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ABSTRACT 

Recent advancements in Advanced Metering Infrastructure (AMI) enable 

optimum utilization of existing electricity network via Demand Response (DR). A 

flexible and reliable electricity network can be created by allowing open access 

information sharing and independent decentralized decision-making for unbundled 

market participants including utility and end-users. The massive rollout of AMI 

(such as smart meters) alone, however, may not be sufficient and there is a need for 

well thought algorithms to achieve desired benefits. This research work introduces 

efficient algorithms for residential appliances to achieve economic as well as 

network benefits for all participants. 

Firstly, a new technique based on a customer reward mechanism is proposed, 

where the network provider controls residential appliances to achieve peak shaving 

and improve voltage profile. Then, an improved Real-Time Pricing (RTP) scheme 

for residential customers is introduced. Home energy management systems are 

proposed to account for the uncertainties in RTP and appliance power consumption. 

Finally, a control method to provide regulation services in the market via DR is 

proposed. These methods are tested using mathematical simulation models 

representing a cluster of demand responsive proactive customers. 

Initial study focuses on load control method via a customer reward scheme. 

The network peak shaving and improvement in the voltage profile while maintaining 

customer satisfaction is achieved. Customer survey information of appliance 

characteristics and real-time appliance operation data are used to calculate indices. 

These indices combined with the sensitivity based house ranking are used for load 

selection in a network feeder. As customers participate in the direct load control, 

rebates are awarded in return. A network level economic analysis is proposed for the 

calculation of rebates. 

Secondly, a new price based DR technique to handle peak demand and 

voltage violations. In contrast to first phase, customers have their own choice of 

controlling their loads based on time varying price signals. An improved RTP 

scheme for residential customers with three components based on power 

consumption, adverse wholesale price variation and feeder voltage violation is 



vi 

 

proposed. Using broadcasted price information, Smart meters and in-home display 

units provide appropriate load adjustment signals, which give customers an 

opportunity to respond to price signals.  

Uncertainties in RTP variation and power consumption pattern of appliances 

have a significant implication on decision making during DR. Hence, a stochastic 

Home Energy Management (HEM) system is proposed next, which facilitates 

customers to adjust their loads while considering uncertainties in RTP and appliance 

power status. The proposed HEM scheduler aims to reduce the cost of energy 

consumption in a house while maintaining customer satisfaction. It works in three 

subsequent steps namely real-time monitoring, stochastic scheduling and real-time 

control of appliances. In the first step of real-time monitoring, characteristics of 

available controllable appliances are monitored in real-time and stored in HEM 

scheduler. In second step, HEM scheduler computes an optimal policy using 

stochastic dynamic programming to select a set of appliances to be controlled with an 

objective of minimizing customer discomfort as well as the total cost of energy 

consumption in a house. In third step, HEM scheduler initiates the control of the 

selected appliances ultimately providing an efficient house based energy 

management by appropriate load adjustments utilizing stochastic information.  

Finally, the control method for appliances to provide regulation services is 

proposed. Registered retailers schedule their loads to match a dispatch regulation 

signal offered by the wholesale electricity market operator. Stochastic DR method 

using a pool of thermostatically controllable appliances is proposed, where the 

selection of appliances is based on a probabilistic ranking technique. 

Various findings from this research work have multi-faceted benefit and are 

helpful for (1) policy makers to develop proper power pricing scheme; (2) 

distribution network providers to utilize AMI effectively and (3) end-users by 

making them aware of the associated financial benefits. 
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Chapter 1  

 

Introduction 

 

This chapter outlines the background in section 1.1 and research problem in 

section 1.2. Research methodology and significance is explained in sections 1.3 and 

1.4 respectively. Finally, section 1.5 includes an outline of the remaining chapters of 

the thesis. 

1.1. Background 

The traditional electricity network is being transformed to a smart grid 

environment characterized by the utilization of advanced metering, sensing 

frameworks and wireless two-way communication facilities in electricity generation, 

transmission and distribution infrastructure. Smart grid enables to deal with the 

complex nature of the present electricity network, with a goal to achieve stability, 

reliability and security. A smart electricity network can self-repair during adverse 

network conditions, prevent power leakages and allow flexible market augmentation. 

Decentralized power generation and Demand Response (DR) are the key features of 

the smart distribution grid.  

Decentralized generation can be any source of power generation connected in a 

distribution network such as roof top PV cells micro wind turbines. DR refers to a 

temporary load curtailment scheme to minimize energy consumption during adverse 

network conditions. It is a promising scheme in future smart grid environment due to 

the benefits it offers. The DR scheme is made possible by the massive rollout of 
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advanced metering infrastructure. The present research focuses on DR schemes in a 

residential distribution system and its benefits for both electricity customers and 

electric utilities. 

DR is primarily used to reduce network peaks. An increasing trend of peak 

electricity demand is observed in present residential distribution systems. Therefore, 

DR is utilized to handle network peaks by time-shifting residential loads. This 

provides benefits to an electric utility by deferring the investment cost of network 

upgrades and the usage of expensive generation plants to cater to peak demand. 

Customers who participate in a DR scheme through load curtailments receive 

benefits through incentives. 

Furthermore, DR is capable of responding to uncertainties in electricity 

consumption and supply, thus preventing unexpected system instability. The 

unpredictable nature of electricity demand is detected on a daily and seasonal basis. 

The integration of renewable energy generation and distributed generation also 

increases system uncertainty to a further extent. DR easily handles uncertainties and 

prevents the use of expensive generators to maintain the capacity margin during 

uncertainties. In addition, DR can considerably reduce the wholesale price spikes. 

Fluctuations in fuel price and the uncertain nature of electricity demand and supply 

are the main causes for wholesale price spikes. A real-time curtailment of loads in 

the residential distribution system consistently reduces the possibility of wholesale 

price spikes and provides immense cost benefits to an electric utility. A Real-Time 

Pricing (RTP) scheme for residential customers reflecting the wholesale price 

variation is used for this purpose. Here, customers tend to reduce their electricity 

bills by scheduling their loads through Home Energy Management (HEM) units 

when the electricity price becomes high. Therefore, it provides benefits to customers 

who incur a reduced cost for energy consumption when they create an energy 

efficient home.  

DR has an added advantage of providing regulation services in the ancillary 

services market in order to maintain the supply and demand balance. Electricity 

retailers get benefit through this scheme by obtaining profit from the ancillary 

services market and customers are given rebates for load curtailment. 
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1.2. Research Problem 

DR is becoming increasingly important in the current electricity grid as it is the 

key to unlocking market flexibility and empowering electricity customer choices. 

Moreover, it is a very cost effective technique. An immense amount of research has 

been carried out on DR in recent years but the implementation of DR schemes is still 

in the preliminary stage and needs to be explored further. Among the ongoing 

research problems related to DR, the present study focuses on the following four 

areas: incentive based DR; the Real-Time Pricing (RTP) method (price based DR); 

Home Energy Management (HEM) schedulers; and DR for regulation services.   

 Incentive based DR 

Studies related to DR in residential distribution systems are mostly conducted 

with the aim to reduce network peaks and adverse feeder voltage conditions by time-

shifting residential appliances. Such efforts are based on optimization techniques to 

maximize electric utility benefits or customer satisfaction. However, optimization 

techniques may be time consuming and it may be difficult to simulate load 

curtailments within a short timeframe. Therefore, an efficient load selection method 

is required considering both electric utility and customer benefits. Furthermore, most 

of the techniques consider particular appliances such as water-heaters, air-

conditioners and plug-in electric vehicles in the DR process. However, the 

engagement of most residential appliances is possible. A detailed model of appliance 

engagement is essential to validate this statement. Moreover, a comprehensive 

customer reward scheme for load curtailment based on both overload prevention and 

voltage support has not yet been studied. Therefore, the first phase of this research 

focuses on an effective real-time DR method considering a detailed residential load 

model. It considers both electric utility and customer benefits during load selection 

for curtailment. A guaranteed rebate scheme is also developed for participating 

customers to provide incentives.    

 RTP Methods 

A number of price-responsive demand techniques have been proposed in the 

past, including time of use pricing, critical peak pricing and real-time pricing. RTP is 

a promising option as it reflects the wholesale price variation within short 
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timeframes, creating a bridge between the wholesale and retail electricity market. 

Recently, RTP has been applied in the residential distribution sector with the 

deployment of smart meters and in-home display units. Most of the available RTP 

schemes reflect the average wholesale price. This may adversely affect customers 

when there are unacceptably high wholesale price spikes. Therefore, a rational price 

component for RTP is essential. In the majority of available RTP schemes, the prices 

are broadcast on an hourly basis. This may not reflect the actual network conditions 

and hence the RTP scheme may not be able to achieve the required demand shift. 

This gives rise to the need to increase the frequency of RTP broadcasting. Moreover, 

the RTP concept can be applied to prevent overload and improve voltage conditions 

in the electricity network. Therefore, an improved RTP scheme is developed in the 

second phase of this research based on a consideration of wholesale price variations, 

network peaks and adverse voltage conditions. 

 HEM Scheduler 

A HEM system helps customers to react to RTP variations efficiently by scheduling 

residential appliances to reduce the cost of energy consumption. Recent studies in 

HEM systems were based on real-time techniques and did not consider the uncertain 

nature of appliance usage or RTP variation during appliance scheduling. Some of the 

available HEM systems use predictive techniques for appliance scheduling, which 

may deviate from the real system. Therefore, a fully-fledged HEM scheduling 

algorithm which handles the uncertainty in both appliance power consumption and 

RTP variation is developed in the third phase of this research.  

 DR for regulation services 

The DR technique can also be used to provide regulation services. Studies in 

the literature indicate the utilization of thermostatically controllable loads for 

appliances such as water-heaters and air-conditioners. The selection of these loads is 

based on real-time temperature ranking methods. This technique is only valid with 

short time step controls such as one minute. However, in the Australian ancillary 

services market, regulation services are scheduled to a five minute dispatch 

framework. This gives rise to the need for an accurate stochastic appliance ranking 

scheme to predict the appliance status in the five minute timeframe. Therefore, a 
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stochastic appliance ranking algorithm is developed in the fourth phase of this 

research to enable a retailer to provide effective regulation services. 
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Fig. 1.1 Illustration of research with four phases 

The present research focuses on the above four issues in order to enhance the 

implementation of DR in real-world applications as in Fig. 1.1. The methods applied 

to achieve the proposed improvements and applications of DR are discussed in the 

following section. 

1.3. Research Method 

This research primarily aims to establish new efficient algorithms for DR to 

comply with different applications in the electricity network and provide benefits to 

network participants. The main purpose of this research is to propose innovative and 

resourceful DR schemes to achieve a more reliable and economical distribution 

system. The research is conducted in four consecutive phases. The first two phases of 



6 

 

this research are based on the DR techniques used for peak shaving and eradicating 

adverse voltage conditions. A new direct load control technique based on a customer 

reward mechanism is introduced in the first phase of the research. Here, the electric 

utility can have complete control of residential appliances in the network. The second 

phase of the research proposes a price-responsive technique providing greater 

customer choices in comparison with the first phase. It also introduces an improved 

RTP scheme for residential customers. The third phase mainly focuses on house-

level stochastic energy management systems. It deals with the uncertainties in RTP 

and appliance power consumption. Unlike the first three phases, the fourth phase 

proposes a new application of DR in the ancillary services market for providing 

frequency regulation considering load uncertainty. A brief conceptual outline of the 

above four phases is discussed next. 

The initial study focuses on a direct load control method for DR via a customer 

reward scheme for peak shaving and the mitigation of adverse voltage conditions in 

the network while also maintaining customer satisfaction within allowable limits. 

Information from a customer survey on appliance characteristics and real-time 

appliance operation data are used to calculate indices reflecting appliance priority, 

flexibility, customer satisfaction and power statuses. These indices and the 

sensitivity-based house ranking are used for appropriate load selection in a network 

feeder for DR. As customers are forced to accept direct load control, they are given a 

reward in the form of a rebate. A network-level economic analysis is used for rebate 

formulation and it is found that rebates can be paid based on the load shift and 

voltage improvement due to load adjustments. 

The second phase of the research focuses on a new detailed price-based DR 

technique to handle peak demand and adverse voltage conditions. In contrast to the 

first phase, customers have their own choice in controlling their loads based on time-

varying price signals. An improved RTP scheme for residential customers with three 

components based on power consumption, adverse wholesale price variation and 

feeder voltage violation is proposed. Smart meters and in-home display units can be 

used to broadcast price information and appropriate load adjustment signals so that 

customers have an opportunity to respond to price signals optimally by choosing the 

appropriate load adjustments broadcast by the electric utility. 
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Uncertainties in RTP variation and the power consumption patterns of 

appliances have a significant impact on decision-making during DR. Hence, a 

stochastic HEM system is proposed in the third phase which enables customers to 

adjust their loads based on RTP while also considering uncertainties in RTP and 

appliance power status. The proposed real-time HEM scheduler aims to reduce the 

cost of energy consumption in a house while maintaining customer satisfaction. It 

works in three steps, namely, real-time monitoring, stochastic scheduling and the 

real-time control of appliances. In the first step of real-time monitoring, the 

characteristics of the available controllable appliances are monitored in real-time and 

stored in the HEM scheduler. In the second step, the HEM scheduler computes an 

optimal policy using stochastic dynamic programming to select a set of appliances to 

be controlled with the objective of minimizing customer discomfort as well as the 

total cost of energy consumption in a house. In the third step, the HEM scheduler 

initiates the control of the selected appliances, ultimately providing efficient house-

based energy management by appropriate load adjustments utilizing stochastic 

information.  

The fourth phase of this research focuses on a different dimension of DR used 

in the ancillary services market to provide fast frequency regulation services. 

Registered retailers are urged to stochastically schedule their loads to match a time 

step-ahead of the dispatch regulation signal offered by the ancillary services market. 

Hence, a new stochastic DR methodology applied on a pool of thermostatically 

controllable appliances is proposed. It considers water-heaters and air-conditioners as 

they are in operation most of the time during a day and are available for control. The 

selection of appliances is based on a probabilistic ranking technique whereby three 

attributes of appliances related to temperature variation, appliance power status and 

appliance power rating are analyzed for decision-making. The first two attributes are 

stochastically forecasted for the next time step and follow a Markov process. 

The performance of the proposed methods is clarified by applying them in a 

real-time simulation environment representing a cluster of demand-responsive 

proactive customers. Realistic mathematical residential load models are utilized for 

this purpose. 
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1.4. Research Significance 

This research provides significant benefits and outcomes in four different 

phases of this study.  

The algorithm developed for DR in first phase of this research can be 

implemented efficiently in real-time environment within short time frame. In 

comparison with past studies, it considers both customer and utility perspectives 

during decision making for appliance curtailment. It provides benefit to customers by 

maintaining appliance satisfaction, flexibility and priority within allowable limits. 

The utility benefits by eliminating overload and adverse voltage conditions in the 

network. A fully guaranteed customer reward scheme, considering both load 

adjustment and voltage support is established which makes this DR scheme 

economically feasible.   

The RTP method developed in second phase of this research is significant from 

existing methods as it considers power consumption, overloading conditions, voltage 

violations along with wholesale price spike in RTP. Active participation in this RTP 

guarantees elimination of overload, adverse voltage conditions and wholesale price 

spikes. Customers benefit from reduction in cost of energy consumption. The 

appliance indication developed for load curtailment is unique from existing methods 

which ease the appliance control process for customers via in-home energy 

management units. 

A novel stochastic HEM scheduling algorithm developed in third phase of this 

research provides significant benefit to customers by appropriately acting according 

to proposed RTP variation. It is unique from the existing methods as it considers 

uncertainties in appliance power consumption and RTP variation effectively. It 

ensures reduced cost of energy consumption in a house. 

The algorithm developed for providing regulation services via DR is distinctive 

as it uses stochastic appliance ranking method to predict appliance controls for 

regulation. It is very useful in ancillary services market which broadcasts offers 

every five minutes, necessitating the prediction of appliance status for next five 

minutes.      
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1.5. Thesis outline 

The remaining chapters of this thesis are organised as follows. Chapter 2 is a 

comprehensive literature review which leads to the development of the research 

hypotheses presented in this thesis. This is followed by the original work in Chapters 

3, 4, 5 and 6. The thesis concludes with a summary of the research work and findings 

in Chapter 7.  

1.5.1. Outline of Chapter 2 

Chapter 2 presents a detailed study of existing electricity infrastructure which 

provides the motivation for this research. Recent developments in the electricity 

sector such as market liberalization, the smart grid concept and DR schemes are 

discussed in detail. An in-depth study on DR in residential distribution systems is 

carried out, as it is the main focus of this thesis. The benefits and applications of DR 

in a smart grid environment are identified. A comprehensive literature review is 

conducted on existing and proposed DR options in the electricity market. The 

drawbacks in present DR schemes are highlighted and the need for an improved DR 

technique is elaborated upon, which leads to the generation of the hypotheses to be 

tested in the subsequent research work in Chapters 3, 4, 5 and 6.  

1.5.2. Outline of Chapter 3 

Chapter 3 proposes a novel customer reward-based DR technique which can be 

easily implemented in a residential distribution system to prevent overload and 

adverse voltage conditions in the feeder. Customer preferences are considered during 

the selection of appliances for curtailment. For this purpose, customer survey 

information and real-time power consumption data are used to calculate appliance-

based indices such as appliance flexibility, satisfaction and priority. This ensures that 

customer comfort is maintained within acceptable limits. A voltage sensitivity-based 

ranking is used along with the indices to improve voltage in the residential feeder. A 

novel reward scheme for customer load adjustments is also proposed, with rewards 

paid in the form of rebates based on voltage improvement and power curtailment. 

The analysis and results to validate the efficacy of the proposed technique are also 

presented in this chapter.  
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1.5.3. Outline of Chapter 4 

Chapter 4 proposes a new “price response demand” technique which can be 

applied in a residential distribution system with the purpose of preventing overload 

and adverse voltage conditions. It is achieved by introducing a novel real-time 

pricing scheme, reflecting the actual power consumption, feeder voltage deviation 

and wholesale electricity price. Customers are given the opportunity to react to the 

real-time price signals broadcast through in-home display units. This scheme offers 

more benefits than the direct load control technique in Chapter 3, as it provides 

flexibility for customers during load adjustments.   

1.5.4. Outline of Chapter 5 

There is a necessity for an efficient HEM system for residential customers, in 

order to react efficiently to the real-time pricing scheme proposed in Chapter 2. 

Hence, Chapter 5 proposes a real-time HEM scheduler with the aim to reduce the 

cost of consumption in a house while at the same time maintaining customer 

satisfaction. This technique considers the stochastic behavior of appliance usage and 

real-time pricing during appliance selection. Stochastic dynamic programming is 

used to incorporate uncertainties in pricing and appliance usage. Real-time appliance 

monitoring, stochastic appliance scheduling and real-time appliance control are the 

main steps used in the proposed HEM scheduler. It ensures the reduced cost of 

consumption and minimal customer discomfort.  

1.5.5. Outline of Chapter 6 

Chapter 6 utilizes the residential DR option as an operating reserve in the 

ancillary services market for the purpose of providing regulation services. Retailers 

can bid in the day-ahead market and respond to the real-time regulation offered by 

appropriate load control. This part of the study proposes a method for the stochastic 

ranking of appliances in a retail network in order to select appropriate appliances for 

regulation purposes. A pool of thermostatically controllable loads such as air-

conditioners and water-heaters are used for load adjustments. The ranking method is 

based on the pairwise probabilistic comparison of appliances. The attributes of 

appliances such as comfort, switching state and power rating are used for decision-

making. System performance is verified for a given regulation signal. The network 
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capability for regulation is also analyzed during various seasons to show the 

robustness of the system for regulation.  

1.5.6. Outline of Chapter 7 

Chapter 7 summarises the original research work presented in Chapters 3, 4, 5 

and 6. The techniques and algorithms proposed to achieve the objectives of the study 

are briefly reviewed. The significant research findings and analysis are specified. The 

benefits and importance of the proposed techniques are summarised, demonstrating 

the relevance of the research findings to the present electricity industry. Suggestions 

for implementing the proposed methods in the real world are also made. Finally, 

future directions in research that can be carried out to extend and improve the present 

study are suggested. 
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Chapter 2  

 

Literature Review for Demand Response 

 

This chapter delineates the historical background and recent developments in 

the electricity industry as a motivation for the research work presented in this thesis. 

Initially, a brief overview of past and present trends in the electric power system is 

presented. Recent developments in the electricity network such as market 

liberalization, the introduction of renewable energy and the development of the smart 

grid concept are discussed in detail. A comprehensive study of the DR mechanism in 

the smart grid environment is conducted as it is the main target of this research work. 

Problems and constraints associated with the recent developments in the electricity 

market are analyzed and the DR solutions proposed in the literature are extensively 

analyzed. This theoretical outline of DR helps to develop a conceptual framework for 

the generation of the hypotheses in this study and helps to define the research 

structure of this thesis as well as setting the scene for the following chapters.  

This chapter begins with the historical background and recent developments in 

the electric power system in Section 2.1, followed by a review of the literature in 

section 2.2. Concluding this chapter, Section 2.3 highlights the implications of the 

findings in the literature and develops the conceptual framework of the study. 
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2.1. Historical Background and Recent Developments in Electricity 

System 

Electricity is increasingly important in the modern globalized economy and 

serves as an essential resource in the day-to-day life of every individual. Hence, 

electricity supply is expected to be reliable and affordable with a minimum impact on 

the environment. As electricity is a non-storable commodity, a comprehensive and 

careful focus on policy actions is vital in order to have an accurate balance between 

electricity supply and demand. This is made possible by the liberalization of the 

electricity sector [1].  

2.1.1. Liberalization of Electricity Sector 

In the early 1990s, many power systems were characterized by a vertically 

integrated structure, whereby electricity generation, transmission and distribution 

belonged to one electric utility. Electricity prices for these three sectors were bundled 

together, reflecting the cost of the provided services [2]. 

However, in most countries, this monopolistic market structure has been 

replaced by a deregulated and competitive market arrangement. This involved the act 

of breaking the electricity market into components, based on each component’s 

functionality or physical structure. Ownership of these unbundled market 

components is provided to authorized and independent operators. This liberalization 

of the market structure provides flexibility to end-users to choose their provider. 

Trading between market components is well organized. Market based competition 

are created such that electricity can be bought or sold, similar to other commodities. 

It leads to efficient operations of the electricity system with more effective 

investment decisions in terms of timing, sizing and technological improvements. 

Furthermore, the transparency created by the competitive environment addresses 

critical policy challenges related to environmental issues and network reliability. 

Liberalization of the electricity market has been successfully practiced in the real-

world and is being augmented by more appropriate policy prescriptions [3], [4].  

However, the present electricity network has drawbacks. Increased carbon 

emission leads to global warming and there is a need to introduce renewable energy 

sources to the electricity grid. The integration of renewable energy sources and the 
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increasing demand for electricity due to the fast growing world population make the 

present electricity system more vulnerable. Hence, the reestablishment of the power 

grid with increased flexibility and efficiency via the smart grid concept is essential to 

provide intelligent services to end-users [5].  

2.1.2. Smart Grid Concept 

The smart grid concept is made possible by the vast improvements in 

information and communication technology. An electric utility is capable of 

providing electricity to meet increasing demand, with better reliability and quality of 

power supply via the smart grid concept. It leads to increased energy efficiency. The 

integration of low carbon energy sources effectively mitigates the consequences of 

climate change. DR and advanced metering infrastructure (AMI) are the essential 

requirements for a smart grid [5]-[8].  

AMI creates a two-way communication network between smart meters and the 

electric utility through advanced sensors, monitoring systems and data management 

systems. The real-time consumption and price information of electricity can be easily 

transferred due to AMI. As power consumption information is remotely monitored, 

errors and costs due to manual reading are prevented. Multiple vendors can change 

their services to customers in real-time. Ultimately, the electricity grid can be 

supported by AMI through low latency and high bandwidth communication services 

to achieve these services and much more [7].  

