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Abstract. Environmental monitoring has become increasingly important due to 

the significant impact of human activities and climate change on biodiversity. 

Environmental sound sources such as rain and insect vocalizations are a rich 

and underexploited source of information in environmental audio recordings. 

This paper is concerned with the classification of rain within acoustic sensor re-

cordings. We present the novel application of a set of features for classifying 

environmental acoustics: acoustic entropy, the acoustic complexity index, spec-

tral cover, and background noise. In order to improve the performance of the 

rain classification system we automatically classify segments of environmental 

recordings into the classes of heavy rain or non-rain. A decision tree classifier 

is experientially compared with other classifiers. The experimental results show 

that our system is effective in classifying segments of environmental audio re-

cordings with an accuracy of 93% for the binary classification of heavy 

rain/non-rain. 

Keywords: Audio classification; Audio features; Feature extraction; Feature 

selection; Environmental sound sources; Regression.  

Introduction 

Acoustic sensor recordings are a rich and underexploited source of information in 

environmental monitoring. Acoustic data are highly variable and contain much back-

ground noise. Hence, it is hard to describe the many sources of environmental sound 

by using common audio features. Defining suitable features for environmental sounds 

is an important problem in an automatic acoustic classification system. Noise is de-

fined simply as any unwanted signal in a data source. For some applications, back-

ground noise such as rain, is considered uninteresting and often discarded. However, 

in this study, detecting rainy periods in acoustic data is the goal as automatic recogni-

tion of these sounds can be used to help avoid them in animal call recognition or help 

analyze the relationship between rainy weather and animal call activities. Thus rain in 
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audio recordings is considered signal rather than background noise in this research. 

Much of the background noise in environmental recordings is of geophonic (generat-

ed from wind, rain, rustling of leaves, etc.) or biophonic (generated from cicadas, 

birds, and other fauna). In this work, the definition of background noise is restricted to 

signals with constant acoustic energy throughout the duration of the recording. 

Our bioacoustics research group [1] has researched and deployed different types of 

acoustic sensors and collected more than 24TB of acoustic data. As expected, the 

acoustic data collected is not free from background noise. For ecologists, rain is con-

sidered background noise when they are estimating species richness by sampling very 

long acoustic recordings. Avoiding periods with much background noise (and typical-

ly less faunal vocalization) improves the efficiency of audio sampling. Additionally, 

the presence of rain makes it harder to annotate avian vocalizations in audio data. 

Whether fauna are vocalizing or not, ecologists will typically avoid listening to rainy 

sections of audio recordings. Labelling these rainy periods will increase the efficiency 

and effectiveness of bioacoustic data analysis. The ability to detect rainy periods may 

also assist other analysis efforts, such as Anuran vocalization detection. We ap-

proached the rain detection in acoustic sensor recordings problem as a classification 

task. 

The contribution of this research includes: (1) a method for classifying rainy peri-

ods of audio data captured by environmental sensors, (2) an investigation of the effec-

tiveness of combining different features for classification, (3) a comparison of the 

performance of different classifiers, and (4) an exploration of a variety of regression 

algorithms to predict rain in long duration audio recordings. 

The rest of the paper is organized as follows: Section 2 summarizes related work 

on environmental sounds classification. Section 3 describes the composition of differ-

ent audio datasets for the experiments, the feature set, and a variety of classifiers used 

for rain classification. Section 4 describes the experiments conducted and evaluates 

the performance of a variety of audio features and classifiers by comparison. Finally, 

Section 5 concludes the paper.  

Related Work  

There has been much effort to improve the accuracy of the classification and 

recognition of audio data using different features and classifiers. Based on the work of 

Li [2], audio features can be divided into two types: Mel-frequency cepstral coeffi-

cients (MFCCs) and perceptual features (zero crossing rates (ZCR), spectrum flux 

(SF), band periodicity (BP), noise frame ratio (NFR), spectral roll-off, low energy 

rate, brightness, and pitch) [3]. 

MFCC features are modelled based on the shape of the overall spectrum, making it 

favorable for representing single sound sources. However, environmental recordings 

typically contains large varieties of sound sources, including the stridulation of in-

sects, rain drops, that are characterized by narrow spectral peaks, all of which MFCCs 

are unable to encode effectively[4].  



