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ABSTRACT 

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure 

assessment in epidemiological studies. Most LUR models are developed for single cities, which 

places limitations on their applicability to other locations. We sought to develop a model to predict 

nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite 

observations of tropospheric NO2 columns combined with other predictor variables. We used a 

generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 

concentrations measured by a national monitoring network from 2006 through 2011. The best 

annual model explained 81% of spatial variation in NO2 (absolute RMS error = 1.4 ppb), while the 

best monthly model explained 76% (absolute RMS error = 1.9 ppb). We applied our models to 

predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is 

the smallest spatial unit in the Australian census). National population-weighted average 

concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach 

using tropospheric NO2 column data yielded models with slightly better predictive ability than 

those produced using a more involved approach that required simulation of surface-to-column 

ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability 

to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 

2006-2011. We are making our model predictions freely available for research.  
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1. INTRODUCTION 

Outdoor (ambient) air pollution is a major contributor to the global burden of disease and a leading 

environmental risk factor for morbidity and mortality (Lim et al., 2012). Accurate estimates of 

people’s exposure to ambient air pollution are required to quantify and understand its effects on 

health. Exposure estimates have traditionally involved using average measurements from air 

pollution monitors (e.g. Barnett et al., 2005), assigning exposure using the nearest monitor to a 

person’s residence (e.g. Ritz et al., 2002) or using a proxy like distance to the nearest main road 

(e.g. Hoffmann et al., 2007). There is potential for exposure misclassification with all these 

approaches due to their limited ability to capture the spatial variability that characterises some air 

pollutants (Jerrett et al., 2005; Hoek et al., 2008).  

 

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure 

estimates. It uses measurements at a set of locations combined with spatial variables to build 

statistical models that can predict concentrations at unmeasured locations (Hoek et al., 2008). A key 

limitation of most LUR models is that they are constrained to individual cities, and a model built for 

one location is not necessarily transferrable to another (Briggs, 2007; Vienneau et al., 

2010). However, the recent availability of high quality satellite data has helped address these issues 

by permitting better representation of large areas in LUR. Satellite-based LUR models for the USA 

(Novotny et al., 2011), Canada (Hystad et al., 2011) and Western Europe (Vienneau et al., 2013) 

have been developed, and have similar predictive ability to city models but with national 

coverage. In some cases, their spatial resolution can rival that of city models (Novotny et al., 

2011). These satellite-based LUR models have attractive applications in air pollution epidemiology, 

environmental justice, and planning studies. 
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Australia (population ~23 million) is one of the world’s least densely populated countries (3 

people/km2) but also one of the most urbanised, as ninety percent of the population live in or near 

cities (Australian Bureau of Statistics, 2013a,b). There are relatively few regulatory air pollution 

monitoring sites in Australia. For example, Canada’s population is about 50% larger than 

Australia’s, but Canada has about twice the number of monitors (Hystad et al., 2011). Most 

monitoring sites in Australia are located in and around major cities but are sparsely distributed, 

which means they are less than ideal for assessing spatial variability in ambient air pollution 

levels. This can make exposure assessment for the Australian population problematic.  

    

We sought to develop a satellite-based LUR model for Australia that could predict ambient air 

pollution exposure levels with good accuracy. We aimed to add to the evidence base by 

investigating the utility of a national satellite-based LUR in a location where ground-based monitors 

are scant. Most previous national LUR models have focussed on annual concentrations (e.g. Hystad 

et al., 2011; Vienneau et al., 2013). We aimed to expand the temporal component of our models to 

include monthly exposure estimates.  Having monthly estimates of exposure would be useful for 

examining health outcomes where exposures within the year are important (such as birth outcomes), 

and to examine the potential health effects of interactions between seasons and pollution 

exposure. We sought to produce both monthly and annual exposure estimates over a 6 year period.  