Moreover, the smart grid enables efficient utilization of renewable generation 

resources and helps in reducing carbon emissions. The intermittent and unpredictable 

nature of renewable energy generation can be handled using smart grid technology.  

DR can contribute to the integration of renewable energy resources in order to 

achieve system stability. DR primarily controls energy demand during critical 

situations to create a balance between electricity supply and demand. Therefore, the 

improved utilization of available energy and existing infrastructure enables the 

power network to be operated reliably and cheaply. This dissertation is mainly 

focused on the contribution of DR; hence, DR is discussed in more detail in this 

section. As illustrated in the conceptual design of the smart grid environment in Fig. 

2.1, DR is made possible through AMI and the home area network [9].  
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During DR, the AMI serves to provide the customers’ energy consumption 

information to the electric utility and the real-time price information from the electric 

utility to the customers through two-way communication capabilities. The home area 

network is the heart of DR whereby appliances in a house are remotely monitored 

and controlled during adverse situations [10].  
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Fig. 2.1 Conceptual design of a smart grid environment 
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2.2. DR Approach 

DR is an integral component of the envisioned smart grid infrastructure. It 

primarily refers to activities related to active load control during high market price or 

when grid reliability and stability are jeopardized.  

DR provides a number of key benefits for both the electric utility and 

customers. For the electric utility, DR maintains electricity system reliability by 

lowering the likelihood of consequences arising from unexpected outages which 

create financial losses and inconvenience to customers. For example, DR 

compensates for the uncertainty brought by intermittent renewable energy sources. It 

can also react to problems caused by distributed generation instantaneously. Network 

overloads and adverse feeder voltage conditions can also be mitigated. Furthermore, 

financial benefits are obtained by lowering wholesale market prices by preventing 

the use of costly generation [11].  

Customers also benefit from DR schemes in many ways. Careful attention to 

home energy consumption leads to energy efficient buildings. Participating 

customers can save considerable amounts of money due to load adjustments by 

means of reduced electricity prices or incentive payments.  

Currently, electric utilities have focused most of their DR efforts on industrial 

or commercial buildings based on the reasonable argument that large customers can 

provide more savings with fewer numbers of load adjustments [12], [13]. However, 

residential customers can be incorporated into DR schemes for equally valid reasons. 

Residential customers make the large contribution to peak load in the network. 

Hence, overload prevention can be performed by DR in the residential electricity 

network [14]. Adverse voltage conditions in residential feeders can also be mitigated 

by residential DR. Flexible house appliances such as plug-in electric vehicles, air-

conditioners and water-heaters are easy to incorporate in residential DR schemes. 

Hence, residential DR can play an important role in the smart grid environment. The 

next sub-section provides a brief description of DR in the smart electricity 

distribution network.  
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2.2.1.  DR in the Smart Electricity Distribution Network 

A smart distribution network is an important part of the smart grid which 

connects the main network with the user-oriented supply. With emerging 

technological improvements, the smart distribution system is made possible by the 

large-scale deployment of smart meters and HEM units, intelligent assets for 

condition monitoring, distributed generation and DR. Data acquisition and real-time 

monitoring and analysis make it a reality [15], [16].  

The smart distribution network should be able to handle variation in electricity 

demand which is changing instantaneously due to changes in electricity-driven 

activities at different times. There is a major peak demand for electricity between 

1800 to 2100 hrs. Further, daily variations throughout the year occur due to seasonal 

factors (such as the temperature and rainfall), the level of industrial and agricultural 

activities and other causes such as holidays and festivals. [17].  

Furthermore, plug-in electric vehicles could have a significant impact on the 

smart distribution grid by adding a new load on the existing primary and secondary 

distribution networks, many of which do not have any spare capacity. The additional 

charging load of plug-in electric vehicles is typically behind either an existing 

secondary distribution transformer in a residential neighbourhood or a transformer 

connected to a distribution feeder. The vehicles range in battery capacity from 16 

kWh to 53 kWh. They require a full charge within a reasonable time which is usually 

3 to 4 hours plugged in with 6.6 kW or 16 kW capacities [18]. The use of a plug-in 

electric vehicle more than doubles the average household load during charging, as 

found in [18]. 

Hence, handling the peaking scenario will be a principal concern in electricity 

systems in the future due to the expected rapid penetration of plug-in electric 

vehicles. In the worst case, it will lead to the overloading of transformers at the 

distribution level, potentially causing outages and could even lead to voltage 

collapse. The smart distribution grid is capable of handling such adverse conditions 

by creating a self-healing environment [19]. The DR techniques that are available to 

be implemented in the residential electricity system are discussed next.  
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2.2.2.  DR Options 

Two main categories of DR options are possible in the real-world electricity 

environment based on the way in which the load adjustments are made. They are the 

price response demand options and the incentive-based options, as illustrated in Fig. 

2.2.  

An incentive-based DR is established by electric utilities when the utility has 

the direct control of residential loads. Customers are provided with an incentive 

separately or as a reduced rate in their electricity bill. This group of options functions 

when adverse network conditions exist or when a high wholesale price spike occurs. 

In contrast, price response demand options refer to the changes in usage of electricity 

in response to the electricity price variation. Customers tend to reduce their 

consumption in order to reduce the cost of their consumption during times of high 

electricity prices [11]. Here, the customer response is entirely voluntary. Details of 

both techniques are discussed next.  

DR OPTIONS
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 Time of Use (TOU)

 Critical Peak Pricing (CPP)

 Real Time Pricing (RTP)

 Direct Load Control (DLC)
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Fig. 2.2. Available DR Options 

2.2.2.1. Incentive-Based Options 

Incentive-based programs are market based and give the electric utility the 

authority for appliance control. Participating customers are provided with a reward 

[11]. Examples of incentive-based programs include: 
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 Direct load control 

In a direct load control scheme, the electric utility remotely shuts down 

or adjusts residential appliances on short notice. Customers are 

provided with rebates or reduced bills for the forced load adjustments.  

 Interruptible services 

In the interruptible services approach, the electric utility provides 

flexibility to customers to adjust their loads during critical conditions. 

Curtailment options are broadcast to the customers in advance with 

appropriate retail tariffs and discounts or rebates. Customers automate 

their loads for control according to curtailment options. If the customers 

fail to curtail their loads, penalties are applied to the customers.  

 Customer demand bidding 

In customer demand bidding, an opportunity is given to residential 

customers to offer bids based on the wholesale price or an equivalent 

price signal. The electric utility selects loads based on the bids and 

remotely controls the loads of selected customers.  

 Emergency DR 

In an emergency DR scheme, customer load adjustments are conducted 

during a power shortfall and incentives are provided for affected 

customers. 

 Capacity market program 

In a capacity market program, customers offer bids according to 

possible load curtailments in the capacity market as a replacement for 

expensive generators. The electric utility selects the customers based on 

the bids and sends prior notice of curtailment. Customers automate their 

loads for control in order to match with the prior notice for curtailment. 

Penalties may apply if the customers fail to curtail their loads during the 

given time.  

 DR for ancillary services 

Unlike the capacity market program, customers in a DR for ancillary 

services scheme bid for load curtailment as operating reserves. Upon 

the acceptance of bids by the ancillary services market, offers are 
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provided to customers during selected dispatch time steps. Finally, 

loads are subjected to control based on the offers.  

2.2.2.2. Price Response Demand Options  

Price response demand options include:  

 Time of Use (TOU) Pricing 

In the time of use pricing approach, different blocks of prices are broadcast 

for different timeframes within a day. The prices reflect the average cost of 

generation and power delivery during each timeframe. 

 RTP 

RTP is a tariff scheme for customers reflecting real-time variations in 

wholesale price. The real-time price is broadcast on a day-ahead or hour-

ahead basis which helps the customers to take decisions for their optimal 

power consumption. 

 Critical peak pricing 

Critical peak pricing is a pricing scheme that combines the time of use and 

RTP techniques. During a normal day, customers are provided with a time of 

use pricing scheme. However, during a critical peak day, the customer tariff 

is switched to the RTP scheme. This reduces the likelihood of adverse 

network conditions.  

2.2.3.  Analysis of DR techniques for residential distribution system - Direct 

Load Control, RTP, HEM system and DR for ancillary services 

Among the incentive-based DR techniques, the interruptible services, 

emergency DR, customer demand bidding and capacity market programs are found 

to be the most suitable for large-scale industrial or commercial customers. These may 

not be appropriate for residential customers due to the lack of customer flexibility, 

complex bidding mechanism and unacceptable penalties. Hence, the direct load 

control is best suited for a residential distribution system. The direct load control 

technique is discussed in more detail in the next Section 2.2.3.1  
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Among the price response demand options, the RTP scheme is also a 

promising mechanism for residential customers. A more detailed discussion of RTP 

is also presented in the next Section 2.2.3.2. HEM system and DR for ancillary 

services are discussed in Section 2.2.3.3 and 2.2.3.4 respectively.  

2.2.3.1. Analysis and Argument in Recent Studies on Direct Load Control (DLC) 

To date, a considerable amount of research has been carried out on direct load 

control, with a major focus on optimizing appliance scheduling for DR. Most of the 

studies aim to eliminate system peaks, minimize system operating costs and 

maximize profit for electric utilities [20], [21]. Some of the DLC techniques are 

discussed here.  

A DLC scheme to manage a virtual power plant was proposed in [22] which 

also aimed to find the optimal control schedules of thermostatically controllable 

appliances. Residential heating/cooling is one of the major constituents of electricity 

demand from residences. Efficient thermal management of home heating 

applications with peak load shifting and consumption during low wholesale prices 

can be achieved with maximum consumer satisfaction. This scheme can also provide 

energy efficiency gains and could possibly result in energy cost savings [23].  

Savings in electricity bills can be achieved by the installation of a storage tank, 

since the air-conditioning load is shifted from the daytime to the evening discount 

period [24]. A new control structure called the group-direct load control (g-DLC) 

method was proposed to achieve minimum discomfort while implementing load 

control. The g-DLC method arranges the schedule of the air-conditioner loads being 

controlled in such a way as to maintain thermal comfort at a rational level [25].  

A vehicle-to-grid control of grid-connected plug-in electric vehicles as a direct 

load control method in the ubiquitous power grid was proposed in [26]. It is based on 

simple droop characteristics against the power system frequency at the plug-in 

terminal, considering the risks in the use of the vehicle and battery condition. This 

approach flattens the natural variability, ensuring grid-wide frequency stability, and 

suppressing the rise in voltage caused by reverse power flow [27]. These studies only 

considered particular selected appliances such as air-conditioners and electric 

vehicles. However, most house appliances have the capacity for load adjustments. 
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Hence, a detailed study which considers most residential controllable appliances is 

essential.  

Various algorithms have been proposed in formulating direct load control 

methods with the objectives of finding a dynamic programming-based solution [28] 

and a fuzzy logic-based solution [29]. In some solutions, the direct load control 

problem has also been integrated with other traditional electric utility objectives. For 

instance, direct load control is combined with unit commitment and the integrated 

problem is solved through dynamic programming [30]. Furthermore, a load control 

problem was modelled from an electric utility perspective as a profit maximization 

problem and linear programming was applied to solve it [31]. Optimization programs 

are used for the load selection process in most studies in the literature. It may be 

cumbersome to implement these schemes in real-world environments with short 

timeframes, as it may be time consuming.  

In order to solve that issue, an intelligent direct DR technique was developed 

with the primary objective of limiting peak load on the network below the rated 

value. This intelligent control system uses the instantaneous load level and not price 

as the control signal to initiate load management. It assumes that consumers are 

given an incentive to participate in the scheme. Here, plug-in electric vehicles are 

considered as just another component of the system. This holistic approach 

recognizes the potential of complex interactions to solve overload problems. The 

system employs low-cost intelligent controllers in each house as well as at the supply 

transformer [32]. The authors of [32] used a realistic system with time-varying 

appliance models and proposed a direct DR technique for peak shaving. This 

approach mitigates the overloading problem of the transformer but the voltage 

violations remain towards the end of the feeder. 

All of the above approaches considered only the prevention of overloading of 

the transformers as the main objective. However, it is observed that the voltage 

violations still exist towards the end of the feeder. Therefore, Masoum carried out an 

extensive study on DR for overload prevention and loss minimisation to achieve 

voltage control but with only the coordination of plug-in electric vehicle charging 

patterns [33]. Power quality issues for a distribution system with high penetration of 

plug-in electric vehicles during DR are also considered in [34] as an extended 
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research of [33]. Lopes proposed some strategies for load shedding for coordinated 

voltage support which is achieved through an optimisation program [35]. In both 

cases, a realistic system involving other appliances was not considered during the 

analysis. 

Hence, the present study proposes a full investigation that includes most of the 

controllable appliances in residences. An easy computation method for appliance 

selection based on benefits for both the electric utility and the customer is used with 

the primary objective of peak shaving and voltage support. In addition, a customer 

rebate scheme is also studied in detail. 

2.2.3.2. Analysis and Arguments in recent studies on RTP 

RTP is a dynamic pricing scheme which directly reflects the marginal cost variation 

of electricity production at each dispatch time interval. It efficiently bridges the link 

between the wholesale and retail electricity market by updating price signals every 

hour or less. The RTP concept was introduced by Schweppe [36]. Although RTP was 

introduced in the 1980s, implementing this concept took time due to the lack of 

building automation.  

Some pilot studies or permanent programs on RTP have been applied on large 

customers in commercial and industrial applications [37], [38]. These have not yet 

been applied on residential customers as there are some implications related to 

ensuring customers get sufficient time to respond to price changes. However, due to 

improvements in the communication infrastructure, researchers have begun to focus 

their attention on residential customers as well. Initially, a two-part RTP scheme was 

designed including a flat rate or time of use price, layered with the wholesale price 

when the consumption rises above a predefined baseline value. It allows customers to 

hedge a part of their loads above the baseline [39].   

Another study in [40], proposed an RTP scheme with inclined block rates in 

order to have balanced residential loads with a lower peak to average ratio. In that 

scheme, a price prediction filter is also used for scheduling loads on an hourly basis. 

However, the price prediction may create errors compared to real-time results. The 

authors of [41], proposed a method which provides prices not only on the power 
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consumption but also changes in consumption. This helps to resolve market 

clearance issues.   

Updating the “cycle of price” is an important aspect in defining an RTP 

scheme for electricity. The shorter the updating cycle, the more efficient are the 

required load control outcomes. However, the studies in [39]- [41] used an hourly 

cycle of price and hence the schemes proposed in those studies may not respond 

accurately to achieve the required demand reduction. 

In contrast, a pilot study by the US Department of Energy, teamed with an 

electricity service provider, tested an RTP scheme on a residential distribution 

system by providing smart equipment for each residence [42]. They succeeded in 

maintaining a cycle of price of five minutes. In another recent study, the real-time 

price was published every 15 minutes and air-conditioners were automatically 

controlled in response to price changes [43]. Research findings in [42], [43] showed 

the efficacy of the system with a shorter cycle of price. 

However, these past studies have proposed the real-time price as a 

representation of the average change in the wholesale electricity price. The direct 

application of the average wholesale price may have some adverse effects on 

residential customers. For example, wholesale price spikes may lead to unacceptable 

increases in the real-time price.  

Hence, an efficient RTP scheme is proposed in the present study to price the 

excess load consumption, voltage violation in the feeder and also a sensible 

representation of the wholesale price spike. The proposed method also has a short 

cycle of price (five minutes). It is made possible by a short simulation time for price 

and simulation for appropriate load adjustments in a house.  

2.2.3.3. Home Energy Management (HEM) Units 

A significant amount of studies have been conducted to reduce cost of energy 

consumption in a house by appropriate scheduling of appliances. They show that 

HEM unit is essential for appliance scheduling to handle the uncertain nature in RTP 

variation and appliance power consumption.  

A real-time HEM system is proposed using ‘particle swarm optimization’ and 

‘genetic algorithm’ in [44], [45]. However, authors did not consider the uncertain 
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behavior of RTP or power consumption of appliance in their algorithm. A decision 

support tool using linear programming technique is developed in [46]. An hour-

ahead price predictor to plan the energy consumption is used but it is not included in 

the appliance scheduling process. This issue is resolved by [47], [48] by using a 

predictive tool in real-time appliance scheduling process. However, a predictive 

method for HEM system may lead to erroneous results when the predicted outcomes 

do not match with the actual network conditions.  

As a solution to the above issue, a stochastic optimization to minimize the 

expected electricity payment is proposed in [49], [50] incorporating uncertainty in 

RTP via expected downside risk and price prediction noise respectively. 

Nevertheless, uncertainties in appliance power consumption pattern are not 

incorporated. Therefore, the authors of [51] develop an algorithm as a bottom up 

approach considering both uncertainties in appliance power consumption and RTP 

variation. This method considerably increases number of controls due to its 

individual appliance based control scheme and affects customer satisfaction. 

Therefore, it necessitates the need of an efficient HEM scheduler incorporating both 

uncertainties in RTP variation and appliance power consumption. An algorithm 

based on minimizing total cost of energy consumption in a house rather than 

individual appliance based optimization may effectively optimize the number of 

controls. Hence, this research focuses on a house based stochastic optimization 

scheme to achieve energy management effectively.  

2.2.3.4. DR for providing regulation services 

DR can be effectively used for regulation services as it has the capability of 

responding faster than conventional generators. Some of the studies for DR utilized 

for regulation purposes are explained here. Aggregated water heaters used to provide 

regulation services is proposed in [52] using a day-ahead forecasted model. Here, 

selection of loads is based on predicted outcomes. A detection mismatch rate of 

33.3% is observed due to its forecasted model and it may fail to provide accurate 

regulation services.   

The authors of [53] develop a deterministic minute to minute regulation service 

utilizing water heaters. Here, loads are ranked based on water heater tank 

temperature. Coordination of expected control signals are based on thermostat status 
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of previous and next time step. The authors of [53] uses appliance ON/OFF 

switching to accomplish control, whereas the authors of [54] consider temperature 

set point adjustments. However, these processes fails to predict appliance status on 

the next time step which is vital as the appliance consumption pattern and 

temperature variation are highly uncertain. In order to resolve this issue, a probability 

function for water consumption rate is taken in [55]. However, appliance selection 

method is still deterministic based on a power tracking method and did not consider 

the uncertainties in appliance power consumption. 

Hence, this research proposes a probabilistic pairwise appliance ranking 

method for selecting appliance for regulation purposes. It incorporated uncertainties 

in appliance power consumption and temperature variation.  

2.3. Summary and Implications 

The available techniques for DR in the current electricity market are applied 

for the purpose of handling network peaks and adverse feeder voltage issues. Most of 

the existing studies are based on optimization techniques to maximize electric utility 

benefits or customer satisfaction. However, optimization techniques may be time 

consuming and it may be difficult to simulate load controls within a short timeframe. 

Hence, a simplified method that considers the benefits for both the electric utility and 

the customer is required. Furthermore, most of the existing techniques consider 

particular appliances such as water-heaters, air conditioners and plug-in electric 

vehicles in the DR process. Hence, a study is required to ensure the participation of 

most of the controllable appliances in a house. Moreover, a comprehensive customer 

reward scheme for load curtailment, based on both overload prevention and voltage 

support, has not yet been studied.  

RTP is a promising option as it reflects the wholesale price variation within 

short timeframes. In most of the available RTP schemes, the real-time price reflects 

the average wholesale price. This may adversely affect the customers when there are 

unacceptable wholesale price spikes. Hence, a rational price component for RTP 

should be studied. Furthermore, in most of the available RTP schemes, the real-time 

prices are broadcast on an hourly basis. This may not reflect the actual network 

conditions and hence the scheme may not be able to achieve the required demand 
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shift. This gives rise to the need to increase the time steps of RTP broadcasting. 

Moreover, the RTP concept can be applied to prevent overload and improve voltage 

conditions in the electricity network. Therefore, an improved RTP scheme can be 

developed by considering the wholesale price variation, network peak and adverse 

voltage conditions. Such a scheme can be extended with the addition of an electric 

vehicle charging rate and feed-in tariff for PV cells.  

A HEM system helps customers to react to RTP variations efficiently. Recent 

studies on HEM systems are based on real-time techniques and do not consider the 

uncertain nature of appliance usage or RTP variation during appliance scheduling. 

Some of the available HEM systems use predictive techniques for appliance 

scheduling, which may cause errors. Hence, a fully-fledged HEM system which 

handles the uncertainty in both appliance power consumption and RTP variation 

should be studied.  

The DR technique can also be used for the provision of regulation services. 

Studies in the literature indicate the utilization of thermostatically controllable loads 

in appliances such as water-heaters and air-conditioners. The selection of these loads 

is based on real-time temperature ranking methods. This technique is only valid with 

short time step controls such as one minute. However, in the Australian ancillary 

services market, regulation services are scheduled to a five minute dispatch 

framework. Hence, there is a need for an accurate stochastic appliance ranking 

scheme to predict the appliance status in the next five minute timeframe. 
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Chapter 3  

 

Demand Response for Residential Appliances via 

Customer Reward Scheme 

 

This chapter illustrates a reward based demand response algorithm for 

residential customers to shave network peaks. Customer survey information is used 

to calculate various criteria indices reflecting their priority and flexibility. Criteria 

indices and sensitivity based house ranking is used for appropriate load selection in 

the feeder for demand response. Customer Rewards (CR) are paid based on load shift 

and voltage improvement due to load adjustment. The proposed algorithm can be 

deployed in residential distribution networks using a two-level hierarchical control 

scheme. Realistic residential load model consisting of non-controllable and 

controllable appliances is considered in this study. The effectiveness of the proposed 

demand response scheme on the annual load growth of the feeder is also 

investigated. Simulation results show that reduced peak demand, improved network 

voltage performance, and customer satisfaction can be achieved. 

3.1. Introduction and Related Work 

Concerns regarding the stability and reliability of an electricity network arise 

due to the adverse effect of peak power demand. Demand response is one way to 

deal with peak events and prevent network overloading because it provides the 

flexibility required to time shift loads [56]-[57]. It is a cost effective technique and 
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can be achieved by either price based (indirect load control) or incentive based 

(direct load control) demand response programs.  

Indirect load control or price based demand response can be achieved through 

electricity price changes which encourage customers to regulate their consumption 

patterns [58]. Real time pricing, Time Of Use (TOU) tariffs, and critical peak pricing 

can be categorized under, price based demand response where the fluctuations and 

risks in wholesale electricity prices are imposed on the end consumers [59]. The non-

residential critical peak pricing scheme is shown to reduce peak demand [60]. The 

real time pricing scheme has equity problems due to highly varying day-time and 

night-time prices [11]. Moreover, it was also found that consumers are less likely to 

make active decisions about their load on an hourly basis under the real time pricing 

scheme [61]. 

Direct Load Control (DLC) or incentive based demand response can be used by 

utilities to adjust and time shift customer load directly during network peak events 

[62]-[64]. Although incentives are provided to consumers for their participation in 

the DLC program, recent field experiences showed some resentment due to 

mandatory interruption of electricity services [65]. Few pilot studies involving peak 

time rebates were conducted in the past where a priori fixed rebate structure is used 

which neglects the actual supply-demand status [66]. A variable rebate based 

demand response was proposed recently in [67], which took into account the 

variability of customer participation and offered coupons and incentives to achieve 

peak shaving.  

None of the models considered above investigated the detailed appliance 

modeling and customer satisfaction, which is necessary for residential demand 

response. Air conditioners (ACs) were modeled and proposed to adjust the 

temperature for demand response in [68]. Similarly, the charging profile of electric 

vehicles as a load in distribution networks was considered in [69]-[71]. A real-time 

appliance scheduling scheme using time sensitivities and duty cycles of appliances 

was considered in [72]. These previous studies considered only a few selected 

appliances in the network. However, a holistic study, incorporating all major 

appliances has yet to be investigated. 
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Moreover, approaches in the literature aimed at network peak shaving via 

overload reduction completely neglected feeder voltage issues. In another study, 

Peças Lopes proposed a strategy for load shedding with coordinated voltage support 

using an optimization program [73], which was limited to a small system with few 

appliances. Optimizing the decision vector handling multi-layers of the demand 

response using customer priority criteria and satisfying both utility and consumer 

was proposed in [74]. ACs, water heaters and clothes dryers were the only 

controllable appliances considered in this study. Another attempt to bring the actual 

load consumption curve closer to the desired load consumption curve through an 

optimization process was proposed in [75], but it neglected the effect on customer 

satisfaction.  

