura 6.6 – Performance of different RDFizer engines with and without using RML-
Normalizer over synthetic mapping rules and data sources violating 3NF Total exe-
cution times, (normalization time is included if any), needed by each RDFizer engine to finish
the assigned tasks based on different cardinalities within transitive functional dependencies.

Cardinality Original size (in MB) Size via RML-Normalizer (in MB)
10% 5.9 1.8
1% 6.4 2.0
0.5% 6.3 2.01
0.4% 6.3 2.01
0.25% 6.3 2.01
0.2% 6.3 2.02

Tabella 6.10 – Size of genomic data sources before and after normalizing via RML-
Normalizer; Total size of data source file(s) in MB divided based on different cardinalities in
transitive functional dependencies.

Number and size of generated RDF triples shown in 6.12 provide us with extra information
about normalized RML mapping rules and data sources. As can be observed, the size of the RDF
graphs generated after the application of RML-Normalizer is much less than the original size.
In fact, in every case of genomic data, RDF graphs in terms of numbers of triples and also sizes
are reduced by more than 75%, though no loss of information. However, by reducing cardinality
of attributes this size starts increasing. In other words, the pace of increment in both measures
is a function of the number of attributes in the low cardinality table as well as the cardinality
itself. Considering synthetic data source, none of those measures is changed from original to
normalized version. To clarify this, a synthetic experiment is based on an RML mapping rule
whose Subject Map is the same as the key in the original table. According to the definition
of the key in relational databases, there should exist no redundant value for the key hence no
difference in the number of output triples and their size. All in all, changes in the sizes of data
sources depend on cardinalities between attributes, whereas changes in the sizes of output RDF
graphs are dependent on the structure of RML mapping rules in addition to cardinalities.

49

Capitolo 6. Experimental Evaluation

Cardinality Original size (in MB) Size via RML-Normalizer (in MB)
2.5% 175.48 68.67
1.25% 175.48 68.67
0.625% 175.48 68.67
0.25% 175.48 68.67
0.125% 175.48 68.68
0.05% 175.48 68.70
0.025% 175.48 68.73
0.0125% 175.48 68.80
0.00625% 175.48 68.94
0.0025% 175.48 69.35

Tabella 6.11 – Size of synthetic data sources before and after normalizing via RML-
Normalizer; Total size of data source file(s) in MB divided based on different cardinalities in
transitive functional dependencies.

Original RML-Normalizer
Cardinality

#of RDF triples Size (in MB) #of RDF triples Size (in MB)
10% 400,000 41.0 100,030 9.0
1% 400,000 39.4 100,300 8.3
0.5% 400,000 39.3 100,600 8.3
0.4% 400,000 39.3 100,750 8.3
0.25% 400,000 39.4 101,200 8.4
0.2% 400,000 39.4 101,500 8.4

Tabella 6.12 – Size of RDF graphs generated from genomic data sources before and
after normalizing via RML-Normalizer; Total size of RDF graphs in terms of number of
RDF triples along with size in MB divided by different cardinalities in transitive functional
dependencies. RML-Normalizer eliminate portions of RDF triples containing duplicates.

Completeness

In our experiments, we always consider that the number of generated RDF triples equals
to the number of traditionally generated RDF triples after eliminating duplications. In other
words, it is essential to observe the same number of unique RDF triples resulted from both
original and normalized RML mapping rules. To achieve this goal, each engine is configured for
removing duplicates when running on a traditional basis. In fact, the number of unique RDF
triples produced as the result of normalized RML mapping rules and data sources is equal to
the original generated ones in most cases. However, RocketRML shows a low number of RDF
triples as a result of applying RML-Normalizer and this is justified with failure to make joins
between decomposed mapping rules. In other words, in recent cases, Rocket RML is able only to
transform data from child triples maps and fails to create joins to parent triples map to collect
data from the decomposed data source(s). In addition, the number of generated RDF triples by
RML mapping rules over synthetic data source is almost always the same with two exceptions. In
fact, RMLMapper can not finish the tasks for the data sources with three lowest cardinalities as
it was described before in execution times, thus the numbers equal to zero. Analogously, all the
numbers for RocketRML in both cases of original and normalized are equal to zero. In general,
RDF graphs resulted after applying RML-Normalizer contains the same number of triples as in

50

6.4. Evaluations

(a) SDM-RDFizer (b) RMLMapper

Figura 6.7 – Performance of different RDFizer engines with and without using RML-
Normalizer over synthetic mapping rules and data sources violating 3NF Total exe-
cution times, (normalization time is included if any), needed by each RDFizer engine to finish
the assigned tasks based on different numbers of transitive functional dependencies.

the original graph regardless of changing cardinalities.