           

2. METHODS 

2.1 Predictor variables 

Measured NO2 

We focussed on nitrogen dioxide (NO2) because it is strong marker of traffic and other combustion-

derived pollution (e.g. industry, airports) and a key component of ambient air pollution (Briggs et 

al., 1997, Richter et al., 2005). We obtained hourly average ground-level NO2 measurements from 
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January 2006 through December 2011 from the Australian agencies responsible for regulatory 

ambient air pollution monitoring. NO2 concentrations were measured using the standard 

chemiluminescence method, which can be subject to bias due to interference by other nitrogen 

oxides but is widely used in research and assessing compliance with regulations (Novotny et al., 

2011). The measurements had undergone basic quality assurance procedures and we examined them 

further for completeness and validity. There were 68 monitoring sites across Australia where NO2 

was measured during the study period (supplement, Table S3). The sites’ locations ranged from 

dense urban areas with multiple pollution sources nearby through to rural areas with few local 

sources.     

 

Land use 

We sourced data on natural and anthropogenic features that have a plausible association with 

measured NO2 concentrations. Our choice of variables was guided by previous satellite LUR 

models and data availability (Hystad et al., 2011; Novotny et al., 2011; Vienneau et al., 2013). The 

variables selected are summarised in Table 1. We incorporated land use data from a range of 

sources including satellites and the Australian census. Detailed information on data sources is 

provided in the supplement (tTable S2).  We used ArcGIS version 10.0 (ESRI Inc., Redlands, USA) 

to process our data. 

 

Satellite data: NO2  

The Ozone Monitoring Instrument (OMI) aboard the Aura satellite produces daily global 

observations of NO2 tropospheric column abundance at a resolution of 13 × 24 km (nadir) using a 

differential optical absorption spectroscopy (DOAS) algorithm (Levelt et al., 2006).  We obtained 

the average tropospheric NO2 columns over Australia for each month from 2006-11. We then 

produced estimates of ground-level NO2 by using the Weather Research and Forecasting model 
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(WRF-Chem) to predict monthly surface-to-column ratios.  This approach is a standard method to 

convert tropospheric column NO2 abundance (in molecules per cm2) to ground-level NO2 

concentration (in ppb), and has been described extensively (Lamsal et al., 2008; Bechle et al., 

2013). Detailed information on satellite data retrieval and processing is given in the supplement 

(pages S3-S9).   

 

2.2 Modelling approach  

We generated 22 buffers from 100 m to 10 km around each monitoring site (Table 1). This 

approach was analogous to other national-scale models and aims to capture both proximate and 

more distant sources of variability in NO2 concentrations (Novotny et al., 2011; Vienneau et al., 

2013). Some variables were calculated within each buffer (e.g., percent tree cover, road length, 

impervious surface area) using either the average or sum of the variable in each of the 22 buffers 

(Table 1). Other variables were determined at each monitoring point (e.g., elevation, distance to 

coast). Detailed information about each variable is presented in the supplement (tTable S2). There 

were 286 buffer variables (13 variables calculated at 22 buffers each) and 29 point variables, giving 

a total of 315 independent variables.    

 

Annual model  

The dependent variable (measured NO2) was longitudinal, as measurements were repeated at the 68 

monitoring sites over 6 years. We only included years where more than 90% of the daily 

measurements from a site were non-missing. Selecting the best subset of predictor variables was 

complex as there were 315 to choose from. Because of the large number of variables and the 

computational issues this presented, we employed a two-stage variable selection procedure. In the 

first stage, we narrowed the list of variables by using the lasso method in the ‘glmnet’ library 

(Friedman et al., 2010). This places a bound on the sum of absolute coefficient values and 
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minimises the sum of squared errors (Tibshirani, 1996). Because this method is not suiTable for 

longitudinal data, we ran separate lasso models for each year. We tabulated the frequencies of 

selected variables as an indicator of their relative importance over the 6 years (supplement, pages 

S16-S17). We then used all those variables that were selected at least once in the second stage of 

variable selection.   

 

In the second stage of variable selection we followed the general approach of Su et al. 