This chapter proposes a new incentive based residential demand response using 

a Customer Rewards (CR) scheme, which not only achieves peak shaving but also 

improves the feeder voltage profile under different spatial distributions of residential 

loads. The proposed load control strategy does not depend on the cost of electricity 

consumption. Various indices reflecting customer priority, satisfaction, and 

flexibility are included in this research. Houses are ranked with a factor reflecting 

their impact on voltage due to their load. A low voltage distribution network, subject 

to real-time load adjustment, is considered in this chapter. Rewards for each 

customer are based on their willingness to participate in the scheme and are 

calculated dynamically every day.  

The chapter is organized as follows. The detailed description of demand 

response for residential appliances is proposed in Section 3.2. Specifically, the 

concept of a customer reward (CR) scheme is explained in Section 3.2.4. A critical 

assessment on the CR scheme is discussed in Section 0. The realistic residential load 

model including the distribution feeder and the corresponding results are presented in 

Section 3.4 and Section 3.5 concludes the chapter. 

3.2. CR based Demand Response for Residential Appliances 

Customer participation is usually encouraged through a detailed survey at the 

beginning of the demand response program. The information obtained is then used to 

calculate various indices to incorporate customer preferences and hence satisfaction 
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during load adjustment. These indices, including network topology, are used to 

define an appropriate load adjustment.  Customer rewards are calculated every 24 

hours based on their participation. The details are discussed below. 

3.2.1. Seeking customer preferences for demand response 

A customer survey is proposed which can be conducted in a real network while 

implementing the demand response scheme. It is expected to be conducted for all 

residential customers to obtain their inputs and preferences regarding their 

participation in the demand response programs. A sample survey or questionnaire is 

shown in Table 3.1.  

Table 3.1 Sample customer survey questionnaire 

Appliance 

Availability/ 

Priority order 

Desired Operation Region 

F1 F2 F3 

Water Heater (WH)    

Desired Tank Temperature 62 °C 1 

   Pool Pump (PP)    

Average Total operating time 8 hrs 7 

   AC- hysteresis (ACH)  

  set point of AC - 0 

   AC- inverter (ACI)     

set point of AC 24 °C 2 

   Electric Vehicle (PEV)    

battery capacity 2 kW 4 

   Dish Washer (DW)    

Average total operating time 60 min 3 

   Clothes Washer (WA)    

Average total operating time 55 min 5 

   Dryer (DR)    

Average total operating time 70 min 6 

   F1= off peak (2200hrs:0700hrs) , F2= shoulder peak (0700hrs:1600hrs, 
2000hrs:2200hrs); F3= peak hours(1600hrs:2000hrs) 
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Utilities are interested to know appliance preferences of various customers and 

their time of operation. For simplicity, the survey may divide a day into three 

separate operation regions namely F1, F2, and F3 representing off peak, shoulder 

peak, and peak hours respectively. The survey should be designed to collect 

important information such as the items listed in Table 3.2. In order to verify the 

collected data from customers, past and current appliance usage patterns can be 

carefully studied for each house. Customer priority and the flexible range of usage 

time for appliances can be extracted from the above data. Details in the customer 

questionnaire can be verified with the extracted values. Moreover, these extracted 

values can be used when the information provided is inconsistent and/or ambiguous. 

Table 3.2 Required data from customers 

Data in Customer Survey Required Instance 

Total operating time of pool pump For appliance satisfaction 
calculations 

Set point of AC and water heater 

Battery capacity of electric vehicle 

Average total operating time of dishwasher, clothes washer 
and dryer 

Ordered list of appliances that the customer likes to 
connect between 16:00-22:00 hrs (peak and shoulder peak 

time) 

For appliance priority 
calculations 

Adjustable range of time for each appliance within a day For flexibility calculations 

Customer preferences are taken into account before designing the load control 

algorithm. It is assumed in this study that each house has ten non-controllable loads 

(lighting, fridge, freezer, cooker, electric oven, microwave, television, computer, 

stand-by appliance, and miscellaneous appliance) and seven controllable loads 

(swimming pool pump, PEV, electric water heater, dish washer, clothes washer, 

dryer, and AC). They are modeled according to residential load modeling data 

provided in [76]-[77], [32]. Appliance modelling is discussed in detail in Appendix 

A.  

3.2.2. Calculation of various criteria indices from customer survey  

Information from customers is used to define various indices for appropriate 

load selection. Therefore, five criteria indices (C(i,j,k) for the k
th

 criteria index of the 
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i
th

 house and the j
th

 controllable load, C(i,j,k)  [0,1]) are proposed in this research 

work to reflect the customer’s satisfaction, flexibility, and willingness to participate 

in demand response. They are explained next. 

3.2.2.1. Appliance Priority Index (API) 

API is a user-defined value where the user (i.e., the customer) has the authority 

to order/arrange loads that should be operated per the priority of the duties. This is 

also obtained from the customer survey considering the 8-hour time span from 16:00 

to 00:00. APIij for the i
th

 house and for the j
th

 appliance can be calculated using the 

priority value (Prij) in the ordered list. This is shown in (3.1). The maximum of Prij 

represents the total available controllable appliances within that house.  
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Fig. 3.1 API of houses in phase-A of feeder 1 

Table 3.3 Priority of Appliances in House 1 

Appliance WH PP ACI PEV DW WA DR 

Priority(Pr1) 1 7 2 4 3 5 6 

API1 0.143 1 0.286 0.571 0.429 0.714 0.857 

Table 3.3 gives the order of appliances in house 1 which has 7 controllable 

appliances. It is obtained from the customer survey as in the second column of Table 

3.1. It shows that lower priority appliances, like the swimming pool have higher 
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possibility for load adjustment. Further, Fig. 3.1 shows the priority of selected 

appliances such as the washing machine, swimming pool, and water heater for 

houses in phase-A of a selected feeder. If the customer chooses to turn on the 

appliance more than once, it can be considered as an “Over-ride”. This “Over-ride” 

will change the API for that appliance to 1. 

3.2.2.2. Appliance Flexibility Index (AFI) 

AFI is a measure of the adjustable range of time of appliances and it depends 

totally on their characteristics and necessity. For example, a swimming pool pump 

can be operated at any time during a day and therefore has the maximum flexibility. 

Washer and dryer have the lowest flexibility because they can only be operated in-

between 6 p.m. to 11 p.m. This desired appliance operation time range is obtained 

from customer survey data. Each customer will specify the flexible range of time of 

his appliances in advance, according to the TOU tariff of that particular season [78]. 

Off peak (9 hrs), shoulder peak (11 hrs), or peak region (4 hrs) is selected by a 

customer for a desired operation as shown in Table 3.1. Hence, he/she determines 

his/her appliance usage pattern within a day according to a time schedule to reduce 

the cost. Here, the total available time is one day or 24 hours.  

Finally, the utility calculates the appliance flexibility index for load adjustment 

using equation (3.2). Here, the user defined data (adjustable range of time) is divided 

by the total available time within 24 hours. Table 3.4 provides the sample values of 

flexibility for each controllable appliance when customers are at home. 

)2,,(
)24(

jiC
hrstimeavailabletotal

timeofrangeadjustable
AFI ij   

(3.2) 

Table 3.4 Flexibility of appliances 

Appliances WH PP ACI PEV DW WA DR 

Adjustable time 

range (hrs) 
13 18 6 11 2 2 2 

AFI 0.542 0.75 0.25 0.458 0.083 0.083 0.083 
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3.2.2.3. Appliance Satisfaction Index (ASI) 

ASI is calculated every four minutes and indicates how close the appliance 

operating state is to its limiting state of operation. ASIs of different appliances are 

calculated as shown in Table 3.5 and used as the criteria index C(i,j,3). The current 

power level and time of operation state of each controllable appliance is used to 

calculate this index. The desired values and the set points are randomly defined 

within the program. For example, a mean value of 67°C and 25°C are chosen for set 

point of the water heater and AC, respectively, for random data generation. ASI is 

maintained close to unity. Here, Twh and Tr are water heater tank and room 

temperature respectively. Further, Twh
set

 and Twh
db

 are temperature set point and dead-

band of water heater respectively. Similarly, Tac
set

 and Tac
db

 are temperature set point 

and dead-band of AC respectively.  

Table 3.5 Calculation of ASI for different appliances 

Appliances Satisfaction 
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PEVs  

Dish Washer, Clothes Wash and Dryer  

For dish washer, clothes washer, and dryer the cycle has to be completed once 

started by the customer. If this load is delayed by utility, then it will reset and start 

again at a later time. These loads are given low AFIs and hence the least priority for 
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adjustment. ASI will help to maintain a high probability that the dish washer, clothes 

washer, and dryer will not be interrupted in the middle of a cycle via decision matrix 

values as (3.9). 

3.2.2.4. Power Similarity Index (PSI)  

PSI represents how close a load is to the required amount of total load 

adjustment and it is used as the criteria index C(i,j,4). This is calculated using (3) for 

each appliance at each instant. 

load Appliance

Adjustment Load Average Required-Load Appliance
1ijPSI  

(3.3) 

For example, in a peak day, if a transformer is overloaded by 120 kVA, then on an 

average 1 kVA is to be adjusted in each house with the assumption of 120 houses. 

This required load adjustment is compared with the rating of each appliance to 

calculate PSIij. For each house, the appliance with the highest PSI is the most 

appropriate for the adjustment. Table 3.6 illustrates how PSI is used to select a 

particular load for adjustment. If 1 kVA load were to be adjusted, then the washer 

load, which has a highest PSI of 0.9091 compared to all other loads in that house, 

should be adjusted. Whereas, if 2 kVA load were to be adjusted, then AC load (PSI is 

0.8696) should be chosen. Selection of AC for the necessary 2kVA adjustment is 

much better than the selection of any other combination of appliances which add 

approximately 2kVA power level (e.g., washer 1.1 kW and dryer 1.3 kW). Here, 2 

control commands are reduced into 1, which means the control algorithm chooses 

only one load at a step. Hence the 2 kVA load is chosen for load adjustment instead 

of two loads with 1.1 kW and 1.3 kW. This explains the effectiveness of PSI. Highest 

PSI values for each average load adjustment per house are shown as bold numbers in 

Table 3.6. 

Table 3.6 PSI calculation of house- 1 for a particular instant 

Average Load 

Adjustment 

per House 

Power Similarity Index (PSI) 

AC 

(2.3 kW) 

Water Heater 

(3.6 kW) 

Washer 

(1.1 kW) 

1kVA 0.4348 0.2778 0.9091 

2kVA 0.8696 0.5556 0.1818 
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PSI is required to select the closest and most appropriate load to be adjusted to 

eliminate overload. Use of PSI will minimize overall control commands in the 

network. 

3.2.2.5. High Power Consumption Index (HPCI) 

HPCI aims at identifying the house which is consuming the highest power at a 

time when load adjustment is required. HPCIij for i
th
 house and j

th
 appliance is 

calculated as in (3.4) and is used as the criteria index C(i,j,5). For example, if a house 

has 5 kVA of connected load and the load consumption is 5 kVA at that time, then 

HPCI is 1 at that time. At other time instants, if load consumption is 3 kVA, HPCI is 

0.6 (=3/5). HPCI is one way to socialize the load adjustment such that network 

overload is effectively mitigated. 

 
(3.4) 

3.2.3. Using house ranking and criteria indices for load adjustment  

Houses are ranked with a factor to replicate the impact of load on voltage 

violation. The random selection of house loads will result in a number of 

unnecessary load adjustments when voltage violation exists. Hence, this ranking 

mechanism is introduced for each house to avoid unnecessary load adjustment during 

voltage problems. Traditionally, the sensitivity method [79], [80] has been used for 

load ranking and can be used here to choose the most suitable house for required load 

adjustment.  

The rank for each house at each instant is calculated using the voltage 

magnitude and angle of each house from a three-phase unbalance load flow program. 

Voltage sensitivity is considered as an appropriate voltage measure in this process. 

Voltage sensitivity parameter (ρ) is the average change in the voltages of all houses 

in a feeder due to load adjustment at that house. Inverse Jacobian matrix parameters 

[81] are used to calculate the voltage sensitivity at each house. The parameter ρ of 

the i
th

 house in the p
th

 phase for a three-phase unbalanced system is derived using 

(3.5). 

networktheinnconsumptiowithloadHouse

houseiofloadTotal
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Where, np is the total of number of houses in one phase. Maximum and 

minimum values of the sensitivity parameter in each phase is calculated and used in 

(3.6) to define rank, rij
p, for the i

th
 house and the j

th
 appliance in the p

th
 phase.  

ijp

i
i

p

i
i

p

i
i

p

ip

ij er 



















)(min)(max

)(min




 (3.6) 

Where, eij is the appliance status (On/Off) signal at a particular time for the i
th

 

house and the j
th

 appliance and can be obtained from smart meters. P and Q are real 

and reactive power, respectively. Value of eij is 1 if the appliance is on at a particular 

time and 0 otherwise. 

The overall control process maintains voltage and network power levels within 

limits. Here, 0.94 p.u. and 1.06 p.u. are the minimum and maximum voltage levels, 

respectively, because +/- 6% are the Australian standards [82]. Also, network power 

limits are taken as the capacity of the transformer (chosen here as 500 kVA). Power 

flow equations used during the three-phase unbalanced load flow program is 

provided here. The derived mismatch equations for the load buses are (3.7)-(3.8). 
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Here, Gih
pm

 and Bih
pm

 are conductance and susceptance of the feeder connecting 

the i
th

 and the h
th

 house in phase p due to the effect of phase m, respectively; θi
p
 is the 

bus angle at the i
th

 house in phase p; and V is the bus voltage. The rank of each house 

is then multiplied with the decision value for the appropriate selection of load.  

Overall, the above parameters provide the decision for load adjustment. These 

indices (as discussed in Section 3.2.2) along with the appropriate rank (as discussed 

in this Section) for each house are used in decision matrix calculation. Decij, the 

decision for the i
th

 house and the j
th
 controllable load, is defined as in (3.9). 
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Where, C(i,j,k) is the criteria raking matrix for the k
th

 criteria index of the i
th

 

house and the j
th
 controllable load (C(i,j,k)  [0,1]). An efficient solution can be 

achieved with the combination of multiple criteria indices into a single criterion by 

multiplying each criterion with a positive weight and summing the weighted criteria 

[83]. For simplicity, this research considers unity weights for all five criteria. 

For the i0
th

 house in the p0
th

 phase, if ρi0 
p

0 is the minimum ρ in that phase, then 

rij
p
=0 and hence Decij=0. This means that the corresponding appliance will not be 

selected for load adjustment at that time instant. This is reasonable because at that 

time instant, the i0
th

 house is the least sensitive to the voltage violation in the feeder. 

Since the voltage sensitivity depends on house locations as well as load consumption, 

at other time instants the same house may not have the minimum sensitivity and 

hence the corresponding load can be selected for adjustment at that time. 

3.2.4. Customer reward (CR) Scheme  

CR scheme provides rebates to residential customers for their participation in 

the demand response. The proposed rebate is a function of both shifted energy and 

voltage improvement due to load adjustments as shown in (3.10). The shifted energy 

of the house is the sum of the product of all load adjustments and the respective 

waiting times. Here, waiting time is the time that is delayed by the controller to re-

connect the appliance to the system. The effective change in voltage within the 

network due to a particular load adjustment is taken as the ratio of voltage deviation 

of the i
th

 house to the voltage improvement from the lower limit. 














 















































Nadj

l

Nv

i
m

l

l

l

l
Nadj

l

l

i

i

m

m

i

i

E

E

f

V

V

V

V

1 11 lim
lim,lim,

*1exp*

)timprovemenvoltage,energyshifted(Rebate



 

(3.10) 

 Here, Rebatei is the rebate in $ for a given day of i
th

 house; Ei
l
 is the shifted 

energy for the i
th

 house measured at the l
th

 load adjustment; Elim is the limit of 

maximum shifted energy (chosen to be 12kWhr in this case); ∆Vi
l
 is the voltage 

deviation in p.u. and ∆Vi,lim
l
 is the voltage improvement (from lower limit of 0.94) in 

p.u of the i
th

 house measured at the l
th

 load adjustment; Nadj is the total number of 
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load adjustments per day for the i
th

 house; Nv is the number of houses with voltage 

violations in the same feeder as the i
th

 house; α and β are cost coefficients for shifted 

energy and voltage improvement chosen here as 20 and 1, respectively. Evaluation of 

cost coefficient α and β is shown in Section 3.3.2.  

An exponential function for shifted energy is chosen to provide increased 

benefit to customers who are willing to participate in load adjustments for a longer 

time. The rebate for voltage improvement due to load adjustment of a house has two 

components, i.e., one resulting in the voltage improvement of that particular house 

whose load is adjusted and the second being the improvement in voltage profile in all 

other houses down the feeder. This is important since load adjustment in the house 

which happens to be at the beginning of the feeder would inadvertently improve the 

voltage of other houses down the feeder and therefore should be rewarded 

accordingly. In particular, each house will be benefitted by the load adjustment at the 

end of the day with rebates. 

3.2.5. Implementation and operation of load control algorithm 

The sample load control process of CR scheme is shown in Fig. 3.2 and Fig. 

3.3. As shown in Fig. 3.2, the signal from the smart meters is received every four 

minutes. Data processing and identification of load adjustments are achieved offline 

in 2 minutes and then signals are sent for load adjustment. 

t=0 t=4

t=2

Ranking of houses and 

decision making for load 

curtailment

IN signal Voltage and 

power measurements

OUT signal sent for 

voltage improvement via 

load adjustment

t=16

t=14 t=18

 

Fig. 3.2 Time schematic of the load control process 

Communication network like WiMAX has a bit rate in between 5-25 Mbps 

where it has a tendency to vary with distance [84]. Also, 900 MHz system and 

ZigBee network have a bit rate of 20 and 250 kbps, respectively. Hence, it takes less 

than a second for signal transfer. Further, the data process time calculated in our 

program is roughly 10-15 seconds for 120 customers. Here, a two minutes time 
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frame is selected as a reasonable time for data collection and processing and another 

2 minutes for sending back data and load curtailment. Hence, load curtailment 

happens every 4 minutes. The 4-minute time window is chosen in this research to 

make it roughly aligned with the DMS updates, which usually occur every tens of 

seconds to a few minutes. 

From time t=0 minute, at each instant t=t1, signals from the primary controllers 

(smart meters) are received by a secondary controller. Received appliance state and 

power data are used in the load flow program to calculate voltage at each house. 

Total network power and voltage at each house are checked to insure that they are 

kept within standard limits. The above measurement and data processing occurs 

every 2 minutes. 

Offline load flow studies are performed to obtain the appropriate load 

adjustments in the case that the power level and/or voltage at each house are violated.  

The offline load flow block is an iterative process that selects multiple sets of 

loads for adjustment in that time step as summarized in Fig. 3.3. The criteria indices 

and rankings and hence decision value (Decij) are calculated for each iteration. The 

maximum value of Decij is used to find the corresponding j0 
th

 load of the i0
th

 house 

for load adjustment. The power and voltages are recalculated after this load is 

adjusted in the offline load flow program. If violations exist, another load is selected 

for adjustment by recalculating the updated criteria indices and decision values. This 

process is repeated until violations are removed. At the end of the “offline selection 

of load” block, multiple sets of appliances that need to be adjusted are identified to 

keep the voltage and power within limits. 

All the selected appliances for adjustments are saved and signals are sent at 

t=t+2 minutes to relevant smart meters. If loads are adjustable (such as AC and 

water heater loads), then the AC set point is increased by 1 °C and the water heater 

set point is decreased by 1 °C for 15 minutes. Whereas, the non-adjustable loads are 

switched off for 4 minutes. The process is repeated for the whole day and after 24 

hours. Rebates to the customer are calculated as per (3.10). Set point adjustments 

would result in the reduction of power consumption, which will be used along with 

associated waiting time to calculate the shifted power. Fig. 3.3 summarizes the load 

control process with CR scheme for a particular day. 
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Yes
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Fig. 3.3 Load control process with CR scheme for a particular day  
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Most of the appliances that do turn ON, run for a certain time as a constant 

power load and then turn OFF. This defines a discrete event. Once the control signal 

for adjustment is sent for certain loads, such as hysteresis type ACs, inverter type 

ACs, and water heaters, another signal is not sent for the next 15 minutes. For 

example, at time instant t=2, the control signal is sent for adjusting the water heater 

of House#4 (say). Once the measurements are obtained at t=4, the decision matrix is 

calculated as per (3.9), and the control signals are sent again at t=6 for another set of 

load adjustment. This signal would not adjust the water heater of House#4 until after 

t=16, where the measurements are taken again. The decision matrix is again 

calculated at t=16 and if the water heater is required to be adjusted, then the signal 

would contain a message to adjust the water heater of House#4 at t=18 (as illustrated 

in Fig. 3.2).  

3.3. Critical Assessment of CR Scheme 

This section critically assesses various aspects of the demand response and 

evaluates the necessity of indices, CR, and challenges in the implementation of the 

proposed scheme. 

3.3.1. Significance of indices in control scheme 

As discussed in the previous section, customer information is used to define 

five indices for effective load control. Here, each index is critically evaluated to 

justify its necessity in the load adjustment algorithm. 

A single-phase five-house radial network is considered for this purpose. 

Impedance of a single phase line is considered as the data presented in Appendix B 

Table B.1, where the similar value is maintained in each line [85]. All houses are 

assumed to have seven similar controllable appliances. Initially, two different 

decision processes are analyzed; one with API and the other without API. As shown 

in Fig. 3.4, customer priority deviates more if API is not considered during decision 

making. That is, appliances with higher customer priority are also selected for 

adjustment. 

Further, the average selection of loads for 30 random days is observed. The 

selection of loads deviates from the reference API values as in Fig. 3.5 (a), violating 

customer preferences. A similar study is done using AFI and results are shown in 
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Fig. 3.5 (b). Hence, these indices are important in maintaining customer preferences. 

Here, all houses are assumed to have the same reference values for API and AFI. 

Also, ranks of houses are kept constant. Actual API and AFI are calculated based on 

the number of controls within the day without API and AFI in decision process. 

Appliance selection deviates from the customer specified value if these indices are 

removed from the decision process. 

 

Fig. 3.4 API during each control (a) without (b) with API in decision process 

 

Fig. 3.5 Error in (a) API (b) AFI when API (or AFI) is considered or not 

Moreover, ASI is significant because it reduces the selection of appliances 

which are in the middle of operation. An experiment with and without ASI during 

decision process is conducted for 30 days and results are compared. The percentage 

of appliances such as washing machines, dish washers, and dryers interrupted in the 

middle of operation is 2-5% whereas it is 12.5% without ASI. Hence, it prevents 

these appliances from being interrupted in the middle of their operation cycle.  

The significance of PSI is analyzed in a case study with and without PSI. It is 

observed that controls reduce from 39 to 32 in a significant day. On an average 15-

25% of controls are reduced by the use of PSI. Hence PSI is an effective factor in the 

decision process. HPCI is important in selecting house with maximum consumption 
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that lead to network problems. It provides benefits to the customers who have an 

average consumption schedule and do not considerably violate the network. If HPCI 

is not included in decision process, a house with maximum consumption is likely to 

be selected only 20-30% of the time. This shows that each criteria index is 

complementary and necessary for effective load adjustment. 

3.3.2. Evaluation of cost coefficients for CR 

Annual supply and demand curves are used to find cost coefficients of the 

rebate function in (3.10). The supply curve is dependent on the marginal operating 

costs of various generators in the electricity market. The demand curve changes 

according to the consumption pattern of customers. These curves can be obtained 

from utilities and market operators and have daily (peak and off peak) as well as 

seasonal (summer and winter) variations [86]. For simplicity, the monotonically 

decreasing demand curve and monotonically increasing supply curve, as shown in 

Fig. 3.6, are considered for the calculation of α and β. 