Chu et al. [5] proposed a novel feature extraction method that uses a matching pur-

suit (MP) algorithm to select a small set of time-frequency features to analyze envi-

ronment sounds. They adopted a Gaussian mixture model (GMM) classifier for classi-

fying 14 types of environmental sounds. In their study, they have found that using 

MFCCs and MP features separately produce poor accuracy rates. They demonstrated 

that combining MFCCs and MP-based features produces a better accuracy rate 

(83.9%) for discriminating fourteen classes. They concluded that MP-based features 

could be used to supplement frequency domain features (like MFCCs) to yield higher 

automatic recognition accuracy for environmental sounds. Li [6] stated that the 

matching pursuit algorithm is a good technique for feature extraction, which can de-

scribe environmental sounds well. They have also demonstrated that the combination 

of the features MP and MFCCs achieves a high accuracy rate. They used a support 

vector machine (SVM) as a classifier for their environmental sound classification 

system and achieved an accuracy rate of 92%. Barkana et al. [7] explored the classifi-

cation of a limited number of environmental sound sources, including those produced 

by engines, restaurants, and rain. They proposed a new feature extraction technique 

based on the fundamental frequency (pitch) of the sound. They used two different 

classifiers, support vector machines and k-means clustering to classify the different 

classes. The classifiers used in their research achieved recognition rates of 95.4% and 

92.8%, respectively. 

Although much research has been published on environmental sound source classifi-

cation, little research has been done for rain classification. We evaluate five features 

intended to describe rain in audio recordings: acoustic entropy (H) for which we cal-

culated spectral and temporal entropy (Hf, Ht) respectively, Acoustic complexity in-

dex (ACI), background noise (BgN) and spectral cover (SC), which have been used 

for environmental monitoring but not extensively applied and evaluated for rain de-

tection and classification.  

Methods 

Our work differs from the existing works on classifying environmental sounds in 

that new type of features and different classifiers. We used raw audio data recorded 

by sensors deployed in the field.  

 

Preprocessing of audio recordings 

Recordings were sampled at 22050Hz with a 16-bit resolution. They were stored in 

WAV format. In order to generate a spectrogram (shown in Fig. 1.(a) where x-axis is 

in seconds, y-axis is in Hertz and the grey color represents the energy), the audio re-

cording was divided into frames of 512 samples (23.5ms), overlapping by 50% 

(11.6ms). A Hamming window function was applied to each frame prior to perform-

ing a Fast Fourier Transform (FFT), which yielded amplitudes values for 256 fre-

quency bins, each spanning 43.07Hz. The spectrum was smoothed with a moving 

average window of width three. Spectrograms were “noise reduced” using a modifica-

tion of adaptive level equalization [8] applied to every frequency bin independently 



[9]. Adaptive level equalization has the effect of removing continuous background 

acoustic activity and setting that level to zero amplitude. Thus it becomes possible to 

define a threshold for the detection of an acoustic event that spans multiple frequency 

bins. The intensity values in the spectrograms were not converted to decibels in order 

to preserve values appropriate for subsequent calculations of entropy. This approach 

is also consistent with the work of Sueur and Farina [10, 11]. Fig. 1 shows an example 

of rainy data, pre and post noise removal. 

 

 

Fig. 1. Rain before and after noise removal 

Datasets preparation 

We have selected two different datasets: Dataset A and Dataset B. 

 Dataset A (manual segments labelling): Recordings were obtained by use of 

acoustic sensors from the Samford Ecological Research Facility (SERF) in bush-

land on the outskirts of Brisbane city, Queensland, Australia. To make dataset A 

more realistic, the recordings were selected from: different days, different time in 

the day, and different sites (33 days and four sites precisely). We used an audio 

browser which uses acoustic indices developed by Towsey [12] to scan through the 

each 24 hour recording to find segments of interest. Interesting segments were ex-

amined in Audacity, which allowed for aural and visual inspection of the signal. 

Dataset A contains 998 five seconds segments. Five seconds was chosen empirical-

ly (based on observed patterns of rain starting and stopping) as the classification 

resolution for this experiment. Each segment is manually labeled into one of seven 

classes: heavy rain, cicada chorus, bird calls, frog calls, koala bellow, light rain, 

and low-activity (night time). Table 1 shows the composition of the Dataset A.  

When inspecting our data, classes were created to discriminate between the 

types of acoustic data that were observed. For example most of the recordings in-

clude cicada choruses which are continuous (much like rain) but have different 

acoustic properties in the time-frequency domain. Rain produces two different vis-

ual features in a spectrogram: The first one is a general increase in background 

 (a) Rain before noise removal (b) Rain after noise removal 



noise. The second distinct feature is vertical broadband lines on the spectrograms; 

these are percussive drops on the audio senor’s housing. Cicadas occupy a certain 

frequency band 2-4kHz. Birds occupy a different frequency bands and species have 

different call structure (oscillation, static harmonics, lines, and other structures). 