(2009). This is a forward selection procedure where an independent variable can be added to the 

model on the conditions that: (1) it is statistically significant at the 5% level, and; (2) the variance 

inflation factors of all variables in the model remain below five. The second condition is an attempt 

to avoid co-linearity. For all variables that met these two conditions, we used 10-fold cross-

validation with 3 replications using the ‘cvTools’ library (Alfons, 2012) to choose the variable with 

the smallest cross-validated root mean square error. We only added a variable to the model if the 

mean cross-validated error plus the cross-validated standard error was smaller than the previous 

minimum root mean square error. This criterion aims to create a parsimonious model. These 

longitudinal models used all available years of data and were fitted by a generalised estimating 

equation (GEE) model using the ‘geepack’ library (Højsgaard et al., 2006). This produced one 

model for predicting annual average concentrations for each year during 2006-2011. We assumed 

an independent correlation structure for residuals from the same monitoring site.   

 

Model validation 

We visually checked the residuals of the final models for outliers, and used Cook’s distance and df-

beta statistics to test for influential observations. We used five-fold cross-validation with five 

replications to estimate the prediction error of the final models on an absolute and percentage 

scale. We examined the importance of individual sites by comparing those with the highest Cook’s 
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distance against 3 randomly selected sites (supplement, pages S20-S21). Additional details on 

model validation are given in the supplement (pages S13-S14). All modelling was performed using 

R version 3.0.3 (R Foundation for Statistical Computing, Vienna, Austria). 

 

Monthly model 

We used the same approach for our monthly model, except in this case there were up to 72 average 

concentrations for each monitoring site (12 months by 6 years). We only included months from 

sites where 25 or more daily pollution measurements were non-missing. The first variable selection 

stage using the lasso method was run separately for each month. We then used all those variables 

that were selected 6 or more times in the second stage. We started the second stage variable 

selection with a model that included month as a factor, as we strongly suspected that this would be 

an important variable and wanted to avoid potential proxies for month (e.g., solar radiation, rainfall, 

temperature) being selected unnecessarily. Using the same GEE approach as the annual model, we 

produced one model for predicting the 72 monthly average concentrations during 2006-2011.  

 

Comparison of different satellite NO2 estimates 

We assessed whether surface NO2 estimates derived using surface-to-column ratios from WRF-

Chem lead to models with better predictive ability for ground level NO2 than the easier to obtain 

estimates of tropospheric NO2 column density. For both our annual and monthly models, we 

examined two alternatives; one with surface NO2 estimates as a candidate variable (‘surface 

model’) and one with NO2 column density estimates (‘column model’). All other candidate 

variables were the same across the two models.   
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Applying the models  

We obtained the boundaries of the ~350,000 Australian Bureau of Statistics ‘mesh blocks’ that 

cover the entirety of Australia (Australian Bureau of Statistics, 2011). Mesh blocks are the smallest 

spatial unit used in the Australian census. They contain 62 people on average (range 0 to 2,339), 

and have a highly variable size (range: 1.0 × 10-4 to 1.7 × 105 km2; population-weighted mean size 

= 26.3 km2). The majority of populated mesh blocks include between 30 and 60 dwellings 

(Australian Bureau of Statistics, 2013c). We determined the centroid of every mesh block and used 

our final models to predict annual average NO2 concentrations at the centroids for each year during 

2006 to 2011 (Hystad et al., 2011; Novotny et al., 2011).   

 

3. RESULTS 

The number of air quality monitoring sites that met the inclusion criteria for the annual model 

ranged from 55 (2006) to 66 (2010) out of a possible 68. There were 358 annual measurements that 

met the inclusion criteria over the 6-year study period.  Between 47 (February 2006) and 67 

(May/July 2010) out of 68 sites met the inclusion criteria for the monthly model, and there were 

4,371 monthly measurements over the 72 months. The descriptive statistics of measurements used 

to build the annual and monthly models are shown in Table 2. 