S2(E)

S1(E)

Price ($/MWh)

Energy (MWh)E1 E2

∏avg

DPK

DOP

S1(E)- Annual supply curve/ Marginal production cost

S2(E)- Annual supply curve exercising market power

DPK- Annual demand curve during peak period

DOP- Annual demand curve during off peak period

DDR- Anual demand curve with demand response

A1

X
X X
XX

X X
X
XX

XX
XX

XXXXX

D

C
A B

DDR

O
E3

F

A2

G

 

Fig. 3.6 Supply and demand curve with and without CR scheme 

During off-peak time, demand is lower and is represented by the curve DOP, 

whereas the increase in demand at peak time can be shown by curve DPK. For a 
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constant tariff (flat rate), the price is fixed at Пavg and therefore the market during 

off-peak time operates at point A for quantity demanded E1. The increase in demand 

causes a shortage of supply, which leads to an increase in price. Due to the increased 

price, the utility will increase the quantity of supply from point G to point D, as 

shown in Fig. 3.6, to cater to the increase in quantity demanded from E1 to E2. 

However, due to flat rate, the market operates at point B. The demand response will 

reduce the demand and shift the demand curve to the left, which can be represented 

as DDR [87]. At the same time, the supply price increases and shifts the supply curve 

to S2. This is because the suppliers are provided with reduced incentives to exercise 

market power [88]. Finally, the market operates at point C after demand response 

achieves the reduction from E2 to E3. 

The cost of supply due to demand response is reduced and it is the difference 

between ODE2 (area under the supply curve S1) and OFE3 (area under supply curve 

S2). For simplicity, it can be represented as (A1-A2) as shown in Fig. 3.6.  

Energy values E1, E2, and E3 are found using annual supply curves mapped to 

the intersection of demand curves with a fixed price. A1 and A2 are found after the 

computation of E2 and E3, respectively. 

The total rebate in the network for a day should be less than the reduction in 

cost of supply due to demand response. Hence, the total rebate for the network, 

Rebatetotal, that can be offered by the utilities to their customers should be less than 

the cost savings because of demand response. That is, (A1-A2) should satisfy (3.11). 

    21..* AARebateandVENRebate total

avg

imp

avg

shifttotal    
(3.11) 

Here, N is the number of houses in the network. Eshift
avg

 and ΔVimp
avg 

are 

components related to the average shift in energy and voltage improvement that is 

calculated from offline load flow studies using the annual demand and supply curves. 

For example, if a 500kVA network is overloaded by 150 kVA, then E2 and E3 

are 650 kVA and 500 kVA, respectively. The reduction in cost, i.e., (A1-A2), is $100 

using a sample supply curves from [89]. Eshift
avg

 and ΔVimp
avg

 are found to be 0.041 

and 2.0, respectively, for an average house using offline load flow studies. If β is 

kept at 1.0, the value of α is found to be 20 to satisfy (3.11). Note that the utility can 

choose appropriate values of α and β to incentivize the increase of customer 
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participation. This depends on the network layout, the number of customers, and the 

existing tariff. The rebate pattern can be changed by the utility for every quarter of 

the year to accommodate seasonal load changes. 

3.3.3. Customer rewards  

A single-phase five-house model is considered to evaluate rebate calculations. 

For simplicity, houses are assumed to have similar appliances of 1 kVA each. The 

power consumption profile in each house is assumed to be the same. API and AFI 

are fixed in every house as in Table 3.3 and Table 3.4.  

A rebate for each house is calculated every 24 hours by the utility to provide 

benefit to the customers as discussed in Section 3.2.4. The results obtained for 5 

houses are tabulated in Table 3.7. H2 pool pump (#2) and electric vehicle (#5) are 

adjusted for 12 minutes and for 4 minutes with 1 kW of shifted power, respectively. 

Hence, the rebate for the total shifted energy and the voltage improvement is $0.45 

and $0.51, respectively. So, H2 will get a total rebate of $0.96 ($0.45+$0.51). It 

shows an increased rebate towards the end of the feeder in case 1. Customers towards 

the end of the feeder will be benefitted with an increased rebate due to more load 

adjustments. Here, the total rebate paid by the utility to all five houses is $9.99. It is 

interesting to note that H1, at the beginning of the feeder, has fewer rebates for 

voltage improvement than H5 at the end of the feeder. H5 will have significant effect 

on the feeder voltage due to load adjustment and, hence, will have a higher rebate 

component for voltage improvement than the corresponding energy component. 

Scenarios with traditional demand response (no rebates) and CR scheme are 

compared for Australian residential tariff 11, which is 0.25 $/kWhr [90]. The cost of 

consumption is calculated based on the price of electricity and energy consumed 

every hour. Table 3.8 shows the cost of electricity for a few selected customers for a 

peak day. For instance, with constant tariff, the consumption cost of H1 is $10.45. 

If H1 participates in the traditional demand response, the cost is reduced to 

$9.85, due to reduced or delayed load consumption on that peak day. In the absence 

of any rebates the customer is not rewarded for their participation in load adjustment. 

With the proposed CR scheme, the rebate obtained due to load adjustment of H1 is 

$0.52 ($9.85 -$9.33=$0.52). Hence, H1 will pay only $9.33. Note that the rebate 
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increases towards the end of the feeder due to significant voltage improvement 

component. 

3.3.4. Implementation and operations of CR scheme 

A two-level hierarchical control scheme is proposed for demand response in 

the residential distribution feeder. The primary control level is used to regulate the 

feeder voltage within an acceptable range and the secondary control level is 

conceived to prevent respective transformer overload. The primary controllers (smart 

meters) are installed at each house to collect power consumption data and 

communicate with the secondary controllers installed at the transformer.  

Each appliance in the house has appliance units (AU) and communicates usage 

characteristic data at each time interval. AUs collect data from other AUs and then 

transmit and receive data from central smart meter via WiFi or ZigBee. It has a 

customer override button in case of any emergency operations. A simple block 

diagram shows a smart meter as in Fig. 3.7. This system will allow customers to have 

an efficient and economical electric system. Signals obtained from smart meters 

include ON/OFF time, power rating, and the power level of the appliances. This is 

feasible for houses equipped with smart meters. The role of the secondary controller 

is to maintain all the transformer loads below their rated values, while minimizing 

the negative impacts on the customer side. All controllers have low bandwidth and 

two way communication capabilities. 

AU1 AU2 AU3

Smart 

Meter
Display Unit

AU- Appliance Unit

 

Fig. 3.7 A smart meter at each house connected with appliances 
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Table 3.7 Detailed Calculation of Rebate for 5 Houses in one feeder 

House 

No# 

Appliance No #* 

(Power(kW),Time(

min)) 

Energy 

Shift,  

Ei 

(kWhr) 

Rebate for shifted 

Energy ($) 

 

Component of Voltage 

improvement of that house 

(p.u.) 

 

Component of Voltage 

improvement of other houses(p.u.) 

 

Rebate for 

voltage 

improveme

nt  

($) 

Total Rebate 

Rebatei  

($) 

1 2(1,12) 0.2 0.34 0 0.18 0.18 0.52 

2 2(1,12),5(1,4) 0.27 0.45 0 0.51 0.51 0.96 

3 2(1,20),5(1,12),7(1,4) 0.47 0.79 0 0.82 0.82 1.61 

4 2(1,20),5(1,12),7(1,4) 0.60 1.03 0.71 1.41 2.12 3.15 

5 2(1,8),4(1,28),5(1,8) 0.73 1.26 0.82 1.67 2.49 3.73 

*Appliance No #1-Water heater; #2-swimming pool pump, #3-hysteresis type AC, #4-inverter type AC, #5-Electric Vehicle, #6-Dish Washer, #7-Clothes Washer, #8- Dryer . 

Table 3.8 Cost of electricity consumption in a peak day for few houses 

House No# 
Without Demand Response  

($) 

With Traditional Demand Response 

(no rebates) ($) 

With CR Scheme 

($) 

H1 10.45 9.85 9.33 

H2 10.45 9.64 8.68 

H3 10.45 9.04 7.43 

H4 10.45 8.65 5.5 

H5 10.45 8.26 4.51 
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Programmable Logic Controllers (PLC) can be used for this purpose which has 

the many more advantages. PLC is cost effective for complex control systems and 

flexible which can be reapplied to control other parameters in future. Further, it has 

computation ability to allow more sophisticated control. Trouble shooting aids with 

reliable components in PLC helps it for long lasting applications. It can mainly 

contain inbuilt Ethernet cards, RS232 ports for hardware links, good memory and I/O 

(analogue and digital) cards for complex programming.  

Although the transient effect can be important during the demand response, 

voltages and currents transients caused by load change may last for no more than 50 

and 20 milliseconds, respectively. In the 4 minute timeframe for load adjustment, this 

effect is not considered at this stage.  

The step by step load control process, as discussed in the load control section 

above, is more efficient because it removes the rebound effect from the decision of 

which loads are to be curtailed. It also provides an appropriate control of power and 

voltage as it constantly checks for violation during the offline process. 

3.3.5. Scalability 

This decision process can be separated for subsystems (For example, each 500 

kVA network). Load curtailment can be made separately for each subsystem when it 

is subject to overloads or voltage violations. This is made possible by having a main 

controller at each transformer level which has access to relevant smart meters in the 

houses. Hence, it can be deployed at a range of scales in small and large 

configurations easily. Data processing can be done in parallel for each system and 

therefore the time consumed in processing data is minimal. 

3.3.6. Prevention from customers misusing this scheme 

Possible gaming can be avoided by restricting customer load switching by 

introducing an override command. This will dynamically change the API to 1 for that 

load and therefore it will not be selected for adjustment for the rest of the day. If a 

customer chooses to operate a particular load more than two times in the peak period, 

then the information is send back to the utility as an override and rebate would not be 

paid for that load shift. 



51 

 

3.4. Case Study 

Implementation of this control scheme for DLC for residential customers is 

shown in Fig. 3.8. The 11kV/415V, 500 kVA transformers have four feeders. Each 

feeder contains 30 houses evenly divided per phase. There are eight 11kV/ 415V 

transformers with controllers further controlled by the controller of a 33kV/ 11kV, 4 

MVA transformers. Again, there will be six 33kV/11kV transformers which will be 

controlled by the controller of a 132kV/ 33kV, 24 MVA transformer at sub-

transmission level. 

10 houses per phase

24 MVA- 132/33 kV

4MVA- 33/11 

kV- 6 Nos.

500 kVA- 11kV/415 V- 

8 Nos

Appliance Unit

Legend

Power line

Communication path

Feeder level controller

Transformer main controller

Smart meter

4 feeders

3 phases

 

Fig. 3.8 Hierarchical control scheme for CR based Demand response 



52 

 

 

An indoor thermal model for a house is used which affects the power 

consumed by ACs, ambient temperature [91], and the floor area of each house. Each 

appliance contains a mean power rating and a time usage pattern which closely suits 

the real system.  

A climate model is used to vary the temperature and it is linked with the time 

usage pattern of individual appliances. Transformer and other switch gear ratings are 

chosen to meet the aforementioned requirement. Further, every house is assigned 

with a floor area corresponding to the Australian 2008 new house data [92] which is 

used for the calculation of appliance loads. In order to create a realistic system, 90% 

of the houses are considered as unoccupied during week days (8am to 5pm) where 

most of the appliances will be unused as people are assumed to be at work. 

Simulations in all models maintain a fixed time step of 2 minutes of a user-defined 

interval to generate regular events. Network and transformer loads are calculated 

based on the algebraic sum of active and reactive loads. 

3.4.1. Impact on feeder voltage and transformer overload 

The voltage profile of a selected three-phase feeder with and without the 

proposed control scheme is shown in Fig. 3.9. Improvement in voltage profile is 

apparent, especially towards the end of the line at each phase. Similar improvement 

is observed in other feeders as well. 

 

Fig. 3.9 The voltage profile of the residential feeder at peak time (1940 hrs) 
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Fig. 3.10 Loading of 500kVA transformer without and with controller 

 

Fig. 3.11 Voltage profile at the end bus of feeder- 1 without and with control 

Furthermore, the network loading level is observed via the 500 kVA 

transformer for a 48-hour period and is shown in Fig. 3.10. The transformer is 

overloaded by approximately 50% for a 2-hour period without any control scheme. 

The proposed voltage controller is able to relieve the transformer overloading. 

Transformer overloading can still be avoided with the implementation of a simple 

overload (power) controller, as shown in Fig. 3.10. 

A simple overload (power) controller uses the same load control process (as in 

Fig. 3.2 and Fig. 3.3) except for the limitations in voltage. Therefore, voltages in the 

network are not monitored and/or controlled. Fig. 3.11 reveals the effect of the 
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proposed voltage controller over the simple overload (power) controller. When the 

voltage profile towards the feeder end is analyzed, the proposed voltage controller 

performance can be appreciated during peak hours, i.e., hours 18 and 42, as shown in 

Fig. 3.11. Thus, this illustrates the importance of the proposed control scheme in 

eliminating voltage violations. 

3.4.2. Power loss reduction in the network 

This control scheme automatically results in loss. As an added advantage, 

network loss calculations were done along with the load flow study and the loss is 

again added instantaneously with the total load during the control action. The 

observed losses during the peak hour were 26.8 kW and 14.8 kW with and without 

the controller. Hence it considerably reduces the losses and creates an efficient 

system. The losses with and without the control scheme is depicted in Fig. 3.12. 

 

Fig. 3.12 The active power loss of the network with and without control 

3.4.3. Effect on customer loads and its impact on ASI 

The performance of this control scheme on the customer side is investigated by 

observing the effect on the operation of a few critical controllable loads. Fig. 3.13 

shows the waveform of the charging states, reflected by ASI, of three selected PEVs 

in the network. It shows that the PEVs are being charged after arriving home (hour 

18) and it achieves 100% charging by midnight. Small flat line segments in the graph 
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Inverter-based ACs and water heaters are large adjustable loads where the set 

points of room temperature and the water tank temperature can be adjusted during 

the control action. ASI values of three selected ACs are shown in Fig. 3.14. The 

controller increases the temperature by 1ºC during each control action and is re-

adjusted (if required) after 15 minutes. The sudden variation of the temperature set 

point of a selected inverter type AC in phase- A during the control action is shown in 

Fig. 3.15.  

Considerable satisfaction, in terms of ASI for AC loads, is achieved. ASI of 

water heater and the tank temperature set point variation are shown in Fig. 3.16 and 

Fig. 3.17, respectively. Similar behavior is observed for all controllable loads in the 

network which confirms that the control scheme does not affect ASI adversely. 

 

Fig. 3.13 ASI of 3 selected PEVs in phase- A of feeder 1 

 

Fig. 3.14 ASI of Inverter type Air Conditioners in phase- A of feeder 1 
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Fig. 3.15 Set point variation of inverter type AC in house 2, 4,7 (phase A) 

 

Fig. 3.16 ASI of a water heater in House 7 of Phase- A of feeder 1 

 

Fig. 3.17 Set point and actual tank temperature variation of a WH in House 7 
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3.4.4. Robustness of CR scheme under increasing PEV penetration 

The robustness of this control scheme is tested by increasing the penetration of 

PEVs in the distribution feeder. System with low (25%), medium (40%) and high 

(75%) penetration of PEVs is simulated in the LV network. The results are shown in 

Fig. 3.18. Voltage dip is very high without control. Using control scheme, the 

voltage profile is drastically improved. 

 

Fig. 3.18 Voltage profile at the end- bus at phase- C with and without control 
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3.4.5. Effectiveness of this scheme on overloading due to load growth 

An annual peak demand growth of 4.36% [93] is assumed and CR scheme is 

tested on the 500 kVA network. The system loading level and ASI of appliances are 

observed for the next 15 years. Simulation results can be summarized using Fig. 

3.19. ASI of two selected appliances drops below the acceptable limit of 0.9, when 

the increase in peak demand reaches 299 kVA. Later, the system overloads and then 

diverges (i.e. divergence of power flow solver) when peak power increase beyond 

300 kVA. Therefore, the proposed demand response scheme can effectively shave 

the network peak for almost eleven years (500×1.0436
11

500+299), before the 

transformer needs to be upgraded. The proposed control scheme allows a peak 

increase of 299 kVA, without worsening ASI and protecting the network from 

overload and voltage violations. 

 

Fig. 3.19 Appliance Satisfaction Index verses increased peak demand 

3.5. Summary and Conclusion 

Demand response for a residential distribution system using a Customer 

Reward (CR) scheme is proposed in this research work. CR deploys two-level 
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regulate the feeder voltage within an acceptable range and the secondary controller to 

prevent transformer overload. Various indices reflecting a customer’s flexibility and 

satisfaction for controllable loads are modeled to obtain decision matrix for load 

adjustment. Customer engagement is encouraged through the reward mechanism. 
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usage patterns are investigated. Customers are rewarded based on their participation 

for load shifting and associated voltage improvement in the feeder. The proposed 

demand response via CR scheme can effectively shave the network peak for several 

years, before the feeder transformer needs to be upgraded. 
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Chapter 4  

 

A Novel Real-Time Pricing Scheme for Demand 

Response in Residential Distribution Systems 

 

Price based technique is one way to handle increase in peak demand and deal 

with voltage violations in residential distribution systems. This chapter proposes an 

improved real-time pricing scheme for residential customers with demand response 

option. Smart meters and in-home display units are used to broadcast the price and 

appropriate load adjustment signals. Customers are given an opportunity to respond 

to the signals and adjust the loads. This scheme helps distribution companies to deal 

with overloading problems and voltage issues in a more efficient way. Also, 

variations in wholesale electricity prices are passed on to electricity customers to 

take collective measure to reduce network peak demand. It provides customers to 

make their own choices during appliance adjustments comparing to Direct Load 

Control (DLC) technique in Chapter 3. It is ensures that customers and utility benefit 

by this scheme. 

4.1. Introduction and Related Work 

Increase in network peak demand, leading to overloading and poor voltage 

profile is one of the major problems faced by the present electricity distribution 

system operators. Direct Load Control (DLC) approach has been used to curtail the 

customer loads and avoid network overload [94]-[97]. Another option is the Price 

Response Demand (PRD) scheme, where the customers will be adversely affected by 
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high price signals during peak hours due to high power consumption. PRD allows 

customers to participate in this scheme by shedding their loads to reduce the energy 

consumption cost [98]. 

Several cost functions are introduced to support PRD including hourly pricing, 

daily pricing, fixed Time Of Use (TOU) pricing [99] and seasonal flat pricing. 

Special provisions for electric vehicle charging rate and rates related to distributed 

generation are also introduced [100]. Fig. 4.1 summarizes the various schemes 

available under PRD. 

AVAILABLE PRICING SCHEMES

HOURLY PRICING DAILY PRICING Seasonal Flat Pricing

Basic hourly pricing

Block and index pricing

Two part RTP

Unbundled RTP with self 

selected base line load

Daily TOU

Variable peak rebate

CPP

Variable CPP

CPP linked to standard 

tariff and peak day rebate

Fixed TOU

(Monthly/Quarterly/Yearly)

Others

Rates related to 

distributed generation

Electric vehicle 

charging rate

Incentives for economic DGs

Sell- back rate

Stand- by rates
 

Fig. 4.1 The Available retail pricing scheme 

Hourly pricing scheme defines retail energy prices reflecting the variation in 

the wholesale market every hour and is applied mostly on large customers. In 

contrast to the hourly pricing, daily pricing has various fixed blocks of prices while 

keeping at least one block price variable within a day. The variation in price is 

announced on day-ahead or hour-ahead basis [101]. Further, pricing periods are 

defined according to time of day, day of week or season and they are fixed and 

announced monthly in advance in TOU tariff. However, the defined prices are 

inflexible [102]. The seasonal flat pricing has a fixed value for a season and varies 

for different seasons. The price represents the average difference between the power 

costs in relevant season and is announced one month in advance [103]. In addition, 
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Critical Peak Price (CPP) and peak day rebate programs provide price signals to 

consumers reflecting wholesale prices only on critical peak day and the fixed 

standard tariff is used in the rest of the days [104].  

The above methods have their own pros and cons. For instance the hourly 

pricing scheme has fixed blocks of prices which are inflexible and does not reflect 

the actual demand. TOU price does not provide incentives for critical days with 

actual power system conditions and unusual wholesale prices. Flat seasonal rates are 

the average of low and high cost of energy within a season and hence do not reflect 

the actual demand variation. CPP and peak day rebate rates have some implications 

on energy providers and customers. Customers have less risk on peak day rebate than 

facing unpredictable high price during CPP. But billing under CPP is much easier 

than peak day rebate for the energy providers [100]. 

A Real-Time Pricing (RTP) is introduced in [105] where price is calculated 

based on previous demand and then any deviation from actual consumption after a 

time step is reimbursed. Due to predicted price components, this pricing scheme may 

not be suitable for a system with more uncertainties and information asymmetry. 

However, RTP proposed in our research work has price components with 

instantaneous data analysis and hence accurately provide price information. The 

authors of [106] propose a new RTP to reduce peak to average load ratio. It is based 

on a two stage optimization technique, considering both customers to maximize 

payoff and retailers to maximize their profit. Another study proposes an optimal and 

automatic energy consumption scheduling of residences to minimize both electricity 

price and waiting time of appliances. Here, the RTP with inclined block rates are 

used [107]. However instantaneous optimization may consume more simulation time 

for decision making. However, method proposed in our research work has 

comparatively less data processing time due to simple calculations. It also considers 

not only excess load consumption but also voltage violations and wholesale price 

spikes while defining price unlike in other studies mentioned above. 

Overall, this part of the research work proposes a new pricing scheme 

reflecting the actual load consumption of a residential customer, the wholesale price 

of the network and voltage violations in the network. Section 4.2 describes the new 

pricing scheme and Section 4.3 proposes the actual implementation of it. Section 4.4 
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describes the algorithm proposed for in-home display of customer’s loads that would 

be beneficial to reduce the electricity consumption cost. Finally, Section 4.5 shows 

the results of a sample system due to the proposed scheme and illustrates the impact 

of this scheme to the customers, followed by conclusions. 

4.2. The Novel Real-Time Pricing Scheme 

The proposed price function for a house has three components reflecting actual 

load consumption, transformer overloading, voltage violations created in the network 

and wholesale electricity price of the retailer as in (4.1) and shown in Fig. 4.2. The 

price value (Пi

t
) is updated every five minutes and is available through smart meters. 
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Fig. 4.2 Three price components of proposed pricing scheme 

4.2.1. Price component for actual load consumption (П1i
t
) 

This price component has a factor of energy consumed when the network is not 

overloaded (This component is similar to stand alone electricity charge [109]) and 

has an added exponential component during overload situation. This first price 

component can be written as in (4.2) for i
th
 house at t

th
 time. 
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where Ei

t
 is the energy consumption of i

th
 house during t

th
 time (5 minute 

interval); Ei lim is the energy limit for i
th

 house and is taken as 0.3472 kWh (4.166x 

5/60); L and Lcapacity is the kVA loading and capacity of the network respectively; α1 

and α2 are cost coefficients, which can be decided by retailers and are taken as 5 and 

1 respectively. 

For example, for an overloaded network having a capacity of 500 kVA 

(Lcapacity) and 120 houses, customers who consume more than the average maximum 

house limit of 4.166 kVA (i.e. 500 kVA/120) should be penalized. Therefore, this 

price scheme helps utility to penalize customers who consume above the threshold of 

4.166 kVA, when the network is overloaded above the limit of 500 kVA using an 

exponential function for the price component. 

  

Fig. 4.3 First price components verses energy consumption 

Fig. 4.3 shows the variation of proposed first price component П1i
t
 , with the 

increase in energy consumption. It shows that a linear cost profile is maintained until 

the network capacity (Lcapacity) is not exceeded. Once, the network capacity (Lcapacity) 

exceeds the limit, the exponential cost is added along with the linear cost profile 

which is subjected to the extra energy that is consumed above the energy 

consumption limit (Ei lim) of i
th
 house.  