Normalization Execution Time

With regard to the execution time needed by our approach for normalizing mapping rules and
data sources, we measured this time while running every experiment. According to the observed
execution times, the normalization process is affected very low by the different cardinalities in
our experiments so that the differences are negligible. This can be explained by the fact that the
number of redundant data items can not affect the performance of RML-Normalizer.

6.4.3 Different Number Of Transitive Dependencies

In this experiment, different numbers of transitive dependencies and their effects on the result
of our work is investigated. This parameter plays a vital role since different numbers of transitive
dependencies lead to different numbers of join conditions between decomposed RML mapping
rules as well as data sources. In this section, it is satisfying to run only one experiment and
only over synthetic data, due to two reasons. For one thing, in genomic data and considering the
same structure of RML mapping rules as in figure 4.6 there are only 2 transitive dependencies,i.e.,
possibility to have two join conditions, yet they do not show same cardinalities hence different
join selectivities. This contradicts our aim of changing only one parameter at once. Another
thing is discovering the same cardinality for both transitive dependencies within that structure
is not plausible because of increment in the size. Like the last reason, this will oppose the
purpose of experiments in this work but this time it is because of the variable number of the
dependencies and size simultaneously. Therefore, it is chosen to run only one experiment and only
over the synthetic data which has a different structure of RML mapping rules. According to this
experiment, we consider a synthetic data source of 4M tuples and cardinality of 2.5%, between
transitive dependencies, upon which three different RML mapping rules running. These rules
are described in 6.2, A.1 and A.2 with one, two and three transitive dependencies respectively.

51

Capitolo 6. Experimental Evaluation

Execution Time

It can be seen in figure 6.7 that the performance of the knowledge graph creation process
supplied with RML-Normalizer is affected differently regarding the number of existing transitive
dependencies, i.e., the number of joins. Although SDM-RDFizer exposes negligible improvement
in the case of using RML-Normalizer for 4M tuples, it takes advantage of normalization theory
and performs more than 13% faster in other cases compared to the traditional approach. In
opposite, RML-Normalizer can improve the performance of RMLMapper in none of the studied
experiments. In fact, in the worst case, i.e., 16M tuples RMLMapper needs almost 160 more
seconds to finish the assigned task. Furthermore, due to time out RocketRML can transform none
of the data sources into RDF triples. Overall, the performance of the knowledge graph creation
process while applying RML-Normalizer depends on the number of joins and the implementations
of joins simultaneously.

Space Savings

With regard to space occupied by data sources, the numbers show literally no further impro-
vements than those in the last experiments. RML-Normalizer offers more than almost 61% in
all cases which is quite a great number. In addition, the number of generated RDF triples after
applying RML-Normalizer is the same compared to the traditional approach. This leads to the
fact that there are also no changes in the size of the generated RDF graph when RML-Normalizer
is employed. In general, if RML mapping rules mention attributes with no duplicates, e.g., the
key of a data source, as their Subject Map, RML-Normalizer offers no improvement in the size
of output RDF graph but it makes considerable changes in the size of data sources regardless.

Completeness

It is clearly observed in our experiments that without any doubt application of RML-Normalizer
leads to the same number of output RDF triples. In this case, the numbers of generated RDF
triples in both approaches are the same hence a guarantee for having the same graph as before.
In fact, in both cases, numbers of RDF triples equal to 12,000,000, 16,000,000 and 20,000,000
with respect to 1, 2 and 3 joins in data source. The differences between numbers of triples in
each specific case can be justified by having the same numbers of tuples yet different numbers of
joins. All in all, while using RML-Normalizer, generated RDF graphs remain the same as before
in terms of the number of RDF triples.

Normalization Execution Times

The execution of the RML-Normalizer plays a vital role in improving the performance know-
ledge graph creation process. However, the time needed by RML-Normalizer should be observed
and we measured that while running our experiments. Table 6.13 demonstrate the total time in
seconds taken by our approach to normalize RML mapping rules and corresponding data sources
in case of synthetic data. It can be observed that, number of dependencies affects the execution
times of RML-Normalizer. Increasing the number of transitive dependencies, i.e., joins, can lead
to rise of normalization time. This can be justified with the fact of having more attributes invol-
ved in the process. In fact, more attributes result in generating more decomposed data sources
as well as more time consumption by elimination of redundancies. Albeit increased execution
time of the normalization process, none of the experiments are affected so that the execution
time of the knowledge graph creation process exceeds the one in the traditional approach.