   

The best annual surface model (i.e. model that included surface estimates of NO2) was capable of 

explaining 79% of the variability in measured NO2 concentrations (Table 3). This increased to 81% 

in the best annual column model (i.e. model that included tropospheric column NO2 density). The 

two models had comparable absolute and percentage root mean squared (RMS) prediction errors 

(Table 3). All other variables in the final models were identical with the exception of summertime 

mean daily solar exposure, which appeared in the surface model but not the column model. In both 
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models, the three variables that made the largest contribution to overall R2 were satellite NO2, 

impervious surfaces within 1,200 m, and major roads within 500 m.    

 

The best monthly model that included NO2 surface estimates explained 73% of the variability in 

measured NO2 (Table 4). The best model including NO2 column measurements explained 

76%. The monthly surface and column models had very similar RMS prediction errors (Table 

4). Excluding year and month, there were 4 common variables that were in both monthly models 

(minor roads within 8,000 m, major roads within 100 m, industrial site density within 400 m, 

industrial land use within 10,000 m). In both models, the variable that made the largest contribution 

to R2 was satellite NO2 (Table 4). The next largest contributors to the column model were minor 

roads within 8,000m and industrial land use within 10,000 m. The next largest contributors to the 

surface model were the months of July and August, which is during the Australian winter. 

 

Residuals were approximately normally distributed in all models (supplement, figures S3-S6).  For 

a given variable in the final models some monitoring sites were more influential than others, but 

after investigation we found no overt undue influence on the models. The results of model checking 

using df-beta statistics and Cook’s distance are presented in the supplement (pages S18-S26). We 

compared the values of predictors at the monitoring sites with those at the ~350,000 mesh block 

centroids around Australia and found that they were very similar (supplement, Table S11). 

 

The average NO2 concentration predicted by the annual surface model for 2008 is in Figure 1, 

which was selected as a representative example from the 6-year study period. The mostly 

unpopulated interior of the country had concentrations around 2 ppb. Areas with higher 

concentrations (from ~5 up to >20 ppb) are the cities and major towns. The inset of Figure 1 

focuses on Sydney, Australia’s most populous city (4.4 million).  Elevated concentrations (> 10 
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ppb) were predicted on and near major roads.  Maximum concentrations (> 20 ppb) were predicted 

in locations with many nearby major roads and industrial areas. This general pattern was present in 

the 8 state and territory capital cities around Australia, although levels were highest in the 3 largest 

cities: Sydney, Melbourne (4 million) and Brisbane (2.1 million).   

 

The annual NO2 concentrations predicted at the ~350,000 census mesh block centroids by our 

annual surface model are shown in Figure 2 (Hart et al., 2009). The median concentration predicted 

across Australia decreased from 6.3 ppb in 2006 to 5.3 ppb in 2011, which was a reduction of 16% 

over the 6 years. Because about 25% of mesh blocks are uninhabited, we also calculated 

population-weighted concentrations to indicate the average concentration that Australians are 

exposed to. These ranged from 7.3 ppb (2006) to 6.3 ppb (2011), a decrease of 14% from 2006 to 

2011. The NO2 levels predicted at each mesh block by the column model were almost identical to 

those predicted by the surface model (supplement, Table S12).   

 

We also examined predicted NO2 concentrations in Sydney. Across the ~57,000 mesh blocks that 

made up the greater Sydney area (Australian Bureau of Statistics, 2011), the population-weighted 

average annual NO2 concentration ranged from 9.9 ppb (2006) to 8.7 ppb (2011), a decrease of 

12% between 2006 and 2011. A range of statistics on predicted NO2 levels across Sydney are in the 

supplement (tTable S13).   