4.2.2. Price component for Voltage Violation (П2i
t
) 

The houses towards the end of the feeder experience voltage violations even 

when their loading is within limits. Hence, this pricing component is added for those 

houses that create voltage violations in the feeder. Voltage Sensitivity (ρ) parameter 
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is used, which eliminates the risk of compensating the houses towards the end of the 

feeder by correctly choosing a pricing scheme. ρ is a sum of voltage deviations in all 

houses within one phase due to a particular load adjustment for i
th

 house. This is 

more realistic than the measure of voltage violation, because it exactly identifies the 

impact of load change on voltage. This price measure can be written as in (4.3). 
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(4.3) 

 

where Np is the number of houses in a phase of particular feeder; γ is a cost 

coefficient (chosen as 10 in this study); Vj is the voltage of j
th

 house having voltage 

violation in the same phase. 

4.2.3. Price component for reflection of wholesale price (П3i
t
) 

Wholesale price depends on the electricity market competition and congestion 

in the transmission network and is decided by transmission grid operators. Retailers 

observe the variations in the wholesale price and can choose to pass on this to the 

residential customers. For a peak day, increase in the wholesale prices from the 

baseline price (ПBL) can be passed on to the customers as per (4.4). It is noteworthy 

that this price is only applicable during critical peak days. The day-ahead or hour-

ahead dispatch forecast (П
t
wholesale) is used to calculate this price component. 
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(4.4) 

where β is cost coefficient and is taken as 0.001; Eiavg is average house hold 

consumption chosen to be 1.5 kVA times five minute for all houses. When the 

wholesale price goes above ПBL, the customers who consume more than the average 

value Ei avg will be affected by the increase in price. In this study, ПBL is chosen as 

100 $/MWh. 

Fig. 4.4 shows the variation of proposed third price component with the 

increase in energy consumption. Energy cost variation with four different electricity 

wholesale prices of 100, 110, 120 and 130 $/MWh is analysed. i
th
 house consuming 

more than the average consumption (Ei avg) is given with the third price value when 

the wholesale price (П
t
wholesale) exceeds above the baseline value (ПBL). 
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Fig. 4.4 Third price components verses energy consumption 

Overall, the utility benefits when the customers willingly participate in this 

scheme by preventing overloads and voltage violations and also the risk due to 

critical day wholesale prices. Risk in the network is avoided so that a reduced price 

will be provided to the customers. The customers who are not willing to take part in 

this program considerably violate the network conditions and hence should pay a 

higher price due to the risk in the network. Therefore, this pricing scheme doesn’t 

need another risk premium on pricing and it is advantageous for both customers and 

utility. 

4.3. Practical Implementation of this Scheme 

Advanced metering infrastructure having two ways communication capabilities 

can be used to implement the algorithm presented in Section 4.4. The voltage and 

power data from smart meters is sent in five minute intervals to the main controller 

and the calculated price signals and appliance indication details are sent back to 

smart meters located at each house. The communication capability of the network 

can be shown as in Fig. 4.5. 

Collective points with low cost air interface (ZigBee) are much more feasible 

because it reduces the expensive modules of broadband wireless interfaces. The in- 

home display units have the capability of showing the details of current electricity 

cost and indicate the appropriate lamps when the price goes high to identify the 

appropriate appliance which can be switched off by the customers [109]. 
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Fig. 4.5 Communication Capability of the network 

4.4. Identification of Critical House Loads for Possible Adjustment 

Smart Meters and in-home display units are used to identify the critical house 

loads for possible adjustments. It helps customers to easily identify the loads and 

take actions to minimize their electricity cost and help retailers to protect the network 

from overload and voltage violations. The in-home display unit will have a panel of 

eight indicative lamps representing selected eight controllable appliances such as 

water heaters (WH), Air Conditioners (AC), swimming pool pump (PP), electric 

vehicles (PEV), dish washers (DW), clothes washers (WA), and dryers (DR). The 

detailed appliances model used during the simulations are in Appendix A. The loads 

which can be adjusted will be indicated when the price goes higher than the normal 

consumption level. So, customers can easily spot the loads to be disconnected.The 

appliance selection procedure for indication is shown in the algorithm as in Fig. 4.7 

which is discussed in detail at the end of this section. It is easier for the customers to 

manually control their appliances based on the indication. Initially the three 

parameters such as adjustability, operational characteristics and preferred order of the 
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controllable appliances are calculated for five minute time interval. Then the 

appliances are arranged in ascending order according to the choice list and then the 

algorithm will indicate the appropriate appliances for possible load adjustments. 

4.4.1. Adjustability (X1ij) 

The parameter adjustability for each appliance in a house will depend on their 

characteristics. Some appliances can be shifted any time during the day and it has the 

highest adjustability. A normalized value is obtained for the adjustability of j
th

 

appliance in i
th 

house as in (4.5). The dish- washer, clothes washer and dryer have a 

very low adjustability because they cannot be stopped during operation and if it is 

stopped, it should start again from the beginning to complete the cycle. The 

calculation of adjustability is in Table 4.1. 

ijX
hrstimeavailabletotal

timeofrangeadjustable
ityAdjustabil 1

)24(
  

(4.5) 

4.4.2.  Customer preferred order of appliances (X2
t
ij)  

Customer preferred order (X2
t
ij) specifies the need of appliance at a particular 

time t according to the priority of appliance usage. A normalized value is obtained by 

using the total number of loads.  

Table 4.1 Adjustability and Preferred Order of Appliances  

Appliances SW PEV AC WH DW WA DR 

Adjustable range (hrs) 21 17 17 12 5 5 5 

Adjustability 0.9 0.7 0.7 0.5 0.2 0.2 0.2 

Priority order 7 3 6 1 2 4 5 

Preferred Order 0 0.57 0.1 0.85 0.71 0.43 0.29 

For example, water heater has the highest priority in i
th
 house at t

th
 time. So, 

0.85(=1-1/7) is the preferred order of the water heater as shown in Table 4.1. Desired 

values of adjustable range of time and preferred order of appliances (as in Table 4.1) 

can be obtained from a customer survey and values are fixed for each peak day. The 

authors of [110] show that electricity consumption exhibits strong cyclic patterns 

over time. Hence, customer given data can be used for deciding load curtailment for 

a specific season. Further, customer data can be validated by observing power 
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consumption profile of each customer appliance before implementing this scheme. 

The power consumption profile of each appliance in a house exhibits priority of them 

during peak hours. It also shows time range of appliance usage. Fig. 4.6 illustrates 

the preferred order of three selected houses for all appliances. 

 

Fig. 4.6 Appliance Preferred order House 1, phase A, feeder 1 at 1900hrs 

4.4.3. The operational state of appliances (X3
t
ij) 

Operational state of appliances depicts actual state of appliance compared to 

desired state of it at a certain time instance. It is different for each appliance and 

changes with time. Operating statuses of each appliance are calculated based on 

Table 3.5 in Chapter 3.  

The price signals are sent to the houses every five minutes. Selection of 

appliance for indication should depend on the above three parameters. A customer 

choice value is calculated as in (4.6) for this purpose. (i.e. the selection should 

happen with maximum adjustability, minimum preferred order and minimum 

operational state. Details of appliance selection algorithm are shown in Fig. 4.7.  
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The choice value is used in the algorithm for appropriate load indication. The 

load indication in each house in the network can happen as shown in the algorithm in 
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choice list is selected to match the excess power in that house (i.e. the appliances 

resulting excess power in a house will be indicated in the order of choice list). When 

the wholesale price increases, the total excess load in the network is recognized and 

divided among those houses which are consuming above the average of 1.5kVA. 

Furthermore loads relevant to voltage violations are identified using (4.7) as an 

offline process. 

Start

Observe Price

Is price of this ith house is 

above a threshold value?

Observe Choicei
t for all appliances          

Yes

Time t=0

Arrange appliances at house i 

according to              order

House i=1

Et
i exc=max (Et

i exc1, E
t
i exc2, E

t
i exc)

Yes

End

No

t

iChoice

Indicate appliances whose power is close to 

Et
i exc in choice order for ith house

House i=i+1

No

Is t<24*60 

minutes?

No

Calculate excess energies by

Et
i exc1={(Et

i-Ei lim) (if L>Lcapacity),else 0}

Et
i exc2={(Et

i-Ei avg)(if P2i
t>0),else 0}

Et
i exc3={ΔEi

t(if P3i
t>0),else 0}

Is House i=N?

Yes

t=t+5

 

Fig. 4.7 Algorithm for appropriate indication of appliances in each house 



71 

 

 (4.7) 

Where, Nv is the number of houses with voltage violations; ΔVk is the voltage 

violation below the limit of 0.94 p.u. in k
th

 house. ΔPi
t
 is the excess power in i

th
 house 

at t
th

 time. 

4.5. Simulation Results 

A simple distribution system with 30 houses connected to a 500 kVA 

transformer built by the authors of [32] is chosen for this study, to verify the efficacy 

of proposed pricing scheme for demand response. MATLAB is used to perform the 

simulations. 

 

Fig. 4.8 RRP of QLD on 29
th
 November 2012 

The third price component (П3i
t
) related to wholesale price variation during a 

peak day is observed. AEMO data for wholesale price for Queensland region is 

selected for this study with 5 minutes dispatch time [111]. Dispatch details are 

obtained from 28/11/2012 16:50 to 29/11/2012 16:45 with Regional Reference Price 

(RRP) in $/MWh which is the dispatch forecast of QLD as in Fig. 4.8. Main 

controller uses RRP in (4.4) to broadcast a third price signal (П3i
t
) for every i

th
 house. 

The fifth house (H5) in phase A of feeder 1 is chosen to analyze the price and 

the load variation for two consequent days is shown in Fig. 4.9. It is assumed that H5 

does not take any action for load adjustment. Load consumption of H5 is shown in 
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Fig. 4.9 (a).  In-home display unit is used to indicate the price signal for next five 

minutes and is refreshed in five minute interval. 

 

 

Fig. 4.9 (a) Power (b) 1
st
 (c) 2

nd
 (d) 3

rd
 price component of house 5- feeder 1 

At 18:00, П15 (Fig. 4.9 (b)) and П25 (Fig. 4.9 (c)) i.e. first and second price 

component of H5 increases due to increase in the load consumption of H5 and 

voltage violation in the network due to the loads in H5 respectively. As H5 does not 

adjust the loads, П25 price remains high until the network peak disappears at 20:00. 

Similarly, П15 remains high until 23:00 when H5 load consumption plummets. 
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Therefore, H5 observes a high price during peak hours. П35 price component for H5 

is in Fig. 4.9 (d).  

 

Fig. 4.10 Loading level of the 500kVA distribution transformer 

 

Fig. 4.11 Voltage profile at the end bus of feeder 1 

Later, the price scheme is applied on the 500 kVA network and assuming that 

100% of customers take action due to the price signal broadcasts. It is observed that 

the overload problem is eliminated as shown in Fig. 4.10. The voltage within the 

feeder is also improved above the allowable limit of 0.94 p.u., and it is checked by 

plotting the end bus voltage profile of feeder 1 as in Fig. 4.11. 

Furthermore, the prices for first five selected houses in feeder 1 are compared 

with and without the new pricing scheme and load adjustment as in Table 4.2. The 

prices are analyzed for a peak day with high wholesale price and peak demand. For 

example, H5 have to pay $ 7.89 if H5 responds to the increase in price and adjust the 
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loads. However, if H5 chooses not to respond to the proposed scheme, H5 will be 

penalized from all the three types of pricing and will have to pay $ 25.97. Therefore, 

customers benefit by this scheme by reduced price of electricity. 

Table 4.2 Variation of Price of selected houses per day 

House 

No# 

Electricity 

cost with load 

adjustment  

($) 

Electricity cost without load adjustment ($) 

1
st
 Price  

($),L>Lcapacity 

2
nd

 Price  

($) 

3
rd

 Price  

($) 

Total cost 

($) 

H1 8.70 6.87 2.25 0.58 16.8 

H2 6.34 5.50 2.87 1.87 15.77 

H3 7.68 4.45 3.10 1.59 15.61 

H4 8.40 6.48 2.78 2.79 19.35 

H5 7.89 10.93 3.32 4.80 25.97 

 
Fig. 4.12 selected PEV battery charge in phase- A of feeder 1 

 
Fig. 4.13 Temperature set point adjustment of selected AC 
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Fig. 4.14 Water Heater tank temperature change of a selected house  

Moreover, effect on customers due to the load adjustments in accordance to 

price variation is also studied. It is ensured that the effect on customers due to load 

curtailment is minimal. The characteristics of major residential appliances such as 

PEVs, ACs and WHs are closely observed. The state of charge of PEV in a selected 

house is observed as in Fig. 4.12. The temperature set point adjustment of a selected 

AC for two consecutive days is also monitored as in Fig. 4.13. Further, the water 

heater tank temperature change of a selected house is reflected as in Fig. 4.14. 

Hence, Fig. 4.12, Fig. 4.13 and Fig. 4.14 show that the effect on appliance usage 

pattern is minimal comparing to the cost benefits received by the customer on a 

critical day with high electricity prices. Price is not alone the factor on decision 

making. Appropriate selection of loads for curtailment leads to allowable customer 

satisfaction. Here, operational state of appliances during demand response is 

maintained from 80- 95%. Violations from desired customer adjustability and 

priority is minimal (10- 20 %). Hence, this process considers financial benefits, 

customer preferences and provides benefits for both customers and utility. 

4.6. Summary and Conclusion 

An improved real-time pricing scheme for customers is proposed to alleviate 

voltage violations and peak load problem. It would help is reducing the unexpected 

increase in wholesale price of electricity. Customers are benefitted by reduced price 

due to load adjustments. An algorithm for appropriate indication of loads to be 

adjusted according to price variations is proposed. The proposed scheme can be 

implemented using smart meters and in-home display units. The results are validated 
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in a sample distribution system. The impact on customer side due to the proposed 

real-time pricing scheme does not hamper the appliance usage patterns of customers. 
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Chapter 5  

 

Real-Time Home Energy Management Scheduler 

Using Stochastic Dynamic Programming 

 

With the recent development of advanced metering infrastructure, Real-Time 

Pricing (RTP) scheme is anticipated to be introduced in future retail electricity 

market. Home Energy Management (HEM) facilitates customers to adjust their loads 

based on RTP. This research work proposes a real-time Home Energy Management 

Scheduler (HEMS) aiming to reduce the cost of energy consumption in a house while 

maintaining customer satisfaction. The proposed HEMS works in three subsequent 

phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-

time control (RTC) of appliances. In RTM phase, characteristics of available 

controllable appliances are monitored in real-time and stored in HEMS. In STS 

phase, HEMS computes an optimal policy using stochastic dynamic programming 

(SDP) to select a set of appliances to be controlled with an objective of minimizing 

customer discomfort as well as the total cost of energy consumption in a house. 

Finally, in RTC phase, HEMS initiates the control of the selected appliances. The 

proposed real-time HEMS is unique as it intrinsically considers uncertainties in RTP 

and power consumption pattern of various appliances. In RTM phase, appliances are 

categorized according to their characteristics to ease the control process, thereby 

minimizing the number of control commands issued by HEMS. Simulation results 

validate the proposed method for HEMS. 
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5.1. Introduction and Related Work 

Retailers in most electricity markets, provide a fixed electricity tariff scheme 

for customers, independent of the cost of electricity generation during the time of 

consumption. However, the true opportunity cost of electricity consumption varies 

with the marginal cost of electricity production. This causes inelastic behavior in 

customer electricity demand within short time frames which may ultimately lead to 

losses for both retailers and customers during adverse conditions such as price 

spikes/falls [112].  

Introducing a time varying electricity retail price, known as Real-Time Pricing 

(RTP) is one of the solution. The concept of RTP was introduced long ago, but it has 

been only recently possible for practical implementation due to vast technological 

improvements in advance metering infrastructure [113], [114]. RTP provides benefit 

to retailers by reflecting marginal cost of production and encourages customers to 

control their electricity consumption [115]. Smart meters and in- home display units 

aim to help customers in reducing their Cost of Energy Consumption (CoEC) and 

control their appliances on a regular basis [116]. However, due to uncertainty in price 

variation and electricity demand, appropriate control of appliances is cumbersome.  

A Home Energy Management (HEM) system helps residential customers to 

respond to RTP by reducing CoEC [117]. The authors of [44] and [45] have 

proposed a real-time HEM system with a complex scheduler, using ‘particle swarm 

optimization’ and ‘genetic algorithm’. However, the uncertainties in RTP of 

electricity or the power consumption of appliances are not considered during their 

appliance scheduling processes. The authors of [46], however, propose a decision 

support tool using linear programming optimization and a price predictor to get hour-

ahead price information and plan the upcoming energy consumption. However, the 

predicted price is not included in the optimal scheduling of appliances. This problem 

is mitigated by [47] and [48], where a predictive tool along with real-time 

optimization is proposed. Nevertheless, the real-time optimization and control along 

with predictive techniques is cumbersome and may lead to less accurate results. 

In another study, stochastic optimization with an objective of minimizing 

expected electricity payment using Monte Carlo simulations [49] and Markov 
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Decision Process (MDP) [50] is proposed. The uncertainty in RTP is incorporated 

via expected downside risk [49] and price prediction noise [50]. However, the 

uncertainty in appliance power usage is not considered. Taking a step further, the 

authors of [51] propose a bottom up approach to represent several house appliances 

in a network incorporating uncertainties in both appliance power consumption and 

RTP. This model nonetheless increases the number of control commands issued for 

adjusting appliance thereby affecting customer comfort.  

Contributions: The objective of this part of research, therefore, is to find a 

desired tradeoff between incurred cost of energy consumption and customer comfort 

level. This chapter proposes a real-time Home Energy Management Scheduler 

(HEMS), which aims to reduce the cost of energy consumption in a house while 

maintaining customer satisfaction. This research work is different from [44]-[50], as 

it considers the uncertainties in both RTP and residential appliance power 

consumption pattern during appliance scheduling. Unlike [51], a top down approach 

from house to appliance level is taken. I. e. a set of appliances is selected optimally 

for control based on their stochastic behavior, with an overall objective of reducing 

the total cost of energy consumption in a house. Similar to [49], [50], appliances are 

categorized to ease the process of control in this part of research. 

Another contribution of this work is that the dimensionality of stochastic 

scheduling is reduced. Real-time monitoring is used and that leads to an efficient 

control system. The proposed real-time HEMS works in three subsequent phases i.e. 

real-time monitoring (RTM), stochastic scheduling (STC) and real-time control 

(RTC). Similar to [50]- [51], MDP is used for stochastic optimization.  

In section 5.2, the proposed real-time HEMS is described. The operation of 

HEMS with these three subsequent phases is summarized in Section 5.3. A test 

system description and simulation results are presented in Section 5.4 followed by 

conclusions in Section 5.5. 
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5.2. Proposed Real-Time HEMS using SDP 

This section introduced a new real-time HEMS using SDP and can be deployed 

in houses. Retailers bid in the wholesale electricity market on a day-ahead/real-time 

basis to cater their load demand. The customers/end-users, whereas, have a choice to 

either take fixed price or RTP based tariff from demand aggregator or retailer. In 

some cases, the demand aggregator uses RTP signal from retailers and provide 

demand-response/load-reduction by adjusting customers’ load and provide 

coupons/incentives in return. Although promising, this method may not be attractive 

to the customers who want to have the flexibility to modulate their loads themselves 

and be rewarded accordingly.  

This chapter, therefore, proposes RTP signals (from either demand aggregators 

or retailers) to be send directly to customers/end-users to adjust the loads themselves, 

giving them flexibility to choose the level of load adjustments and achieve the 

reduced cost of energy consumption. The optimal decision to control the appliance is 

taken by HEMS in order to reduce the cost of energy consumption. As the control of 

appliances is dependent of individual HEMS, the network scalability is not an issue 

and it is easy to implement regardless of the size of the distribution network. This 

process is made possible with the advanced metering infrastructure and there are no 

additional communication requirements for the proposed algorithm. HEMS collect 

the relevant information about the appliances at regular intervals using home area 

networks such as Zigbee, HomePlug Wifi, Z-wave etc. The demand 

aggregator/retailers broadcast the RTP signal to respective customers, who use 

HEMS to adjust the loads using the proposed algorithm. As HEMS only 

communicate to demand aggregators/retailers, the current low power radiofrequency 

transmitters working in the 900MHz-2.4 GHz band is sufficient. 

Appliance control process is performed by HEMS at house level where every 

HEMS in a network are remotely connected to the utility to obtain RTP information. 

Thereby, a large network with utility connected HEMS at each residence is possible 

due to the independent operation of HEMS. It has better performance than a centrally 

controlled algorithm for residential appliances in a large network which may raise 

scalability issue. 
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The functionality of HEMS and retailer/utility interference can be summarized 

using Fig. 5.1. Retailer/utility receives price information from wholesale electricity 

market and demand information from the respective houses on a continuous basis. 

The local retailer checks system constraints so as to command appropriate RTP to 

HEMS. The optimal decision to control the appliance is taken by real-time HEMS in 

order to reduce the cost of energy consumption. 
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Fig. 5.1 Descriptive diagram of HEMS and utility interference 

In this research work, seven controllable appliances including water heater 

(WH), air conditioner (AC), electric vehicle (EV), dish washer (DW), clothes washer 

(WA), clothes dryer (DR) and swimming pool pump (PP) are connected through 

HEMS and the uncontrollable appliances are directly connected to the utility.  

The proposed real-time HEMS works in three subsequent phases i.e. RTM, 

STS and RTC and can be summarized in Fig. 5.2. In RTM phase, HEMS monitors 

appliance characteristics and data is processed to make it ready for the STS phase, 

where SDP is used for scheduling appropriate appliances. In RTC phase, HEMS takes 
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appropriate actions on the selected loads. This process is repeated every four minutes. 

The three phases are described below in detail: 

0 2 4 6 8 10 12 14 16 18

RTC

RTM

STS

Time/ min

. . .. . .

 

Fig. 5.2 Timing diagram of control process 

5.2.1. Real-Time Monitoring (RTM) Phase 

In RTM phase, the data is collected from all the customers and processes it, so 

that it can be used for STS phase. Appliances can be classified into three categories 

namely Cat1, Cat2 and Cat3 as per their characteristics: 

 Cat1: Appliances that can be delayed for a certain time such as DW, WA, DR 

and PP. 

 Cat2: Appliances whose operation schedule depends on its charging 

characteristics such as EV. 

 Cat3: Appliances that can be adjusted with the change in the temperature set 

point such as WH and AC. 

Customers have flexibility to specify whether an appliance can be interrupted or 

not i.e. Appliance Dj with signal INTRPDj= ‘True’ or ‘False’. Furthermore, 

maximum number of interruptions (ζmax
intrp

) of a particular appliance is maintained 

below ‘two’ to prevent adverse effect on life span of the appliance. Depending on the 

appliance category (Cat1/Cat2/Cat3), utility will decide the operating status of 

appliances (WAIT/OPERATION/SKIP /ADJUST). Descriptions of various statuses are 

as below: 

 Appliances which are connected to HEMS but not in operation are in status 

‘WAIT’  

 Appliances which are already in operation are in status ‘OPERATION’ 

 Appliances which should not be controlled at a particular time due to 

constraints are in status ‘SKIP’ 

 Appliance which can be adjusted with its set point is in status ‘ADJUST’ 
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Utility gives less possibility of interruption to the appliances which are in 

‘OPERATION’ and ‘ADJUST’ status during STS whereas appliances in ‘WAIT’ 

status have higher possibility to be controlled. Appliances’ lifespan is reduced and 

customers’ comfort is affected when operating appliance are interrupted. Therefore, 

the rationale is to avoid interrupting those appliances which are in operation. 