52

6.5. Summary Of The Chapter

Number of transitive dependencies Total execution time (in sec)
1 10.471
2 12.722
3 14.668

Tabella 6.13 – Execution time needed by RML-Normalizer to decompose synthetic
mapping rules and data sources into 3NF while varying number of dependencies;
Total execution times in second with regard to synthetic mapping rules and data sources

6.5 Summary Of The Chapter

In this chapter, testbeds and their origins as well as experimental configurations, parameters,
and metrics were described. In addition, we evaluated the performance of improvements offered
by our approach in different cases and explained this empirically along with the results shown in
graphs and tables. Our goal in this chapter was to answer the research questions raised at the
beginning of this chapter.

53

Capitolo 7

Conclusion and Future work

In this thesis, we addressed the problem of data integration systems with regard to redundant
data within data sources as well as in the final RDF graph. Accordingly, a new normalization
theory along with proper definitions for mapping rules and data sources is proposed. On the basis
of this theory, an algorithm is presented in which not only every violating mapping rule but also
every violating data source is decomposed into a new form. It is demonstrated that the new forms
of a mapping rule and a data source are all normalized up to 3NF with respect to a defined set
of functional dependencies. Moreover, a specific implementation of this approach is introduced
in which RML mapping rules and CSV data sources are considered as input. An application
of our algorithm over the motivating example is described in order to approve the applicability
of our work on real data examples. In addition, a tool for creating synthetic testbeds in our
work is implemented and introduced which can be reused in wide ranges within the community.
Like any other scientific work, in this work, several experiments with different configurations are
carried out and related results are studied. Each experimental parameter is analyzed in turn
and its impact on different metrics is discussed. The content of this chapter is devoted to the
discussions about experiments performed in the last chapter and to explain answers to research
questions defined at the beginning of the last chapter. Obviously, limitations of our work whether
in terms of the defined normalization theory or the implementation is explained. Accordingly,
future works are described in order to provide the community with problems that are still open.

7.1 Discussions

Different experiments are performed to evaluate the performance of RML-Normalizer; the
results are shown in the last chapter. With the aim of our experiments, it is specified that
the size of input data sources reduced dramatically and at almost the same rate in all cases
of experiments. However, in some cases, these savings are considerably great because of the
structure of the mapping rule. Similarly, the number of generated RDF triples and the size of
RDF graphs are affected. An exception, in this case, is whenever mapping rules are not in proper
structure thus no savings in terms of RDF can be observed. In general answer to RQ1 can be
described as following: RML-Normalizer considerably reduces the size of intermediate results in
presence of a large number of instances violating functional dependencies..

The results of the experimental study suggest that the RML-Normalizer improves the perfor-
mance of a knowledge graph creation process in presence of large datasets. However, the lower
the join selectivity between mapping rules the more time the process takes for generating RDF
graphs and creating a knowledge graph. Nevertheless, the behavior of the RML-Normalizer is

54

7.2. Limitations

highly affected by the efficiency of the implementation of the join operators in an RML inter-
preter engine. This holds also for having different numbers of joins included by normalization.
Different RDFizer engines execute mapping rules with joins in different manners. It is the case
that in one engine RML-Normalizer improves performance but in one another engine, it redu-
ces performance. Therefore, answer to RQ2 is: RML-Normalizer improves the performance of
the knowledge graph creation process strongly in terms of total time whenever join operators are
implemented properly

7.2 Limitations

We have seen in our experiments that there are some situations that normalization of mapping
rules and data sources does not speed up the process of knowledge graph creation. One of those
cases is when there are small size data sources to be transformed. Regarding this, the rate
of performance improvement in terms of time is reduced with some special cases even failed
to improve. However, issues regarding these special cases are almost about the structure of
mapping rules as well as the implementation of join operators. For one thing, with improper
customization of mapping rules, one can not observe great time improvements through big data.
Another thing is, implementing join operators in an optimal manner plays a vital role in most
cases, with varying volume one of those cases. In fact, the bad implementation of join operators
can result even in improvement failure. In addition, in some rare cases, it can lead to having
incomplete results albeit finishing the tasks within specified times.