 

4. DISCUSSION 

We assessed the ability of satellite-based LUR models to predict monthly and annual average NO2 

concentrations in Australia from 2006-11. We found that the best annual model explained 81% of 

variation in NO2, while the best monthly model explained 76%. We applied our models to predict 

NO2 concentrations at each of the ~350,000 census mesh blocks across the country and found a 
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slight but consistent decrease between 2006 and 2011. Predicted concentrations were generally 

modest compared to studies in the USA and Europe (Beelen et al., 2007; Hart et al., 2009; Vienneau 

et al., 2013), but were more comparable with those predicted in Canada using similar methods 

(Hystad et al., 2011).   

 

While it is difficult to comprehensively compare our results to other national satellite-based LUR 

due to differences in methodology, we found that our models captured a similar or slightly higher 

amount of variability in NO2. An annual model for the USA explained 78% of variability in 

measured NO2, while a Canadian model explained 73% (Hystad et al., 2011; Novotny et al., 

2011). A recent model covering Western Europe explained 60% of measured NO2 variability 

(Vienneau et al., 2013). The prediction error of all our models was comparable or slightly lower 

than other studies, albeit using different validation methods (Novotny et al., 2011; Vienneau et al., 

2013; Lee and Koutrakis, 2014).  

 

The variables in our models were generally consistent with those reported in previous studies, with 

both major and minor roads featuring prominently as well as impervious surface cover (Novotny et 

al., 2011; Vienneau et al., 2013). Increased roads, impervious surfaces and industrial variables were 

all associated with higher NO2. Road traffic is a major source of NO2, and impervious surfaces are 

greater in built-up locations and may reflect increased NO2 sources in these areas. Increased open 

space (e.g. parklands) and summertime solar exposure  were both associated with lower NO2. Open 

spaces are relatively free of substantial NO2 sources, while the presence of summertime solar 

exposure in the annual surface model may be due to the shorter lifetime of nitrogen oxides in the 

lower troposphere during the summer months (Lamsal et al., 2010).   
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Industrial land use and the density of nearby industrial point source NOX emissions featured in all 

of our models. Industrial sources are a leading contributor to outdoor NOX in Australia (Australian 

Bureau of Statistics, 2012), and the conspicuous presence of industrial variables in our models is in 

keeping with this. Industrial emissions and industrial land use have been found to be significant 

predictors of NO2 in some other national LUR models (Hart et al., 2009; Hystad et al., 

2011). Including industrial variables can improve model performance but creates models that are 

less specific to vehicle emissions (e.g. Novotny et al., 2011). However, it also means that model 

predictions are able to capture both vehicle and non-vehicle sources of NO2, both of which 

contribute to ambient NO2 and human exposure.   

 

We found that satellite-derived NO2 estimates from the Ozone Monitoring Instrument added the 

most predictive ability to 3 of our 4 models. Previous studies have reported pronounced reductions 

in model performance when satellite NO2 is excluded (e.g. Novotny et al., 2011; Vienneau et al., 

2013). Our findings further confirm the utility of satellite NO2 in national-scale LUR, and the 

improvements in exposure assessment that it offers.  

 

Notably, we found that the best annual and monthly models that included NO2 tropospheric column 

observations exhibited slightly better predictive ability with comparable error to those that included 

estimates of surface NO2 obtained by modelling surface-to-column ratios using WRF-Chem. This 

could reflect the fact that tropospheric columns are dominated by NO2 in the part of the atmosphere 

closest to Earth’s surface (i.e. the boundary layer), and are therefore useful proxies of relative 

ground-level concentrations (Richter et al., 2005). Also, the parameters selected in the process of 

modelling surface-to-column ratios (supplement, pages S4-S9) may add additional error into NO2 

estimates obtained using this method (Lamsal et al., 2008; Bechle et al., 2013). Modelling surface-

to-column ratios is both computationally- and time-intensive and requires technical expertise. Our 
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findings are promising for those who are interested in less complex approaches to NO2 exposure 

assessment. We note, however, that these findings may be specific to the context of our study and 

are not necessarily applicable beyond that. 