Appliances that are waiting to be connected, whereas, can be delayed up to 

maximum allowable time and hence are suitable for control. The three categories 

(Cat1/Cat2/Cat3) of appliances and the decision for corresponding operating status 

(WAIT/OPERATION/SKIP /ADJUST) need further explanations. 

Cat1 and Cat2 appliances: Maximum allowable waiting time or delay 

(WDj
max

) of a corresponding appliance Dj under Cat1 is specified by the customer. 

Customer also specifies departing time (tdept) and charging status of electric vehicle 

(Cat2) which helps to calculate maximum possible delay of electric vehicle. Slow 

(CH1) and normal charging (CH2) are the two possible charging statuses. The 

maximum allowable delay for electric vehicle can be calculated using (5.1)-(5.3) as 

below. 

k

k

CH

ingch

alnoCH

total
P

E

arg

min  
(5.1) 

kk CH

totalinitial

CH

remaining SOC  ).1(  (5.2) 

  k

jj

CH

remaining

connect

DdeptD ttW  24max
 (5.3) 

Charging cycle duration (Гtotal
CHk

) of a battery can be obtained by dividing the 

nominal capacity (Enominal) of the battery by charging power (Pcharging
CHk

) for k
th

 

charging status as in (5.1). Remaining charging time (τremaining
CHk

) can be calculated 

as in (5.2). Here, SOCinitial is the initial state of charge (SOC) of the battery when 

electric vehicle is plugged in to HEMS. Here, evolution of SOC of the battery is 

considered to have linear relationship with time while charging [118]. Maximum 

allowable waiting time of electric vehicle is calculated as in (5.3). Here, tDj
connect

 is 

the time when electric vehicle is plugged in to HEMS. Status of appliances in Cat1 

and Cat2 are determined using Algorithm 1 as summarized below. 

When appliance, Dj, is plugged in to HEMS at time tDj
connect

 (tn-1 <tDj
connect

< tn), 

it should wait until the next time step tn. The initial waiting time before connecting 
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the appliance is denoted as WDj
initial

. If an appliance is still waiting to be connected at 

time tn, it should be assigned ‘WAIT’ status. This is valid irrespective of customer 

input, INTRPDj. If plug in time, tDj
connect

, of an uninterruptible appliance is before tn-1, 

it means that the appliance is already in operation which should not be interrupted 

and hence is assigned ‘SKIP’ status. 

Whereas, if tDj
connect 

is less than earlier time step tn-1 and if total waiting time 

(WDj) and number of interruptions (ζDj
intrp

) are within limits, then appliance Dj can 

remain in the previous status (i.e. it can be delayed further until limits are not 

exceeded). When limits for WDj and ζDj
intrp

 are exceeded, appliance is considered in 

‘SKIP’ status. 

Cat3 appliances: Thermostatically controllable appliances such as WH and 

AC are considered in this category. Variation of water temperature is modeled using 

(5.4) as in [119].  
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(5.4) 

Where Twh
n
 is water temperature at time tn, Ta is ambient temperature, Tin is inlet 

cold water temperature, Qwh is energy input rate of WH, Kwh is binary signal for 

thermostat settings, G- standby heat loss of the tank, B- heat consumption rate of 

water and ψw- thermal capacity of water in the tank.  
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(5.5) 

Furthermore, thermodynamic equation for AC is shown in (5.5). Here, Tr
n
 is 

the room temperature at time tn, Qac is energy input rate of AC, Kac is binary signal 

for thermostat settings, Ta- ambient temperature, Tm- mass temperature of the house, 

ψac- thermal mass capacity of interior air, Ua- heat loss coefficient and Hm- interior 

mass conductance of the house [54]. Detailed model of ACs and WHs are discussed 

in Appendix B.  

For Cat3 appliances, if customer input, INTRPDj, is false, then the set point is 

adjusted to reduce for power consumption of the appliance and is assigned 
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‘ADJUST’ status. Otherwise, appliance is assigned ‘SKIP’ status. This is summarized 

in Algorithm 2. 
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5.2.2. Stochastic Scheduling (STS) phase 

Although, real-time monitoring of appliances’ usage and price information 

gives the details of current status of various appliances, it is not sufficient to make a 

decision for appropriate selection. It is due to various uncertainties in electricity price 

variation, appliance operation, user behavior and preferences. Hence, SDP is 

proposed to include the uncertainties in decision making. This phase helps in 

identifying the appropriate appliances to be controlled. 

5.2.2.1.  Analyzing stochastic behavior of RTP and demand of Electricity:  
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An infinite horizon discrete time dynamic model is formulated for the 

stochastic control process where time steps are indexed by {n=0, 1, 2, ……..}. This 

scheduling problem focuses on CoEC at each time step. The total CoEC (Cn
total

) of a 

house at n
th
 time step from tn-1 to tn is the product of RTP of electricity, πn, total 

power consumption, Pn
total

 , and the time step, dt, i.e. (tn - tn-1) as shown in (5.6).  

dtPC total

nn

total

n ..  (5.6) 

other

n

N

j

D

n

total

n PPP j  
1

 

(5.7) 

Here, total power consumption, Pn
total

 at n
th
 time step is calculated as in (5.7). It 

is the sum of power of adjustable and non-adjustable appliances. Power consumption 

of an adjustable appliance Dj connected to HEMS at time tn is given as Pn
Dj

. Pn
other

 is 

the total power consumption of non-adjustable appliances of that house at time tn. 

CoEC is considered as a time varying stochastic variable and its behavior is 

analyzed in this study. Initially, a discrete time stochastic process for Cn
total

 is created 

as C
total

 = {Cn
total

, n = 0, 1, 2, . . .} where Cn
total

   S. Here, S represents a set of states 

such as S = {Sk, k = 1, 2, …. kmax} defined for the above stochastic process. k
th

 state 

Sk, (for all k) is defined by a range of predefined CoEC in a house so that Cn
total

 lies 

within a range of a particular state Sk. Let us consider discrete cost variables {C0
total

 , 

C1
total

 , C2 
total

, …} to occupy a value in a set of states (S). The sequence of C
total

 = 

{Cn
total

, n = 0, 1, 2, . . .}, is considered as a Markov chain as the future CoEC is 

independent of the past CoEC, conditioned on the present value. It can be further 

elaborated by a transition probability, i.e., if the chain is in state Si, the transition 

probability, Pxy(n+1), says how the chain chooses to jump to next state, Sy , at the 

time step (n+1) as in (5.8). 

)|()1( 1 x

total

ny

total

nxy SCSCn  ΡΡ  (5.8) 

As CoEC satisfies dynamics of Markov dependent structure, Markov Decision 

Process (MDP) is a suitable method for optimal scheduling of appliances within a 

house [120]. MDP can be defined as five tuples <l,S,A,TR,R>, where, l represents 

length of planning horizon, S is a finite state space of discrete states reflecting CoEC, 

A is for a finite action space and TR:→P(S), is a transition function describing 
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probability of distribution of next states as in (5.8).  Further, C
total

:SxA→R is cost of 

executing an action in a state and it represents R, which is a state dependent reward 

function. 

5.2.2.2. Problem Formulation 

Markov Decision Process (MDP) is used to minimize CoEC via optimal 

scheduling of appliances. Expected outcome of this process is optimal STS of 

appliances.  

Time Horizon: An infinitely repeated 24 hour cycles are considered and is 

discretized into intervals of four minutes (i.e. CoEC of a house is monitored and 

expected to be controlled on daily basis). Time cycles are incorporated into state 

space thus the decision making time horizon is n={1,2,3,…..}.  

State Space: State space is defined to replicate a range of CoEC. For this 

purpose, CoEC of a house is observed at every time step for an entire season. A 

probability density function for C
total

 is formed to define boundaries of CoEC for 

states from the data obtained. Bk and Bk+1 are boundaries for CoEC for k
th

 state, Sk as 

defined in (5.9). Bk and Bk+1 can be found by predefining P(Bk  ≤ C
total 

< Bk+1) as in 

(5.10). 

   11 |,   k

total

k

total

kkk BCBCBBS  (5.9) 

   dxxCBCB
k

k

B

B

total

k

total

k .  
1

1 


 Ρ  
(5.10) 

In this research work, P(Bk  ≤ C
total 

< Bk+1) is considered as 50%, 10% for k=1 

and k={2,3,4,5,6} respectively. Overall state space is defined as S={Sk, k=1,2, …, 6}.   

Action Space: An action space An, contains a set of actions An
q
:S→σ(An). 

An
q
(Sk)An  denotes q

th
 set of actions that can be applied in k

th
 state, Sk , at n

th
 time 

instant. σ(An) is power set of the action space An. An action is considered as a set of 

appliances that can be curtailed at
 
a given time step.  

Consider a set D, consisting of N number of controllable appliances in a house 

as in (5.11). A subset Dn
av

 can be defined as the available appliances connected to 

HEMS at n
th

 time instant. Then, an action, An
q
(Sk), (i.e. a set of possible curtailment 
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of appliances) is defined as a subset of Dn
av

 as in (5.12). The power set, σ(An), 

denotes number of all possible subsets of Dn
av

 or number of actions as in (5.13). 

DDDDDD av

nN  };,......,{ 21  (5.11) 

av

nk

q

n DSA )(  (5.12) 

 av
nD

nA
 2)(   

(5.13) 

In this study, seven (N=7) controllable appliances are considered in a house. 

For instance, if two appliances D4 and D6 are connected to HEMS at n
th
 time step, 

then Dav
n
={D4,D6}, η(Dn

av
)=2 and σ(An)=2

2
. Hence, four actions are possible which 

are {}, {D4}, {D6} and {D4, D6}. Empty set {} represents action of no curtailment. 

{D4} and {D6} represents when only one appliance, either D4 or D6, is selected for 

curtailment respectively. When both appliances are selected, action {D4, D6} is 

possible. 

Transition Probability: Transition function is a function of probability that 

CoEC jumps from state Sx to Sy at (n+1)
th

 time step during q
th
 action and is defined 

as Tr:SxAxS→Pn+1(Sy|Sx,An
q
)[0,1]. As the probability depends on states and 

actions, an action and state dependent transition probability block is defined. 

Initially, daily power consumption profile of each appliance in a house is observed 

for a particular season. Daily variation of RTP is also observed for the given time 

frame. Then, Algorithm 3 is repeated for each action to calculate transition 

probabilities as summarized below. Algorithm 3 starts with the calculation of CoEC 

(Cn
Aq

) at n
th
 time step for q

th
 action as defined in (5.14).  




























 



dtPPC
qA

q

N

j

Dj

n

total

nn

A

n .
1

  
(5.14) 

Here, sum of power of appliances that can be curtailed during q
th

 action is 

subtracted from total power consumed (Pn
total

) to find total power consumption 

during q
th
 action. This value is multiplied by πn and dt, the RTP and length of time 

interval respectively to obtain Cn
Aq

.  
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Fig. 5.3 Block of transition probability (Tr) 

Here, NAq is the number of appliances in q
th

 action. State change of Cn
Aq

 at q
th

 

action from Sx to Sy from subsequent time steps n and n+1 are observed on daily 

basis. Number of days is counted for this specific jump (Nij
Aq

). It is divided by the 

total number of days where states changes from Sx to the other states Sk from 1 to 6. 
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(∑Nik
Aq

) to obtain the transition probability Pn+1(Sy|Sx,An
q
). This process is repeated 

at each time step. Further, Algorithm 3 is repeated for each action to obtain the 

transition probabilities of all possible state changes or jumps for the whole action 

space and is shown in Fig. 5.3.  

Reward Function: Accurate definition of reward function (rewardxy
AqR) is 

vital in MDP due to its importance in decision making. It helps to choose best 

possible action, An
q
, for appropriate selection of appliances. A reward value is 

defined as in (5.15), which is four tuples,<Si/Sj, βk, Pk,Wk>. 
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(5.15) 

(i) Reward component 1(Si/Sj) - Ratio of state change from Sx to Sy as an effect on 

jumps from one state to another. Purpose of this component is to provide less reward 

for a state changing from low to high value (for i<j) and to provide more reward for a 

state changing from high to low value (for i>j). As an effect of this reward 

component, an action which causes furthest state change from high to low value will 

be chosen. (ii) Reward component 2 (βn
Dj

) - Status of appliances which are ‘WAIT’ / 

‘OPERATION’ / ‘ADJUST’. Appliance in ‘WAIT’ status is given with a higher 

reward value comparing to the other statuses ‘ADJUST’ and ‘OPERATION’. In our 

study, values for βn
Dj

 for WAIT, OPERATION and ADJUST are considered as 1, 0.5 

and 0.75 respectively. Purpose of appliance status βn
Dj

 in reward function is to 

prioritize appliances which are in ‘WAIT’ status and still not in operation rather than 

appliances which are in operation. It allows in maintaining appliance comfort and 

reduces the possibility of appliances being interrupted in the middle of their 

operation. (iii) Reward component 3 (∑PDj
rating

) - Summation of power ratings of 

appliances, involved in a particular action. Reward depends on the availability of 

power curtailment in a particular action. Purpose of this component is to provide 

higher reward for an action with more curtailment of loads comparing to actions with 

less curtailment of loads. Therefore, an action with highest available power for 

curtailment will be prioritized for control. (iv) Reward component 4 (1-WDj
n
/WDj

max
) 

– A function of waiting time of an appliance. Appliance which is delayed more is 
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considered to have less reward comparing to appliance which is delayed less. Time 

varying term (1-WDj
n
/WDj

max
) provides this function. Here, WDj 

max 
is the maximum 

allowable waiting time of appliance Dj. Purpose of this component is to prioritize 

appliance which is delayed less comparing to other appliances which are delayed 

more. As an effect, appliance that can be sufficiently delayed is chosen to be 

controlled.  

Coefficient α is chosen by utility according to their requirement. Overall, reward 

function is designed so that it provides benefit to customer by satisfying their need 

and by reducing cost.  

Markov Decision Process (MDP): Objective of MDP in this study is to 

maximize the reward function, so that customer indirectly minimizes CoEC while 

satisfying their needs. Reward of execution (R) is the sum of all rewards along the 

path from Sinitial (initial state) to the first goal state. S
G

 S is the set of goal states (i.e. 

Sg
G
   S

G
 which terminates an execution) [121]. Here, transitions are managed 

stochastically by transition block, TR. A policy λn:S→An is defined as a mapping 

from state space S to action space An and at n
th
 time step, an optimal action is mapped 

to all possible states. An optimal policy (λn
*
:S→A) is obtained from MDP. A value 

iteration algorithm is used to evaluate optimal policy to satisfy the objective. 

Algorithm 4 explains the value iteration and is summarized below.  

V
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The value function is initialized based on dynamic programming. A value 

function is defined as a mapping from state S (Vλ:S→ R) as in (5.16). Bellman 

operator is used to update the values iteratively for having successive approximation 

at each state per iteration. A Bellman equation related to value functions with an 

objective function is created as in (5.17) using reward and transition blocks. 

Dynamic-programming algorithm is used to search the solution space by using the 

recursive structure of the Bellman equation which is more efficient than exhaustive-

search algorithms. 

Here, a Bellman residual of a state is defined as the absolute difference of a 

state value before and after Bellman operation. Value iteration stops after 

convergence. The largest Bellman residual of all states becomes less than a pre-

defined threshold δ. Finally, optimal policy is obtained from value function is as in 

(5.18). 
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In real-time, if CoEC lies in state Sy, the optimal action mapped in the proposed 

policy will be chosen for control. Ultimately, optimal policy gives the optimal 

curtailment schedule of appliances. 

5.2.3. Real-Time Control (RTC) Phase 

In RTM phase, the status of appliances are determined which helps to find the 

optimal policy or the optimal action with a set of selected appliances in STS phase. 

Then in RTC phase, HEMS send signals to adjust selected set of appliances.  

5.2.3.1. RTC of Cat1 and Cat2 appliances 

Fig. 5.4 illustrates the change in operating statuses of Cat1 and Cat2 

appliances. Appliances can be in any of the five conditions as shown in Fig. 5.4 
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(conditions represent ‘if’’ clauses in algorithm 1). Condition 1 shows an appliance 

connected to HEMS within time tn-1 to tn and identified to be in ‘WAIT’ status during 

RTM. It has an initial waiting time of Winitial. If this appliance is selected for control 

during RTC, it will be delayed for another four minutes. Hence, operating status of 

this appliance again becomes ‘WAIT’. This is true irrespective of customer input 

‘INTRP’. Then, at next time step, tn+1, utility connects this appliance in offline STS 

program to check whether reconnection is possible. If reconnection is possible at tn+1, 

appliance is connected, otherwise, it is delayed until next time step. 

0 2 4 6 8 10 12 14

Condition 3

Condition 1

16 18

t=tn-1

delay

interrupt

Time/ min
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Winitial
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delay
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interrupt
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Fig. 5.4 Operating statuses of appliances before RTM and after RTC phase 
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Condition 2 shows appliances which cannot be interrupted in the middle and 

are already in operation during RTM. Then, it is considered to be in ‘SKIP’ status 

and continuously connected to utility without subjecting to RTC. Condition 3 shows 

appliance in ‘OPERATION’ status during RTM. If this appliance is chosen to be 

controlled, it is interrupted after one minute from a time step for next three minutes 

and goes to ‘WAIT’ status after RTC. Condition 4 illustrates an appliance which is 

already delayed in time step tn-1 and is in ‘WAIT’ status. If the maximum waiting 

time and maximum number of interruptions are not exceeded, it can be further 

delayed at tn and again stays in ‘WAIT’ status. Condition 5 shows an appliance 

already in ‘WAIT’ status during RTM. It will be reconnected during RTC and will go 

into ‘SKIP’ status if and only if the maximum limits for waiting time and 

interruptions are exceeded. 

A notification signal can be sent to the customers four minutes in advance to 

show that if the appliance is to be started near an expected peak in cost of energy 

consumption. Hence, a customer can make a decision to increase the waiting time of 

respective appliance. 

5.2.3.2. RTC of Cat3 appliances 

RTC of Cat3 appliance, however, is different. If a Cat3 appliance is identified to 

be in ADJUST status during RTM, then the set point of the appliance is adjusted 

during RTC. Set points of ACs and WHs can be adjusted in three different ways. I.e. 

set point is increased or decreased for cooling or heating load respectively.  

 Stepwise set point adjustment 

Here, for each control action, set point (Tset
Dj

) is adjusted step by step by a 

constant temperature value. In this study, set point of a cooling and heating load is 

increased or decreased by 1°F at each control step respectively. However, set point 

adjustments are maintained within 5°F.  

 Set point adjustment using linear droop curve of CoEC 

Stepwise set point adjustment does not reflect the effect of CoEC increase in an 

efficient manner. Hence, a set point (Tset
Dj

) is adjustment subjected to linear variation 

is CoEC in introduced here. If CoEC during RTC is above the limit (C
total

lim), Tset
Dj

 

for a cooling load Dj, is increased linearly as in Fig. 5.5.  
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Fig. 5.5. Linear droop curve for set point adjustment of a cooling load 

Similarly, if CoEC during RTC is above C
total

lim, then Tset
Dj

 for a heating load is 

decreased linearly using droop curve in Fig. 5.6. In this study, Tset
max

 and Tset
min

 in 

cooling and heating load are chosen as 5°F above and below the desired set point 

(Tset
desired

) respectively. 
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Fig. 5.6. Linear droop curve for set point adjustment of a heating load 

 Set point adjustment using exponential droop curve of CoEC 

Linear droop curve may not change set points sufficiently in response with the 

increase in CoEC. Hence, an exponential droop is introduced which provides 

significant set point adjustment with the variation in CoEC. Tset
Dj

 for a cooling load 
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Dj, is increased exponentially as in Fig. 5.7. Similarly, Tset
Dj

 for a heating load is 

decreased exponentially as in Fig. 5.8, when CoEC during RTC is above C
total

lim. Set 

point adjustments are maintained within 5°F.  
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Fig. 5.7. Exponential droop curve for set point adjustment of a cooling load 
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Fig. 5.8. Exponential droop curve for set point adjustment of a heating load 

Droop curves are obtained from historical data for each season for a particular 

house prior to control. Seasonal variations are considered due to operability of ACs 

and WHs according to seasonal temperature variations.  
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A HEMS in a utility should have the capability to switch on, switch off or 

delay appliances connected to relevant HEMS in order to reduce overall energy 

consumption cost of a house. Discussion on control algorithm is as follows. 

5.3. Description of Overall Control Process 

Flow chart of the overall control process is summarized in Fig. 5.9. At each 

time step, real-time price and the total energy consumption of a house is observed to 

compute the cost of energy consumption. If the cost of energy consumption exceeds 

a predetermined limit, RTM, STS and RTC phases are triggered subsequently. (The 

limit of CoEC is predetermined as the average of maximum CoEC of a house).  

Start
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Is Cn
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Check operation statuses βn
Dj 

of each appliance Dj
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Fig. 5.9 Operation of HEM Scheduler with RTM, STC and RTC phases 
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During RTM phase, available appliances at that particular time are checked. 

Actions are selected during STS phase using the data collected in RTM phase. MDP 

helps to select the optimal set of appliances to be controlled by obtaining policy 

values. 

The current state of CoEC is mapped with the policy values to obtain optimal 

action or schedule of curtailment. Transition and reward blocks help to run MDP for 

the above computation. After one minute, the selected appliances are controlled or 

switched off. This process is repeated every four minutes to have an optimal control 

of appliances to reduce the cost of consumption. 

5.4. Test System and Simulation Results 

5.4.1. Results related to HEMS 

A single house with seven controlled appliances connected to HEMS is taken 

as test system (as shown in Fig. 5.1). RTP of electricity is considered as the 

reflection of electricity spot price in electricity market during simulation. Electricity 

market spot price for a typical summer period (i.e. 3 months) in Australia is taken for 

this study, which is used for the calculation of state space and transition block.  

As discussed in section 5.2.2.2, state space S={Sk, k=1,2,3,4,5,6} represents a 

range of CoEC. Its boundaries are defined by finding cumulative distribution 

function (CDF) of CoEC data as in (5.9)-(5.10). It is observed that the CoEC of a 

house lies in the range of 0- 300 cents and it is the cost of energy within four 

minutes. In this study, boundaries of states B1-B7 are 0.00, 1.00, 1.50, 2.00, 3.50, 20 

and 300.00 cents respectively as shown in Fig. 5.10. Then, the CoEC is categorized 

into unequal ranges of costs defined as states as shown in Fig. 5.11. The transition 

probability block is calculated using algorithm 3 for the given states. When there is 

no curtailment (An
q
={}), the variation of state transitions of a typical house for three 

typical summer days is illustrated in Fig. 5.12. It shows that day 2 has more state 

changes due to higher volatility in the electricity price.  

A transition probability block at 2000 hrs of day 1 is illustrated in Fig. 5.13 

then there is no curtailment (i.e. An
q
={}). It shows the probability values of CoEC 

state changes. For example, probability of CoEC remaining in 4
th

 state (TR(4,4)) is 

0.7500. Then, a state dependent reward function is defined for each time step as in 



99 

 

(5.15). Change in reward is observed when there is no curtailment (i.e. An
q
={}) and 

when all seven appliances are controlled and is shown in Fig. 5.14. (Here, α is taken 

as 1 and component of waiting time (Wn
Dj

) is omitted). Reward gets a higher value 

when the state changes from 6 to 1 in the next time step and it has the least value 

when there is a jump from state 1 to 6. This ensures that there is higher reward for 

larger curtailment. 

 

Fig. 5.10 Defining boundaries of states 
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B1 B2 B3 B4 B5 B6 B7

 

Fig. 5.11 Definition of states for CoEC 

 

Fig. 5.12 State changes in three typical days of a house in summer 
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Fig. 5.13. Transition probability of CoEC states at 2000 hrs in winter day 

 

Fig. 5.14 Reward when there is no curtailment and maximum curtailment 
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Fig. 5.15. The Real-Time Price considered for real-time model 

The retailers will use the information from the wholesale electricity market 

price to calculate the RTP for individual feeders [111]. Therefore, wholesale price is 

taken to simulate the R TP variations that are used to broadcast to individual HEMSs 

and is illustrated in Fig. 5.15. A house with seven controllable appliances are 

considered and RTM occurs every four minutes. A two day simulation is done and 

the results are obtained for the optimal policy. 