The acoustic Entropy feature can describe this information and constitutes the main 

feature for classifying these classes.  While labelling the training data for rain 

events, other acoustic classes were also labelled, originally to assist in explaining 

the classification results. Additionally labelled events include periods of night time 

/low activity. 

Table 1. Composition of Dataset A 

Classes Count 

Dataset A.1 Dataset A.2 Dataset A.3 

2 Class-problem 3 Class-problem 4 Class-problem 

Heavy rain 244 1 1 1 

Cicada chorus 193 

2 

2 2 

Bird calls 483 

3 

3 Frog calls 16 

Koala bellow 2 

Light rain 17 
4 

Low-activity 43 

Total 998 244/754 244/193/561 244/193/501/60 

 

 Dataset B (long audio recording): is a 24-hour MP3 recording derived from 

SERF (core vegetation plot site), on the 13th April 2013. The upper part of 

Fig. 2 is a false-color spectrogram of a 24-hour recording obtained using the 

method described by Towsey et al [13]. The x-axis extends from midnight to 

midnight. Since the x-axis scale is one pixel-column per minute, a greater 

than 2000x compression is achieved over the standard spectrogram. Note 

that the frequency scale is unchanged. The lower part of Fig. 2 is a grey-scale 

representation of the content of the environment of that particular day. The 

image shows that the source audio does not only contain rain, but also con-

tain crickets, as well as other faunal vocalizations. 

 Ground truth: The ground truth used is weather data obtained from the 

weather station located at the same Ecological Research Facility. The model 

of the weather station is a Wireless Vantage Pro2 (6152). Rain is measured 

in mm i.e. the number of mm collected in a calibrated vessel over a logging 

period (in this case five minutes).  

 



 
 

 

 

 

 

Fig. 2. Visualization of 24-hour long duration acoustic recordings of the environment 

The steps taken to prepare the Dataset B are summarized in the following diagram: 
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Fig. 3. Preparation process for the 24-hour long duration dataset 

Feature Selection 

Feature selection is crucial to obtain high classification accuracy. We choose and 

extract five features from environmental sounds: (1) acoustic entropy (H) for which 

we calculated spectral and temporal entropy (Hf, Ht) respectively, (2) Acoustic com-

plexity index (ACI), (3) background noise and (4) spectral cover (SC). 

Acoustic entropy is a measure of the dispersal of acoustic energy within a record-

ing, either through time or frequency bands [10]. Sueur et al. acknowledge the diffi-

culty of building individual species recognizers and therefore turn to indirect 

measures of biodiversity, making the simple assumption that the number of vocalizing 

species positively correlates with the acoustic heterogeneity of audio data within a 

Cicadas Chorus 

   Rain 



locality. They conclude that acoustic entropy does correlate with acoustic heteroge-

neity.  

The temporal entropy index      and the spectral entropy index    are computed 

following their definitions in [10] : 

             
                       

                      (1) 

              
 
                 

                  (2) 

where n is the length of the signal in number of digitized points;  

     is the probability mass function of the amplitude envelope; and 

     is the probability mass function of the mean spectrum calculated using a short 

term Fourier transform (STFT) along the signal with non-overlapping Hamming win-

dow of       points. 

The Acoustic complexity index (ACI) is based on the assumption that bird sounds 

are characterized by having a great change in the intensity, even in short period of 

time and in a single frequency bin. However, environmental sounds have smaller 

changes in intensity values, which mean the difference in the intensity values between 

two successive frames   and     is small. For example, bird or cicada sounds have a 

significant change in intensity between frames within a single frequency-bin produc-

ing a high value for ACI. For noise like wind, rain, and mechanical sources (like air-

plane engines), the change in the intensity is not large; the variation in the intensity is 

approximately constant. The value for the ACI feature for these sound sources is ex-

pected to be low. We reason that ACI may be a suitable discriminator for rain/non-

rain classification and as such we chose ACI as one of the main features for this 

study. 

The background noise (BgN) is estimated from the wave envelope using a modifi-

cation of the method of Lamel [8] as described by Towsey [12] (the value is ex-

pressed in amplitude).  

The spectral cover calculates the fraction of spectrogram cells where the spectral 

amplitude exceeds a threshold        . The suitability of this threshold was deter-

mined by trial and error. 