 

Our study has some important limitations. The monitoring data used to build the models came from 

only 68 sites, which is small when compared with other national LUR studies (e.g. Novotny et al., 

2011; Vienneau et al., 2013), particularly when Australia’s size is considered (supplement, Table 

S3; Johnson et al., 2010; Basagaña et al., 2012; Wang et al., 2012). Indeed, it was this paucity of 

monitoring that provided the initial motivation for our study. However, this means that model 

predictions may be valid only when applied to environments similar to those where monitoring was 

performed. We addressed this by comparing the summary statistics of predictors at the monitoring 

sites with those at the mesh block centroids that covered all of Australia (supplement, Table 

S11). We found no evidence to indicate that the monitoring sites on which the models were based 

differed markedly from the broader Australian context that they were applied to. However, the 

monitoring sites are primarily used for regulatory ambient air monitoring, and so they were not 

typically sited near substantial emission sources. For this reason, using our models to predict 

concentrations in pollution ‘hot-spots’ (such as road intersections or areas with very localised non-

road emissions) should be undertaken with caution, and would require additional validation against 

measurements from the area of interest. 

 

Because we used a generalised estimating equation we were unable to assess spatial autocorrelation 

in the model residuals. However, all other national satellite-based NO2 models have reported that 

spatial autocorrelation was not present in model residuals, and this is also true of many non-satellite 

urban LUR models (Hoek et al., 2008; Hystad et al., 2011; Novotny et al., 2011; Vienneau et al., 

2013). Also, our small data set prevented us from holding out some of the data for an independent 
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evaluation (Hoek et al., 2008; Novotny et al., 2011; Wang et al., 2012), which has also been the 

case in other studies with limited monitoring data (e.g. Hystad et al., 2011). We instead used five-

fold cross-validation to estimate our models’ prediction error. We note that our R2 values may be 

higher than would be observed with a new validation data set due to the relatively small number of 

monitoring sites and large number of predictors (Basagaña et al., 2012; Wang et al., 2012). Finally, 

we focussed on generating monthly and annual averages rather than daily estimates (e.g. Lee and 

Koutrakis, 2014). This enabled us to examine all of Australia, rather than a specific region or city.   

      

Satellite-based LUR models hold promise for improving exposure assessment in epidemiological 

studies and have a diverse range of potential applications. They are particularly useful in locations 

with sparse or absent ground-based monitoring.  Our models included both variables within 

different buffers (e.g. percent land use type, road length) and point variables (e.g. satellite NO2, 

distance to coast). They permit unique predictions for a given set of input points (e.g. residential 

addresses), and we also presented an example of predictions on a 100 m grid across Australia 

(Figure 1). Our models are capable of capturing within-urban variability in concentrations, and 

although we did not aim to capture highly localised effects the models may also be able to capture 

some near-source (e.g. roads, industry) variability in certain areas (Hoek et al., 2008; Marshall et 

al., 2008). Because the models spanned the entire country there were no limitations around city-to-

city transferability. Our models are the first that we are aware of to offer national coverage of 

Australia, and add to the growing international evidence regarding the utility of satellite-based 

LUR.  

 

In summary, our satellite-based LUR models were able to capture ~80% of spatial variability in 

monthly and annual ambient NO2 concentrations during 2006-11 across Australia, a country with 

sparse ground-level monitoring. These models can be used to determine concentrations that 
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individuals are exposed to at their residential address, or for larger spatial units (e.g. post code or 

suburb level) if their address is unknown due to confidentiality restrictions. They can also be used 

to refine and validate estimates of population-level exposures. With these applications in mind we 

are making our model predictions freely available to those who want to use them for research.  
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Figure captions 

 

Figure 1. Average NO2 concentration in 2008 predicted at ~350,000 census mesh block centroids 

by the annual surface model. The inset focuses on the greater Sydney area, Australia’s largest city 

(population ~4.4 million). The figure is displayed using a 100 m grid.  

 

Figure 2.  Selected percentiles of annual average NO2 predicted at ~350,000 census mesh block 

centroids by the annual surface model, 2006-2011. 

 