 

Fig. 5.16. Optimal policy values for two consecutive days 
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Fig. 5.17. Optimal policy values for a time frame withing a day 

The optimal action is plotted as in Fig. 5.16. At time 6.00-8.00 pm, policy 

values goes high allowing more curtailment. If policy reaches 14, the 14
th
 set of 

action or the appropriate combination of available appliances is subjected to control 

to reduce CoEC (i.e. WH and SP). Similarly policy value 58 and 83 represent a 

combination of [SP, DW, EV] and [WH, SP, EV] respectively. Each policy value 

represents a set of appliances that can be curtailed at that time step. 
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exceeded. Similarly, if a Cat 3 appliance is subjected to control, which was initially 

under ‘ADJUST’ status, it is again kept at ‘ADJUST’ status confirming that the set 

point limit and the maximum number of interruptions are not exceeded. 

 

Fig. 5.18. Power profile of the house without and with HEMS 

 

Fig. 5.19 CoEC of the house without and with control 
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Table 5.2 Appliance status changes at 1940 hours 

Appliances Availability 

Selected 

for 

control 

Status at 

1940 hrs 

Status at 

1944 hrs 

AC Yes Yes ADJUST ADJUST 

WH Yes Yes ADJUST ADJUST 

SP Yes Yes WAIT WAIT 

DW No - - - 

WA Yes Yes OPERATION WAIT 

EV Yes No WAIT OPERATION 

DR No - - - 

 Table 5.2 shows the changes in statuses of appliance at 1940 hours in a particular 

day. Here, AC, WH, SP, WA and EV were available for control during this time and 

AC, WH, SP and WA are selected for control in STS phase. Their respective status 

changes are shown in Table 5.2. For example, WH which was already in 

‘OPERATION’ is switched off and kept in ‘WAIT’ status. Operation of Cat 1 

appliance happens by switching ON and OFF during the control process. As an 

example, a dishwasher operation with and without HEMS is illustrated in Fig. 5.20. 

Here, a constant power consumption is assumed during different functions of a 

dishwasher such as washing, drying and disinfection. The power profile and the 

temperature variation of water heater is shown in Fig. 5.21. Here, the set point 

adjustments are shown when there is an increase in CoEC.  

Computation time for STS phase of HEMS is approximately 7.5 seconds for a 

house with seven controllable appliances. Simulations were performed using 

MATLAB software platform in a 64 bits operating system with 2.10 GHz processor. 

Thus it makes this algorithm suitable for practical implementation. 

 

Fig. 5.20 Dish Washer Power Profile of the house with HEMS (Cat 1) 
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Fig. 5.21 Water Heater Power Profile of the house with HEMS (Cat 3) 

Table 5.3  Energy and CoEC savings with HEMS 

Seasons Energy Savings due to HEMS 

(kWh) 

CoEC savings ($) 

 One day 3 months One day 3 months 

Winter 2.10 364.4 0.85 77.8 

Autumn 0.70 98.6 0.32 31.32 

Summer 0.79 99.8 0.59 41.39 

Spring 1.76 22.4 0.38 36.53 

Annual -- 791.2 -- 187.03 

Table 5.4 Effect of HEMS on COEC due to uncertainty (A winter day) 
Effect of Uncertainty in 

RTP 

Effect of Uncertainty in 

Appliance power consumption 

Effect of Uncertainty in both RTP 

and Appliance power consumption 

Mean 

of RTP 

(µRTP) 

 

CoEC (cents) in a 
day Mean of 

power 

consumption 

(µApplPower) 

CoEC (cents) in a 
day 

Mean of RTP 
and Appliance 

power 

consumption  

(µRTP, 

µApplPower) 

CoEC (cents) in a 
day 

Without 

HEMS 

With 

HEMS 

Without 

HEMS 

With 

HEMS 

Without 

HEMS 

With 

HEMS 

0.8 349.13 334.51 0.5 362.96 351.91 (0.8,0.5) 357.96 348.31 

0.9 352.13 335.63 0.75 363.85 352.08 (0.9,0.75) 359.85 348.53 

1.0 353.87 335.73 1.0 366.41 352.13 (1.0,1.0) 360.41 348.83 

1.1 364.51 336.14 1.5 368.07 352.51 (1.1,1.5) 364.07 349.15 

1.2 368.16 336.71 2.0 371.12 352.85 (1.2,2.0) 369.12 349.25 

 

The effect of HEMS on the seasonal variation is summarised in Table 5.3. 

Although on a daily basis, there is no significant energy reduction as the appliances 

are shifted rather than curtailed, a considerable reduction in energy consumption 

(791.2 kWh) and CoEC ($ 187.03) on an annual basis using HEMS (11% reduction 

in annual CoEC). 

The efficacy of HEMS on the electricity cost in a day due to uncertainties in RTP 

or power consumption is summarised in Table 5.4. It also shows the electrocity cost 
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when uncertainties in both RTP and power consumption exist. Firstly, the mean 

value of RTP is varied during 1800-2000 hrs (with a variance of 0.1) while keeping a 

constant power consumption profile. With HEMS, the variations in RTP does not 

affect the cost of energy consumption in a day (maintained at 335 cents). Similarly, 

HEMS effect due to uncertainties in power consumption profile is observed. The 

RTP profile is fixed and the uncertainty in power consumption is modeled by varying 

the mean while keeping the variance constant at 0.1. Again, the variation in 

electricity cost is suppressed and is maintained at fixed cost of 352 cents in a day 

with HEMS. Furthermore, the uncertainties in both RTP and appliance power 

consumption are considered using variable mean and constant standard deviation of 

0.1 and electricity cost is maintained at 348 cents. It can be concluded that that 

HEMS achieves the aim of maintaining the reduced daily electricity cost of 

consumption. 

5.4.2. Results related to appliances connected to HEMS 

Characteristics and operation of Cat3 appliances are discussed in this section. 

Droop curve for set point adjustment as in 5.2.3.2 is created and fixed for a particular 

season by HEMS of a house. Value of CoEC limit (C
total

lim) and maximum possible 

value of CoEC (C
total

max) are found by plotting 90% and 99.9% of Cumulative 

Distribution Function (CDF) of CoEC respectively, for each season. Calculation of 

C
total

lim and C
total

max is described in detail below. Data dispersions are removed by 

choosing 99.9% limitation for C
total

max. 

 

Fig. 5.22 CoEC data of a house in winter season 
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Fig. 5.23 CDF of CoEC of a house during winter 

Table 5.5 Calculation of C
total

lim and C
total

max of each season for HEMS 

Season C
total

lim 

90% CDF of CoEC ($) 

C
total

max 

99.9% CDF of CoEC ($) 

Winter 3.2159 30.3262 

Autumn (Fall) 3.1266 15.1876 

Summer 3.5577 115.2029 

Spring 2.7673 13.3685 

 

 

Fig. 5.24. Linear droop curve obtained for each season for HEMS 
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Fig. 5.25 . Exponential droop curve obtained for each season for HEMS 

 

Fig. 5.26 Hot water temperature variation with exponential droop control 
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Linear droop curves obtained for HEMS for a particular house in each season 

is shown in Fig. 5.24. Values of CoEC such as C
total

lim and C
total

max in Table 5.5 are 

used for defining these curves. During winter, only the droop curves of heating loads 

are considered and during summer, only the droop curves of cooling loads are 

considered. However, during autumn and spring, droop curves of both heating and 

cooling loads are considered. Curves are selected based on customer requirement for 

cooling or heating purposes. Similarly, exponential droops for each season for a 

particular house are obtained as in Fig. 5.25. Temperature ranges are chosen for a 

particular house as in Fig. 5.24 and Fig. 5.25. However, the droop curves will change 

according to the temperature set-point preferences in each house.   

Furthermore, hot water temperature variation with exponential droop control 

for a particular house, during RTC is shown in Fig. 5.26. Similarly, room 

temperature variation is also plotted with the exponential droop control as in Fig. 

5.27. It shows that significant set point adjustment is performed during RTC by the 

use of exponential droop.  

 

Fig. 5.27 Room temperature variation with exponential droop control 
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Management Unit (HEMS) of a house at every time step. It also obtains price 

information from electricity market. When there is an increase in cost of energy 

consumption, utility defines the operating status of each controllable appliances 

according to its operating characteristics and customer input. Although RTM provides 

information of current status of appliances, it may not be sufficient for making 

appropriate control decisions. It is due to the uncertainties in electricity price 

variation, appliance operation, user behavior and preferences. Hence, a STS process 

is performed next utilizing the information of operating status of appliances. Markov 

Decision Process is used to minimize cost of energy consumption by predicting the 

appropriate curtailment of appliances based on the stochastic behavior of cost of 

consumption. Customer priorities are also intrinsically considered during the control 

process by adding constraints. Furthermore, interrupting an appliance while it is in 

operation reduces its life span and customer comfort. Constraints for appliance 

interruption are also included in STS phase. Subsequently, selected appliances are 

controlled at the third phase of RTC. Outcomes show that a significant reduction in 

cost of energy consumption is achieved also maintaining customer comfort. 
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Chapter 6  

 

Stochastic Ranking Method for Thermostatically 

Controllable Appliances to Provide Regulation 

Services 

 

Demand Response (DR) is preliminarily used for peak load shaving and 

alleviating voltage issues in an electricity feeder. However, DR can also be used for 

providing regulation services in the electricity markets. The retailers can bid in day-

ahead market and respond to real-time regulation signal by load control. This part of 

research work, proposes a new stochastic ranking method to provide regulation 

services via demand response. A pool of Thermostatically Controllable Appliances 

(TCAs) such as air-conditioners and water-heaters are adjusted using the direct load 

control method. The selection of appliances is based on a probabilistic ranking 

technique utilizing attributes such as temperature variation and statuses of TCAs. 

These attributes are stochastically forecasted for the next time step using day-ahead 

information. System performance is analyzed with a given regulation signal. 

Network capability to provide regulation services under various seasons is analyzed. 

The effect of network size on the regulation services is also investigated. Customer 

comfort is maintained by keeping the temperature within allowable limits. 
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6.1. Introduction and Related Work 

Demand Response is introduced in the electricity market to achieve peak load 

reduction, [67], [122] and eliminate adverse network voltage conditions [123] as in 

Chapter 3 and Chapter 4. It is accomplished with the participation of end users in 

electricity market by means of direct load control (Chapter 3) or indirect price 

responsive load adjustments (Chapter 4). The immediate need of network upgrade 

cost is deferred and the end users are offered either a reduced price for consumption 

[124] or rebate for load curtailments [125]. Recent studies [53]-[127] indicate that 

DR in distribution network can also be used for regulation purposes. 

The integration of intermittent renewable energy sources such as wind and 

solar requires additional generation or load devices capable of providing regulation 

services to maintain reliable and safe operation. Conventional generators may not be 

capable to provide regulation services due to practical constraints such as low ramp 

rate. Moreover, repeated exposure to system fluctuations will reduce the life span of 

conventional generators [53]. DR, whereas, is one of the promising option for 

providing short term regulation services to the network. 

Availability and flexibility to adjust Thermostatically Controllable Appliances 

(TCAs) especially Water Heaters (WH) and Air Conditioners (AC) make them ideal 

for providing regulation services via DR [126]. With the introduction of smart meters 

and in-home energy management units, it is possible to manage these appliances 

without jeopardizing customer comfort.  

The authors of [52] have proposed a method of using aggregated WHs with the 

aim of providing ancillary services. Here, a day-ahead forecasted model is used and 

control commands are broadcasted based on the predicted outcomes. Due to 

forecasted control model, there is a detection mismatch rate of 33.3%, which limits 

its usefulness to provide accurate regulation services. 

A deterministic minute to minute regulation services is proposed in [53], [127] 

utilizing aggregated loads of WHs and ACs respectively. Here, loads are prioritized 

based on temperature (i.e. if regulation raise or lower service is required, appliances 

are selected by sorting temperature values in ascending or descending order 

respectively). It coordinates expected control signals based on thermostat status of 
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previous and next time instant. However, this technique fails to focus on prediction 

of appliance status on the next time step. Prediction of appliances is extremely 

important as the appliance consumption patterns and temperature variations are 

highly uncertain.  

Regulation technique in [53], [127] is accomplished by switching selected 

appliances ON and OFF at each control step. The authors of [54] propose 

temperature set point adjustments to reduce switching actions and uses day-ahead 

load profile of appliances in the network, while neglecting the uncertainty in 

appliance consumption. A probability function for water consumption rate is taken in 

[55], but the appliance selection procedure is based on a power tracking method, 

which does not consider uncertainties in appliance power consumption. 

Contribution: Hence, research work in presented in this chapter proposes a 

new stochastic ranking method based on pairwise probabilistic comparison of TCAs 

with respect to different appliance attributes during decision making. The two 

attributes i.e. temperature variation and appliance switching status, are time varying 

and hence, their expected values are stochastically determined for next time step. As 

these attributes closely follow Markov process, the values for next time step depends 

only on the values of current time step. The probabilistic comparison of appliances 

based on various attributes is used to compute appliance ranking for a given 

regulation requirement. Customer comfort is maintained by keeping the temperature 

within allowable limits. Similar to the proposed method in [53]- [127], this research 

also considers the direct load control via instantaneous switching actions, but uses 

probabilistic measure to predict the status of attributes. Hence, this scheme 

incorporates uncertainty and hence provides better regulation services. 

The detailed background of the regulation services as well as the proposed 

stochastic ranking method is discussed in section 6.2. The mathematical models used 

for simulation and results are analyzed in section 6.3 followed by conclusions in 

section 6.4.  
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6.2. Stochastic Ranking Method for TCAs to Provide Regulation 

Services 

6.2.1. Background on Regulation Services  

Traditionally, the ancillary services market is responsible for providing 

services to manage power system reliability and security. In Australian context, the 

Australian Energy Market Operators (AEMO) offers Frequency Control (FCAS), 

Network Control and System Restart Ancillary Services. This study specifically 

focuses on FCAS regulation market, which is responsible for maintaining frequency 

within upper and lower limits (Allowable limit of 0.2 % frequency deviation i.e. 

between 49.9 and 50.1 Hz) by balancing generation and demand. AEMO offers 

regulation services using day-ahead market for all registered retailers, who submit a 

bid a day prior to the trading day for demand response.  
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Fig. 6.1. Comparison of AEMO and North American markets 

If a retailer submits a bid for regulation raise, it represents the amount of power 

that retailers can curtail from the system in a given time frame to raise frequency 

whereas, a bid for regulation lower represent the amount of power that can be added 

to the system in a given time frame to lower the frequency. FCAS sends offers of 

dispatch instructions to retailers at five minute dispatch interval in a trading day 
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[128]. Similarity of FCAS regulation at AEMO and North American Reliability 

Corporation (NERC) regulations can be summarized by Fig. 6.1. As per NERC 

standards, system operators offer frequency control services in three steps i.e. 

Primary control (10 -60 sec), Secondary control (1 -10 min) and Tertiary control (10 

min- 1 hr). The secondary control is achieved by regulation services on a minute to 

minute basis [129], similar to FCAS regulation services. The algorithm developed 

here, however, is generalized and applicable in any market around the world. 
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Fig. 6.2. Providing regulation services via DR 

Conventionally, generation companies register in ancillary services market to 

provide regulation services. Recent advancements in metering and communication 

infrastructures has enabled load serving entities (retailers) to participate via DR 

scheme.  

Initially, retailers, who are providing regulation services to the grid, submit a day-

ahead bid based on expected load availability (computed using historical load 

pattern) to the market operator for the next day. On a trading day, system operator 

offers dispatch instructions (Reg
n
 at n

th
 time step) to participating retailers at regular 
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time intervals. Retailers, upon receiving this signal, send instructions to different 

aggregators (representing a cluster of energy users and capable of taking control 

actions for a pool of appliances) to perform load adjustments. The aggregators, after 

receiving the information from retailers, perform Stochastic Ranking (SR) algorithm 

and achieve RegDR
n
 (required regulation service via DR) to match Reg

n
. The network 

diagram representing the ancillary services market for providing regulation services 

via DR is illustrated in Fig. 6.2.  
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Fig. 6.3. Schematic Control Diagram of Aggregator Controller 

6.2.2. SR algorithm performed by Aggregators 

Aggregators perform SR algorithm to provide regulation services via DR 

mechanism. SR algorithm uses probabilistic measures of different attributes and uses 

stochastic programming (SR block) to rank them for achieving desired regulation 

response (RegDR
n
). SR block consists of five steps as shown in Fig. 6.3. Using the 
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Probability Mass function (PMF) of various attributes (Step 1), the probabilities of 

appliances pairwise comparisons are calculated (Step 2). In step 3, the overall 

pairwise comparisons of appliance probability are obtained and are categorized 

according to preference (Step 4). In Step 5, the decision probability to rank 

appliances is calculated. Finally, the selected appliances according to ranking order 

are subjected to control. Information of TCAs is updated and stored in database 

which aids for calculation of attribute PMFs. Detailed description of SR algorithm 

(as summarized in Fig. 6.3) is discussed below: 

6.2.2.1. Calculation of Attributes 

Among many attributes of load appliances, temperature variation, switching 

state and power rating are most important and are discussed below: 

Attribute 1 (Temperature variations): As the appliances are subjected to 

curtailment when regulation raise service is required, only those appliances having 

higher probability to reach maximum comfort are selected i.e. heating appliances 

with higher temperature and cooling appliance with the lower temperature are 

suitable. Similarly, during regulation lower services, appliances are re-connected to 

the network, and therefore only those appliances having higher probability to reach 

minimum comfort are chosen. Therefore, attribute 1, AT1i
n∈ [0,1] for i

th
 appliance at 

n
th
 time step, is defined as a normalized measure of temperature (room temperature 

for an AC and tank water temperature for a WH) as per (6.1). AT1i
n
 can be used as a 

measure of customer comfort. 
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Where Ti
db

 is dead-band of i
th

 appliance; Ti,actual
n 

, Ti,min
n
 and Ti,max

n
 are actual, 

minimum and maximum allowable temperature for i
th
 appliance at n

th
 time step 

respectively. For the easiness of probabilistic computation, a continuous variable, 

AT1i
n∈ [0,1], is converted to a discrete grey stochastic variable, ATG1i

n∈ [1,10], with a 

discrete step size of 0.1 [131]. In general, a grey variable can be defined as a number 
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to represent a range of values. For example, Table 6.1 shows the values of the grey 

stochastic variable, ATG1i
n
, for AT1i

n
 under different regulation request.  

Table 6.1 Definition of Grey Variables for AT1i
n
 

AT1i
n
 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) … [0.9,1.0) 

Reg
n
>0 1 2 3 4 … 10 

Reg
n
<0 10 9 8 7 … 1 

For regulation raise services (Reg
n
>0), ATG1i

n
 is incremented from 1 to 10, with 

an increment of 1. Whereas, for regulation lower services (Reg
n
<0), ATG1i

n
 is 

decremented from 10 to 1. 

Attribute 2 (Switching states of TCAs): The status of the appliance is another 

important attribute for regulation services as it provides probabilistic information of 

appliances’ current switching state. It helps to find appliance with correct switching 

state for control. Therefore, attribute 2, AT2i
n
= { 0 , 1 }  for i

th
 appliance at n

th
 time 

step, is defined as either ‘OFF’= ‘0’ or ‘ON’= ‘1’. Although, AT2i
n
 , is discrete 

variable, the grey variable, ATG2i
n
, is introduced for the purpose of grading 

appliances with higher probability of being in ‘ON’ status during regulation raise 

services and ‘OFF’ status during regulation lower services. For regulation raise 

services (Reg
n
>0), ATG2i

n
 is assigned ‘OFF’= ‘1’ and ‘ON’= ‘2’. Whereas, for 

regulation lower services (Reg
n
<0), ATG1i

n
 is assigned ‘OFF’= ‘2’ and ‘ON’= ‘1’. 

Attribute 3 (Power rating of TCAs): The power ratings of TCAs can be used 

to grade appliances so that appliance with higher power rating is chosen for 

regulation services. Hence, attribute 3, AT3i
n
, for i

th
 appliance at n

th
 time step, is 

introduced and takes the value of the rating of i
th

 appliance for both regulation raise 

(Reg
n
>0) and regulation lower (Reg

n
<0) requirement. The importance of AT1 is to 

provide maximum comfort to customers during regulation control. Attribute AT2 aids 

to choose appliance with the correct switching state to satisfy requirements. 

Furthermore, attribute AT3 is introduced to select appliances with the high power 

ratings so that number of control commands is reduced. 
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6.2.2.2.  SR block 

Using the information from three attributes, the SR block performs following 

five steps to rank the loads: 

Step 1: Defining Probability Mass Function (PMF) of attributes- PMF of 

ATG1i
n
 and ATG2i

n
 for i

th
 appliance at n

th
 time step is calculated using historical data of 

appliance consumption pattern. It is assumed that the first two attributes follow 

Markov process. Markov property of a stochastic variable illustrates that given the 

present value, the future is independent from the past. If ATGki
n
, the k

th
 attribute, is 

currently in hx
th
 grey score, the probability of it being in hy

th
 grey score at next time 

step can be defined as Pxy,i
n+1

 as in (6.2) and is computed using the algorithm below. 
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Historical data of appliance consumption pattern for 91 days in a season is 

obtained. Number of days (Nxy
i
) is counted subjected to transitions of grey scores 

from hx
 
to hy. for k

th
 (k=1,2) attribute of i

th
 appliance at n

th
 time step. It is repeated for 

all possible grey scores, and the total number of days are obtained as ∑Nxy
i 
, where 

y={1,2,…,M}. Ultimately, transition probability, Pxy,i
n+1

, is computed as a ratio of 
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Nxy
i 
and ∑Nxy

i
. This process is repeated for each appliance at each time step in a day. 

Furthermore, a transition block is created at n
th
 time step for a particular season as in 

(6.3). Here, M is number of grey scores. This transition block (TR) is used to 

compute PMF, gi
n
(ATk), for i

th
 appliance at n

th
 time step for k

th
 (k=1,2) attribute as 

represented in (6.4). If the grey score at current time step is known as hx, then hx
th

 

row of transition block gives the values of PMF as the probabilities of all grey scores 

at (n+1)
th
 or next time step. Here, hm is M

th
 grey score. 

MyxTR MM
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Fig. 6.4. Obtaining PMF from transition block 

Fig. 6.4 further illustrates the way of obtaining PMF from transition block. 

ATGki
n
 and ATGkj

n
 of i

th
 and j

th
 appliances are considered as two independent discrete 

random variables with PMF of gi
n
(ATGk) and gj

n
(ATGk), where ∑gi

n
(ATGk)=1 and 

∑gj
n
(ATGk)=1 for -∞ < ATGk < +∞. 
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Step 2: Pairwise comparison of probability for individual attributes- The PMF 

of (ATGki
n
-ATGkj

n
) is defined as fij

n
(ATGk), which represents the comparison of i

th
 and 

j
th
 appliances with respect to k

th
 attribute as in (6.5). Furthermore, P(ATGki

n
=ATGkj

n
) is 

defined as in (6.6). Finally, the pairwise comparison of probability for ATGki
n
 being 

greater than ATGkj
n
 is defined as in (6.6).  
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Unlike the first two attributes, ATG1i
n
 and ATG2i

n
, the third attribute, ATG3i, is 

not time varying and the probability for pairwise comparison of appliance is defined 

deterministically as in (6.8).  
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If the energy rating (Ei
rating

) of i
th

 appliance is greater energy rating (Ej
rating

) of j
th

 

appliance, probability of ATG3i being greater than ATG3j is ‘1’, otherwise ‘0’. 

Then, a block of pairwise comparison of probabilities for each attribute is 

constructed as in (6.9) and (6.10), using the above probability computations [132] . 