Classifiers 

The classifiers we use in these experiments are part of Weka (Waikato Environ-

ment for Knowledge Analysis) [14]. Weka is a collection of machine learning algo-

rithms for data mining tasks written in Java. 

Algorithms used for classification.  

Using the features described in Section.3.2, we evaluate a variety of algorithms for 

supervised learning which are described briefly below: 

 Naive Bayes: It is a simple probabilistic classifier based on Bayes rule. 

 IBK (instance-based method on k-NN neighbor). 



 Sequential minimal optimization (SMO) which is an implementation of support 

vector machines (SVM) in Weka. 

 J48 algorithm is the Weka implementation of the C4.5 top-down decision tree 

learner proposed by Quinlan [15]. 

Algorithms used for regression.  

The algorithms employed for rain detection using regression techniques are outlined 

below:  

 Linear regression (LR): The Linear Regression algorithm performs standard least 

squares regression to identify linear relations in the training data.  

 M5P: or M5Prime algorithm generates M5 model trees using the M5 algorithm, 

which was introduced by Wang and Witten [16] and enhances the original M5 al-

gorithm by Quinlan [15].  

 RepTree: This algorithm is a fast tree learner. It Builds a decision/regression tree 

using information gain/variance and prunes it using reduced-error pruning. 

 Multi-Layer-Perceptron (MLP): This classifier uses back-propagation to classify 

instances. 

 Decision table (DTB): This algorithm builds and uses a simple decision table ma-

jority classifier.  

Results  and discussion 

Experiment 1: Binary Classification.  

The heavy rain events were classified by C4.5 decision tree (DT) classifier (J48 in 

Weka). The Dataset A.1 contained 244 recordings of heavy rain and 754 of non-rain 

(cicadas, birds, low-activity, koalas, frogs and light rain). We performed 10 fold-

cross validation on the data. To measure the classification accuracy, we used three 

measures: precision, recall and accuracy. Precision is defined as           , re-

call as            and accuracy as                      , where TP, FP, 

TN, FN are true positive, false positive, true negative, and false negative respectively. 

The DT classifier was compared with three other classifiers: naive Bayes, Lazy IBK 

     , and SMO. The purpose of this experiment is to find the best algorithm and 

the best set or combination of features. We run experiments that use different combi-

nations of features and different classifiers to classify environmental sounds into two 

classes as shown in Table 1. 

Table 2 provides a summary of the results that we received from each algorithm for 

the two classes (heavy rain/non-rain). It can be observed that the average classifica-

tion accuracy of the Ht+Hf+ACI+BgN+SC features is the best. We noticed that com-

bining only temporal and spectral entropy produces low classification accuracy in 

differentiating the classes. It is noticeable that combining more than two features in-

creases the accuracy rate. From Table 2, we can see also that DT and lazy IBK per-

form better than the other algorithms. Despite similar performance between IBK and 

DT, we conclude that a DT is the best classifier because the classification rules are 



easily extracted and repurposed. The Ht+Hf+ACI+BgN+SC is the best feature set in 

our experiment. The classification accuracy achieved is 93%.  

Table 2. Total accuracy rate (%) of Dataset A.1 using different types of classifiers and 

features 

Feature Type 

 

Accuracy Rate (%) 

NB Lazy 

IBK 

SMO DT 

Ht+Hf 89 84 78 88 

Ht+Hf +ACI 91 90 91 92 

Ht+Hf +BgN 77 87 78 91 

ACI+BgN+SC 91 91 92 92 

Ht+Hf +ACI+BgN 90 92 91 92 

Ht+Hf +ACI+BgN+SC 91 93 92 93 

 

To the best of our knowledge, there are no existing techniques that have been spe-

cifically developed for rain/non-rain classification. Therefore, it was not meaningful 

to quantitatively compare our algorithm to existing techniques or experiments. 

Fig. 4 shows the strong relationship between two features namely: acoustic com-

plexity index (ACI) and temporal entropy (Ht) in distinguishing the two classes heavy 

rain/non rain (binary classification). It is apparent that a linear function can split the 

majority of instances into two classes. 

 

Fig. 4. The relationship between two features in classifying the Dataset A.1 (two-class-

problem) with a DT classifier 



Experiment 2: Multi-class classification.  