Moreover, experimental results indicate that the join operators between mappings include
during the normalization process may be impacted by their selectivity. To illustrate it, inefficient
implemented joins cannot only reduce the performance of a knowledge graph creation process,
but also in some cases, they hinder the process from finishing the task. Apart from that, the
total execution time for creating a knowledge graph is affected by the cardinality of attributes
to really low extents. Moreover, inefficiently implemented joins can result also in time rise when
the number of transitive dependencies, i.e., the number of joins are increased. Excluding this,
the number of joins does not impact execution time negatively. Generally speaking, changes
in the size of intermediate results depends on mapping rules’ structures. To clarify the point,
normalization of mapping rules can dramatically reduce the size of intermediate results as long
as the rules contain all attributes with redundant data items. Aside from that, one can observe
space savings up to almost 70%.

7.3 Future Works

In our work and especially in the normalization algorithm, we supposed that set of functional
dependencies is an input to the algorithm. However, due to the fact that functional dependencies
defined over a set of attributes are not always given and they must be mined, one can consider
empowering the approach with mining of functional dependencies. This can be even of great
importance when big data is involved. One possible case is to have a universal table with
numerous attributes upon which functional dependencies are not simply available by humans.
Therefore, machines may be efficient mining these dependencies.

In addition, the given input data sources to RML-Normalizer are of data tables in CSV
format. Although it was a simple assumption, it was strongly helpful due to the availability of
a huge amount of data in CSV in our community. Nevertheless, having a relational database
as input to the approach is an essential need for two reasons. First of all, the presence of
Database Management System (DBMS) over tremendous data can empower the effectiveness of

55

Capitolo 7. Conclusion and Future work

the normalization process due to great performance in reading data into the data integration
system. Furthermore, a relational database offers the great advantage of using queries, i.e.
database views, on top to provide mapping rules with the desired portion of data. Accordingly
the performance of the normalization can be exposed to a higher degree.

7.4 Summary Of The Chapter

This chapter discussed the experimental results of our works and the cases in which the
limitation of our work is presented. In addition, future works that can be meaningful for different
related communities were suggested.

56

Appendice A

RML mapping rules

In our experiments we considered RML mapping rules with different characteristics. For
instance, to study the impact of numbers of joins on execution time of a knowledge graph creation
pipeline, different mapping rules has been taken into consideration. Regarding to number of
transitive dependencies, i.e., number of joins, three RML mapping rules with different number
of object maps are considered. Also the normalized version of these rules hold different number
of joins. In chapter 6, one of these mapping rules is shown, namely mapping rule with one join.
Figures A.1 and A.2 depict two other mapping rules with 2 and 3 joins respectively.

57

Appendice A. RML mapping rules

(a) Original mapping rule violating 3NF

(b) Normalized mapping rule in 3NF

Figura A.1 – RML mapping rules over synthetic data described in chapter 6; (a) shows
the original mapping composed of three object maps while (b) shows the normalized mapping
rule after normalization that is composed of two joins

58

(a) Original mapping rule violating 3NF

(b) Normalized mapping rule in 3NF

Figura A.2 – RML mapping rules over synthetic data described in chapter 6; (a) shows
the original mapping composed of four object maps while (b) shows the normalized mapping
rule after normalization that is composed of three joins

59

Bibliografia

[1] Satya S Sahoo et al. �A survey of current approaches for mapping of relational databases to RDF�. In:
W3C RDB2RDF Incubator Group Report 1 (2009), pp. 113–130.

[2] Eric Miller. �An introduction to the resource description framework�. In: Bulletin of the American Society
for Information Science and Technology 25.1 (1998), pp. 15–19.

[3] Enrique Iglesias et al. SDM-TIB/SDM-RDFizer: v3.2. Ver. v3.2. Giu. 2020. doi: 10.5281/zenodo.3872104.
url: https://doi.org/10.5281/zenodo.3872104.

[4] Anastasia Dimou et al. �RML: a generic language for integrated RDF mappings of heterogeneous data�.
In: (2014).

[5] William Ward Armstrong. �Dependency structures of database relationship�. In: Information processing
(1974), pp. 580–583.

[6] JD Ullman. Principles of Database and Knowledge-Base Systems, volume Volume I-Fundamental Concepts.
1988.

[7] Philip A Bernstein. �Synthesizing third normal form relations from functional dependencies�. In: ACM
Transactions on Database Systems (TODS) 1.4 (1976), pp. 277–298.

[8] Farah Karim et al. �Large-scale storage and query processing for semantic sensor data�. In: Proceedings
of the 7th international conference on web intelligence, mining and semantics. 2017, pp. 1–12.

[9] Farah Karim, Maria-Esther Vidal e Sören Auer. �Compacting frequent star patterns in RDF graphs�. In:
Journal of Intelligent Information Systems (2020), pp. 1–25.

[10] Juan F Sequeda. �Integrating relational databases with the semantic web: A reflection�. In: Reasoning
Web International Summer School. Springer. 2017, pp. 68–120.