The purpose of this experiment is to know whether the same features (as in experi-

ment 1) can be used to distinguish other common sounds in environmental recordings 

(such as cicadas, animal sounds in general and light rain). To further understand the 

classification performance, we show results in the form of a confusion matrix, which 

allows us to observe the degree of confusion among different classes. The confusion 

matrix given in Table 3 and Table 4 are constructed by applying the DT classifier to 

the Dataset A.2 (3 class-problem) and Dataset A.3 (4 class-problem); and displaying 

the number of correctly/incorrectly classified instances. The rows of the matrix denote 

the environment classes we attempt to classify, and the columns depict classified re-

sults. It is immediately apparent that most of the classes achieve a high rate of correct-

ly classified instances. We can see from the matrix that our system can make a dis-

tinction between the classes: heavy rain, animal sounds (birds, frogs, and koalas), 

cicadas, and others (low activity and light rain).  

Table 3. Confusion matrix for Dataset A.2 (3 class-problem) 

 Animal sounds Heavy rain Cicadas 

Animal sounds 495 22 48 

Heavy rain 43 194 7 

Cicadas 40 5 144 

Table 4. Confusion matrix for Dataset A.3 (4 class-problem). 

 Animal sounds others Heavy rain Cicadas 

Animal 

sounds 

450 7 13 30 

others 16 41 0 4 

Heavy rain 48 0 194 2 

Cicadas 23 9 5 156 

Experiment 3: 24-hour audio recording.  

The aim of this experiment is to show the ability of regression techniques in predict-

ing rain in a 24-hour long recording. We first split the 24-hour recording into one 

minute audio which yields to 1440 minutes, we further cut each one minute into five 

seconds, in total (             ) of five seconds segments. We extracted five 

features (the same features used in the Experiment 1) from each five seconds of audio, 

and then we averaged the feature values to produce five minutes blocks. This is done 

so the weather data, which has a five-minute resolution (287 instances); can be direct-

ly used as ground truth data. We have explored a variety of regression techniques in 

Weka, specifically: M5P, linear regression, RepTrees, Multi-layer-perecptron, and 

Decision table. Weka provides a variety of error measures, which are based on the 

differences between the actual and estimated values. Three measures were selected 



for comparison: correlation coefficients, mean absolute error (MAE), and root mean 

square error (RMSE).  

 MAE and RMSE are regularly used as standard statistical metric to measure the 

model performance. 

 The correlation coefficient measures the degree of correlation between the actual 

and estimated values. Table 3 summarizes three different statistical measures 

(MAE, RMSE and coefficient correlation) for the different algorithms using 10 

fold cross-validation.  

M5P proved the best results in our case because of the nature of the problem consid-

ered as well as the type of data we are using. M5P is a decision tree for numeric pre-

diction that stores a linear regression at each leaf to predict the class value of instanc-

es that reach that leaf. M5P is found to be a good technique to handle numerical class 

attributes. In our case, the class attribute represents the amount of rain in mm over 

five minute periods; therefore, M5P is more suited for this classification problem than 

other techniques. The M5P tree model developed with 10 fold cross-validation was 

realized to be the best model that predicted rain in the 24h-recording with RMSE of 

0.14, and a correlation coefficient of the measured and predicted rain of 0.78. 

Table 3. Correlation coefficients between actual and predicted rain, MAE and RMSE 

Algorithms Correlation coefficients MAE RMSE 

M5P 0.78 0.07 0.14 

LR 0.75 0.08 0.15 

RepTree 0.68 0.08 0.17 

MLP 0.67 0.11 0.19 

DTB 0.69 0.07 0.17 

 

Fig. 5 illustrates the power of the M5P algorithm in estimating rain amount in a 24h-

long recording. The red, dotted curve represents the M5P estimates while the black, 

solid curve is the ground truth (actual rain amount from weather station data). It can 

be seen that the M5P estimates correlate well with the ground truth data. 

  



 

Fig. 5. An example for rain predictions obtained using M5P 

Conclusions and future work 

This research aims to investigate classification techniques that predict rain in large 

datasets of audio collected by acoustic sensors. 

We have presented an environmental sound classification system using five fea-

tures and the decision tree classifier. Our comparison experiments show that the 

method presented is promising. The combination of five features provides better clas-

sification performance than using two features.  

Another aim of this study is to show the ability of regression techniques in predict-

ing rain using acoustic data in 24-hour long audio recordings collected by sensors in 

the field. The results showed that M5P has better predictability than the other tech-

niques. Such a prediction tool could prove useful when ecologists are interested in 

analyzing acoustic audio data, especially when the target fauna such as many Anuran 

species have a vocalizing relationship with rain events. 

As future work, we intend to apply our technique to much larger datasets (months 

and years) to predict rain in audio recordings. 
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