[11] Tim Berners Lee. �Relational databases on the semantic web�. In: Design Issues (published on the Web)
(1998).

[12] W3C Semantic Web Activity. https://www.w3.org/2001/sw/.

[13] Claudio Gutierrez et al. �Foundations of semantic web databases�. In: Journal of Computer and System
Sciences 77.3 (2011), pp. 520–541.

[14] Ora Lassila, Ralph R Swick et al.�Resource description framework (RDF) model and syntax specification�.
In: (1998).

[15] Anastasia Dimou et al. �Extending R2RML to a Source-independent Mapping Language for RDF.� In:
International Semantic Web Conference (Posters & Demos). Vol. 1035. 2013, pp. 237–240.

[16] Maurizio Lenzerini. �Data integration: A theoretical perspective�. In: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM. 2002, pp. 233–246.

[17] Thomas M Connolly e Carolyn E Begg. Database systems: a practical approach to design, implementation,
and management. Pearson Education, 2005.

[18] Chris J Date. SQL and relational theory: how to write accurate SQL code. ” O’Reilly Media, Inc.”, 2011.

[19] Alon Y Halevy. �Answering queries using views: A survey�. In: The VLDB Journal 10.4 (2001), pp. 270–
294.

[20] Jeffrey D Ullman. �Information integration using logical views�. In: International Conference on Database
Theory. Springer. 1997, pp. 19–40.

[21] Hong Yao e Howard J Hamilton. �Mining functional dependencies from data�. In: Data Mining and
Knowledge Discovery 16.2 (2008), pp. 197–219.

60

https://doi.org/10.5281/zenodo.3872104
https://doi.org/10.5281/zenodo.3872104
https://www.w3.org/2001/sw/

Bibliografia

[22] Moussa Demba. �Algorithm for relational database Normalization up to 3NF�. In: International Journal
of Database Management Systems 5.3 (2013), p. 39.

[23] Thorsten Papenbrock e Felix Naumann. �Data-driven Schema Normalization.� In: EDBT. Vol. 17. 2017,
pp. 342–353.

[24] Samaneh Jozashoori e Maria-Esther Vidal. �MapSDI: A Scaled-Up Semantic Data Integration Framework
for Knowledge Graph Creation�. In: OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”. Springer. 2019, pp. 58–75.

[25] Matt Buranosky et al. �FDTool: a Python application to mine for functional dependencies and candidate
keys in tabular data�. In: F1000Research 7 (2018).

[26] Umutcan Simsek, Elias Kärle e Dieter Fensel. �RocketRML-A NodeJS implementation of a use-case specific
RML mapper�. In: arXiv preprint arXiv:1903.04969 (2019).

[27] David Chaves-Fraga et al. �What are the Parameters that Affect the Construction of a Knowledge Gra-
ph?� In: OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”.
Springer. 2019, pp. 695–713.

61

	Introduction
	Motivating Example
	Problem And Contributions
	Summary Of The Chapter

	Background
	Semantic Web
	Resource Description Framework (RDF)

	RML
	Data Integration
	Relational Databases
	Database Design
	Functional Dependency
	Redundancy In Relational Databases
	The Armstrong's Axioms
	A Closure Set Of Functional Dependencies
	Normalization Theory Of Relational Databases

	Data Integration Systems
	Summary Of The Chapter

	Related Work
	Normalization Of Relational Databases
	Mining Functional Dependencies
	Transforming Data Integration Systems
	Normalization In Graph Databases
	Summary Of The Chapter

	A Normalization Theory for Mapping Rules
	Problem Statement
	Proposed Solution
	A Mapping Rule Normalization Theory
	Normal Forms For Mapping Rules
	An Algorithm For Transforming Mapping Rules
	Lossless Join Property

	Summary Of The Chapter

	Implementation
	Input Formats
	Data Source
	Mapping Rule
	Set of functional dependencies as Input

	Python Libraries
	RML-Normalizer
	Implementation Of RML-Normalizer

	Summary Of The Chapter

	Experimental Evaluation
	Testbed Generation
	RML Interpreters
	Experimental Configurations
	Datasets
	RML Mapping Rules
	Experimental Parameters
	Metrics
	Environment Settings

	Evaluations
	Different size data sources
	Different Cardinalities
	Different Number Of Transitive Dependencies

	Summary Of The Chapter

	Conclusion and Future work
	Discussions
	Limitations
	Future Works
	Summary Of The Chapter

	RML mapping rules
	Bibliography