The diagonal elements of these blocks do not comprise of useful values. Here, Napp in 

the number of total available appliances in the network for regulation.  

appNN

n

Gkj

n

Gki

n

compAT NjiATAT
appappk

  ,1)]([, PP  (6.9) 

appNNjGiGcompA NjiATAT
appapp

  ,1)]([ 33,3
PP  (6.10) 

Step 3: Computation of probability with combined attributes- In step 2, 

pairwise probabilistic comparison of appliances based on individual attributes are 

obtained. However, analyzing the overall performance of appliances with a proper 

coordination of three different attributes is vital. Therefore, the overall probability for 

pairwise comparison of appliances is computed in Step 3. 
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There are two possible outcomes during comparison of i
th
 and j

th
 appliance 

with respect to k
th

 attribute. (i.e. if ATGki
n
> ATGkj

n 
is true, a binary outcome is defined 

as uk,ij
n
=‘1’ and otherwise ‘0’. It shows that, there are 2

3
=8 combinations of possible 

outcomes for pairwise comparison with the proposed three attributes. These 

combinations are shown in (6.11) where Uij
nq

={(0,0,0), (1,0,0), (0,1,0),…….., 

(0,1,1), (1,1,1)} for all q={1,2,…..,8}.  
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Finding the probability (p
n.q

i>j, overall) of obtaining q
th

 possible results when i
th

 

appliance is compared with j
th
 appliance with respect to all three attributes is 

represented as in (6.12), which is used to form an overall probability, P
n.q

overall, as in 

(6.13) and contains probabilities of pairwise comparison for all appliances in the 

network at n
th
 time step.  

Step 4: Classification of possible outcomes- As there are 2
3
 combinations of 

possible pairwise comparisons, the classification for Uij
n.q

 will help in improving 

computational speed and avoid the negative effect of undesirable values of Uij
n.q

. The 

three classes, as per classification rule [131], are as below: 

Most preferable Uij
n.q

: If sufficient results exist to prove that i
th
 appliance is 

preferable than j
th
 appliance  

Unresponsive Uij
n.q

: If there is no sufficient results exist to prove that 

appliance i
th
 appliance is preferable than j

th
 appliance  

Not preferable Uij
n.q

: If sufficient results exist to prove that i
th
 appliance is not 

preferable than j
th
 appliance 

This helps in providing conditions for deciding one attribute over the other. A 

threshold value, λ, and the weightage of the three attributes are chosen as 0.6 and 

[0.4 0.3 0.3] respectively. Rule used for classification is shown in Table 6.2 and Fig. 
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6.5. It shows the influence of attributes with their respective weights. At least two 

indicators are essential for making decisions. 

0 0.4 0.6 1

Not preferable unresponsive Most preferable
 

Fig. 6.5. Categorizing the possible results into groups 

Next, probabilities for the above classified groups are computed, which is the 

addition of P
n.q

overall for the selected combination of attributes (i.e. z
th

 classification 

Clz) as in (6.14). 
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Table 6.2 Categorizing possible results 

Classification Condition q Uij
n,q

 

Most Preferable if Uij
n,q

 x w
T

λ {4, 6, 7, 8} {(1,1,0), (1,0,1), 

(0,1,1), (1,1,1)} 

Unresponsive if Uij
n,q

 x w
T

λ {} {} 

Not preferable if (1- λ)< Uij
n,q

 x w
T
<λ {1, 2, 3, 5} {(0,0,0), (1,0,0), 

(0,1,0), (0,0,1)} 

Step 5: Ranking based on decision probability: Finally, (6.15) is used to 

calculate the combined probability matrix for appliance ranking.  

n

Cl

n

Cl

n

D 21
5.0 PPP   (6.15) 





























































n

ND

n

ND

n

D

n

D

n

ND

n

D

n

ND

n

D

n

D

n

D

appapp

app

app

21,1,

23,13,

2,12,

1,31,21,

PP

PP

PP

PPP

P  (6.16) 

ixNiii n

NiD

n

iD

n

iD   ,2,1,))()2()1(( PPPP   (6.17) 







124 

 

app

N

N

ixx

n

xiD

n

rank Ni

app

app

,.......,2,1

1
,1

, 












PP  
(6.18) 

 

The decision probability matrix, PD
n
, is the addition of most preferred 

probability matrix and 50% of the unresponsive matrix as shown in (6.15) and gives 

the probabilities of i
th

 appliance being greater than the j
th

 appliance in n
th

 time step as 

shown in (5.16). PD
n
, comprises of overall stochastic comparison of appliances 

which is used for ranking appliances. 

The events represented by each row of PD
n
, are independent such that 

probability of occurrence of one event does not influence the probability of other. 

Hence, the probability of i
th

 appliance is being greater than x
th

 appliance where 

x=1,2,…….,N x i can be easily obtained as using (6.17). Finally, the probability of 

every appliance being greater than the i
th

 appliance is calculated using (6.18) using 

PD
n
. The appliances are ranked from the maximum to minimum probability of Prank

n
. 

Appliance with a highest rank has the maximum probability to be greater than other 

appliances considering all attributes. 

6.3. Modeling and Simulation Results 

A test aggregator network consisting of 30 houses is considered to verify the 

algorithm for regulation services. Network topology as in chapter 3 is considered 

during the study with 10 houses per phase in a feeder. A sample regulation signal is 

taken, which is send from a retailer to the aggregator. All houses are assumed to have 

both ACs and WHs and are connected through in-home energy management units. 

These units have the capability to obtain time varying temperature and appliance 

power data, which is required by retailers for providing regulation services. 

MATLAB software is used to perform all simulations with 5 minute time step for 24 

hours. 

6.3.1. Mathematical models for TCAs (ACs and WHs) 

ACs and WHs are considered as TCAs which operate within a predefined 

dead-band around a temperature set point. A continuous time varying models of WH 

and AC are used in this study and are discussed below. 
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AC: A thermal model of a house, based on a heat flow circuit is developed and 

the room temperature variation is modeled as in (19). 
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(19) 

Here, n- n
th
 time step in a day, Ta- ambient temperature, Tm- mass temperature 

of the house, Tr- room temperature of the house, ψac- thermal mass capacity of inter 

ior air, Ua- heat loss coefficient, Hm- interior mass conductance of the house, Qac- 

energy input rate of AC and Kac- state of AC thermostat (if Kac=1 AC is switched ON 

and OFF otherwise) [54], [130]. Heating and cooling set points of AC have a 

nominal value of 75°F and 80°F respectively. Further dead-band of AC is considered 

to have a nominal value of 1°F during simulations. The variation in the capacity of 

ACs across different houses is modeled as normal distribution with mean of 2.5kW 

and variance of 0.1. 

WH: A first order differential equation as in (20) for the energy flow of a WH 

is used to model their temperature characteristics [119], [53]. 
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Here, Tw- water temperature, Tin- inlet cold water temperature, Qwh- energy 

input rate, G- standby heat loss of the tank, B- heat consumption rate of water, ψw- 

thermal capacity of water in the tank, Kwh- state of WH thermostat. Set point and 

dead-band of WH have a nominal value of 120°F and 2.5°F respectively. The 

variation in the capacity of WHs across different houses is modeled as normal 

distribution with mean of 3.5kW and variance of 0.1. Detailed model of ACs and 

WHs are discussed in Appendix A.  

For example, in a typical winter day (in Brisbane Australia), the power 

consumption profile of a single AC and WH is shown in Fig. 6.6 and Fig. 6.7 

respectively. AC maintains room temperature within preferable limit by its switching 

actions performed by thermostat. Room temperature is compared with ambient 

temperature as in Fig. 6.6. 
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Fig. 6.6. Normal operation of an AC of a house 

 

Fig. 6.7. Normal operation of a WH of a house 

 

Fig. 6.8. Maximum available loads for regulation in 30 houses network 
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Fig. 6.9. Regulation requirement for network with 30 houses 

 

Fig. 6.10. Comparing network performance for a sample regulation service 

 

Fig. 6.11. Number of controls during regulation 
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Fig. 6.12. Comfort of TCAs in the network as per (1) 

 

Fig. 6.13. Operation of an AC when providing regulation services 

 

Fig. 6.14. Operation of a WH when providing regulation services 
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Fig. 6.15. Decision Probability at 1000 hrs (regulation raise services) 

 

Fig. 6.16. Ranking of appliances at 1000 hrs 

The power consumption profile of AC to maintain this room temperature is 

also shown in Fig. 6.6 Similarly, WH maintains temperature of hot water within a 

preferred limit is shown in Fig. 6.7. Respective power consumption profile of WH 

along with the water consumption of a house is also illustrated in Fig. 6.7. 

6.3.2. Small network with 30 houses 

Using weather forecasting data for a given area and the availability of 

appliances in the previous day, the expected load availability for the network is 

calculated by the retailer. Day-ahead network simulations are run without any 
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controls to calculate the maximum amount of regulation services that can be offered 

in next 24 hrs. It is obtained by calculating available TCAs, which can be used for 

both regulation raise and lower services without violating comfort. The maximum 

possible regulation services that can be offered by the given test network are shown 

in Fig. 6.8. This is required for biding purposes and retails can provide regulation 

services up to this maximum limit. 

Fig. 6.9 shows a sample regulation signal having a “regulation raise” 

requirement of 15kW between 500 hrs- 1100 hrs and a “regulation lower” 

requirement of 21kW between 1100 hrs and 1700 hrs. A simple exponential function 

with normal Random variable is used to generate this signal. Here, it is assumed that 

the same signal is send to the aggregator to provide regulation services. Fig. 6.10 

shows the regulation services provided by the network, which matches well the 

required regulation signal. The number of control commands issued by the 

aggregator is shown in Fig. 6.11. Thirteen numbers of appliances are adjusted to 

satisfy the peak regulation requirement of 35 kW at 1100 hrs. Appliance comfort 

level is maintained within the allowable temperature range as shown in Fig. 6.12. 

Table 6.3 Comparison of regulation services with three different networks 

No of 

Houses 
Time 

Average “regulation raise”  

capability (kW) 
Average number of controls 

Error% 

Winter Autumn Summer Spring Winter Autumn Summer Spring 

30 

0700 hrs 15.73 13.48 18.82 13.72 6.210 4.84 8.10 4.42 10.84 

0900 hrs 28.83 17.74 25.58 22.57 7.00 5.69 7.59 5.19 12.01 

1230 hrs 28.60 25.39 48.87 21.94 8.220 7.21 10.15 6.35 04.77 

0230 hrs 14.59 11.22 18.83 10.85 4.610 2.86 4.91 2.85 12.88 

120 

0700 hrs 70.72 45.64 79.23 59.11 25.74 19.06 21.84 16.41 02.04 

0900 hrs 118.39 63.58 131.61 83.61 26.25 22.42 28.46 21.48 02.65 

1230 hrs 139.42 109.5 200.06 85.11 30.63 26.59 40.50 25.86 01.76 

0230 hrs 54.69 45.98 73.65 52.43 18.51 10.55 19.31 12.35 02.88 

960 

0700 hrs 563.30 428.3 544.9 474.52 203.9 148.8 270.1  146.4 00.85 

0900 hrs 873.10 563.3 777.0 609.27 237.3 180.6 248.1 172.4 00.94 

1230 hrs 1032.4 732.7 1661.3 755.48 256.1 216.4 328.6 191.6 00.17 

0230 hrs 468.10 426.5 553.0 383.22 162.6 95.05 159.5 87.71 00.52 

The power consumption and temperature variation of TCAs in a single house 

in the network, while providing regulation services are shown in Fig. 6.13 and Fig. 
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6.14. During “regulation raise” requirement, as the selected appliance is switched off, 

it remains switched off until it reaches minimum temperature. For example, selected 

WH as in Fig. 6.14 is subjected to its first “regulation raise” control action at 0550 

hrs and switched off. It remains switched off until it reaches its minimum 

temperature level at 0610 hrs and is reconnected. Similarly, during “regulation 

lower” requirement, as the selected appliance is switched on, it remains on until it 

reaches the maximum allowable temperature. For example, selected WH as in Fig. 

6.14, is subjected to its first “regulation lower” control action at 1136 hrs and is 

switched on. It remains switched on, until it reaches its maximum temperature level 

at 1146 hrs and is disconnected. Similar behavior of all other TCAs in the network is 

observed.  

The aggregator ranks the appliances using probabilistic pairwise comparison. The 

graph of decision probability of comparing i
th

 and j
th
 appliances at 1000 hrs, during 

regulation raise services, is shown in Fig. 6.15. It shows that PD,i>j=1- PD,j>i. For 

instance, decision probability of 58
th

 appliance being greater than 3
rd

 appliance is 

PD,58>3=0.57 and decision probability of 3
rd

 appliance being greater than 58
th

 

appliance is PD,3>58=0.42. Then, the ranking probability as in (6.18) is computed 

using decision probability in Fig. 6.15 and obtains appliance ranking as shown in 

Fig. 6.16.  

6.3.3. Providing regulation services in different season in a year 

For a network with 30 houses, the maximum possible “regulation raise” 

services provided by the network in four different seasons are shown in Table 6.3. 

The regulation raise availability from the network is available in 5 minute interval, 

only the average value for that hour is listed here. The ambient temperature data for 

different seasons in Brisbane, Australia is used for this analysis [91]. Further, hot 

water consumption rate for different seasons in a weekday of a typical household 

with four members is also used for this simulation [133].  

Due to the availability of more AC units, more “regulation raise” service is 

possible during 0500-0900 hrs in winter season. Here, the average possible 

regulation during winter is 28.83 kW, compared to 17.74kW in autumn; 25.58 kW in 

summer and 22.57 kW in spring. However, during summer, “regulation raise” is 
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possible due to the availability of AC units mostly throughout the day. For instance, 

at 1230 hrs, the average possible regulation during summer is 48.87 kW, which is the 

highest value comparing to other seasons (winter: 28.60, autumn: 25.39, spring: 

21.94 kW). This is true for any time during a day except 0500-0900 hrs.  

Error percentage in Table 6.3 shows the deviation of required average 

regulation with the actual regulation provided by the network (using regulation signal 

of Fig. 3.9). The value shown is an average for all four seasons. For example, in a 

network with 30 houses, the error percentage is minimum (4.77%) at 1230 hrs 

compared to any other time of the day (0700 hrs: 10.84%, 0900 hrs: 12.01%, 0230 

hrs: 12.88%). The more is the “regulation raise” available capability, the lesser is the 

error percentage. The network has more availability of distributed loads to match the 

required signal at noon time. Further, the average number of control actions for the 

network with 30 houses can reach up to 10.15, during summer season, when there is 

48.87 kW of “regulation raise” capability. 

6.3.4. Providing “regulation raise” services from the network of different sizes 

Analysis of regulation data for three networks of 30, 120, 960 houses is 

presented in Table 6.3 for four seasons. During winter, more regulation service is 

possible during 0500-0900 hrs. For instance, consider network with 960 houses at 

0900 hrs. There is a maximum possible regulation of 873.10 kW in comparison with 

only 563.3 kW in autumn and 777 kW in summer. During summer season, average 

“regulation raise” capability of the network is at its maximum of 1661.3 kW at 1230 

hrs when compared with other seasons in a year (winter: 1032.4 kW, autumn: 732.7 

kW, spring: 755.48 kW).  

Furthermore, the error percentage is reduced as the number of appliances 

available for regulation services increase. This is because of the accuracy in 

balancing power signals with increased number of controls. Hence, the network with 

960 houses has a reduced error percentage, compared to the networks with 30 and 

120 houses. For example, at 1230 hrs, the error percentage is 0.17% in 960 house 

network, compared to 4.77% in 30 house network. 
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6.4. Conclusion and Summary 

This part of research work, proposes a new control method for a pool of TCAs 

utilized for regulation services. Market operator will broadcast the regulation signal 

to retailer in real-time. The retailers pass it on to the aggregators, who perform direct 

load control using stochastic ranking method.  

A stochastic pairwise comparison of appliances is conducted based on three 

attributes such as temperature variation, status and power rating of TCAs. 

Probabilistic nature of these attributes are computed using Markov property where 

probability of attribute at a future time step can be found based on its current status. 

Efficiency of this scheme is verified through network simulations for a given 

“regulation raise” and “regulation lower” signals. Required regulation is achieved 

with the allowable limit of overrides. It shows the robustness of the system. A 

minimum deviation of less than 1% from expected regulation services is obtained 

and system robustness is assured with the capability of providing regulation even 

with 10-40% of unexpected customer override signals. 

The TCAs connected to the network are adjusted for the next time step. 

However, uncertainty in appliance consumption and seasonal temperature variations 

make appliance selection process difficult. 
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Chapter 7  

 

Conclusions 

 

In this thesis, the four important contributions made by DR to the future smart 

distribution grid are addressed and efficient approaches are proposed to improve 

system reliability and customer satisfaction. This chapter summarizes the proposed 

methods and draws the conclusions from the research. The limitations of the study 

are noted, and recommendations are made for future work. 

7.1. Research Summary and Contributions 

The initial part of this research proposed an improved DR option for a 

residential distribution system using a customer reward scheme. This work was done 

with the primary purpose of reducing network peaks and improving voltage in 

residential feeders. The deployment of two-way communication infrastructure with 

smart meters and in-home display units is required for this scheme. A decision-

making process to appropriately adjust residential appliances was developed, 

reflecting appliance flexibility, satisfaction and priority. Customers would be 

encouraged to participate in this scheme through a fully-fledged reward mechanism. 

This reward mechanism is based on customer participation in load shifting and 

associated voltage improvement within the feeder. The impacts of the proposed 

method on both the electric utility and customers were analyzed. It was concluded 

that the electric utility would benefit from the improved feeder voltage and removal 

of the network peaks. Customer satisfaction and appliance usage patterns in this 

reward scheme were investigated. The results showed that considerable discomfort 
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was tolerated by customers, which was compensated by the proposed rebate 

program. Hence, the proposed DR via customer reward scheme can be successfully 

implemented in a real electricity distribution network to defer the transformer 

upgrade costs and also maintain network reliability. In addition, customer 

satisfaction can be confirmed through the rebate scheme.  

Current electricity networks apply price-responsive demand schemes for the 

residential distribution network. RTP is a promising option which benefits the 

electric utility by removing the peak demand and wholesale price spikes in the 

network. It has an added advantage of providing flexibility to customers to adjust 

their loads in contrast with the proposed reward-based DR scheme. Hence, an 

improved real-time pricing scheme for customers is proposed to alleviate voltage 

violations, peak load problems and unexpected wholesale price spikes. This RTP 

scheme contains three price components reflecting power consumption, adverse 

network voltage conditions and unexpected wholesale price spikes. It was tested on a 

sample residential distribution system and the performance was analyzed. The results 

showed that the active participation of customers can lead to a reduction in the cost 

of their consumption through appropriate load adjustments. In addition, an algorithm 

was proposed for indicating appropriate loads that can be controlled by a customer. 

In the proposed RTP scheme, customers are given the flexibility to make decisions 

for appliance control in a smart home environment. The results validated that the 

impact of the proposed RTP scheme did not hamper the appliance usage patterns 

among customers. The proposed scheme also ensured the elimination of network 

peaks, adverse feeder voltage conditions and wholesale price spikes.  

DR via customer reward scheme and the RTP scheme provides benefit to 

customers through incentives and cost reduction respectively. Incentive provided to 

an average household through a DR via customer reward is found to be 28.9 % 

whereas the cost reduction achieved by an average household from a RTP scheme is 

20.8 %. Hence, DR via customer reward provides more economic benefit to the 

customers for allowing forced load adjustments in comparison with RTP scheme. 

Residential customers are only considered for both studies. 

Active and effective customer participation in the proposed RTP scheme would 

only be possible with a guaranteed automated HEM system. Hence, this research 
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continued to focus on an efficient algorithm for real-time HEM units for reducing the 

cost of energy consumption in a house. This research work is unique in regard to the 

proposed appliance scheduling, as it considers the uncertain nature of RTP and 

appliance power consumption. The operation of the proposed HEM scheduler is 

divided into three phases, namely, real-time monitoring, stochastic scheduling and 

real-time control of appliances. Simulations are conducted every four minutes in a 

day. During the real-time monitoring phase, the electric utility remotely monitors 

appliances connected to the HEM system at every time step. The electric utility also 

obtains wholesale price information from the electricity market to broadcast the real-

time price to customers. When the cost of consumption in a house is above an 

average limit, the electric utility defines the operating status of appliances 

considering the operating characteristics and customer input of controllable 

appliances connected to HEM system. The information obtained during the real-time 

monitoring phase may not be sufficient to make appropriate control decisions for 

scheduling appliances. This is due to the uncertainties in electricity price variation, 

appliance operation, user behavior and preferences. Hence, the real-time monitoring 

phase is followed by a stochastic scheduling process which utilizes the information 

obtained in the real-time monitoring phase to stochastically schedule the appliances. 

The main objective of the stochastic scheduling phase is to minimize the cost of the 

energy consumption. The Markov decision process is used to achieve the objective 

by accurately predicting the appropriate curtailment of appliances based on the 

stochastic behavior of the cost of consumption. Constraints are added to intrinsically 

maintain customer comfort and appliance priority. Constraints for allowable 

interruptions are also included in order to prevent reducing the life-span of the 

appliances while also maintaining customer satisfaction. Subsequently, the appliance 

selected during stochastic scheduling phase is subjected to control in the real-time 

control phase. The stochastic decision process ensures the incorporation of 

uncertainties. Simulations are conducted in short timeframes to achieve the four 

minute control steps. The outcomes validated a significant reduction in the cost of 

energy consumption and the maintenance of customer satisfaction. This ensures the 

efficient utilization of the RTP scheme.  

The DR option can be utilized for the purpose of providing regulation services. 

Hence, a new control method applied on a pool of thermostatically controllable 
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appliances for providing regulation services was recommended as part of this 

research. In the proposed method, an ancillary services market environment is 

created with a market operator, broadcasting regulation signals to retailers in real 

time. Retailers pass the obtained signal to aggregators, who are responsible for 

performing load control actions using a stochastic ranking method. A probabilistic 

pairwise comparison of appliances is conducted based on appliance attributes 

(namely, temperature variation, appliance power status and appliance power rating). 

The Markov property is utilized to compute the probabilistic nature of these 

attributes. This is done by assuming that the probability of an attribute at a future 

time step can be found based on its current status. The ranking method incorporates 

the contribution of all three attributes. The efficiency of this scheme is verified 

through a given regulation raise and lower signals. This ensures that the required 

regulation can be achieved by allowing limited overrides in the network. In this 

study, the deviation of the actual load curtailment from the required regulation signal 

was calculated. It confirmed that less than one percent of deviation can be expected 

in a network with 960 houses. It also allows 10-40% of unexpected customer 

override signals during simulations.  

7.2. Proposed Future Work and Suggestions  

The initial part of this research proposed a DR technique via a customer reward 

scheme. This reward scheme is based on the benefits obtained by the electric utility 

by time-shifting demand and removing voltage violations. However, the benefits 

obtained by deferring the system upgrade costs were not studied. The investment in 

communication infrastructure in the residential distribution network should also be 

considered when identifying the benefits of this scheme. Hence, a detailed study 

based on the cost-benefit analysis should be conducted.  

In addition, the proposed RTP scheme reflects power consumption, adverse 

voltage conditions and wholesale price spikes. It can be further improved by 

including the feed-in tariffs from roof-top PV cells and special provisions for plug-in 

electric vehicles. The introduction of PV cells and plug-in electric vehicles to the 

residential distribution network has a significant impact on creating adverse network 

conditions. Hence, improvement in RTP is a promising research area which can be 

studied on a future electricity grid.  
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The proposed RTP scheme in Chapter 4, considers fixed energy limit for every 

house, in order to define the electricity price components. Similarly, rebate scheme 

developed in Chapter 3, considers a fixed energy limit for every house to define the 

rebate values due to load curtailments. However, different energy limit for each 

house should be considered in order to prevent adverse effect on customers who 

consume less than the average customer. This can be achieved by computing the 

annual average energy consumption limit for each house. Therefore, energy limit for 

each house due to diversified load profiles is expected to be included in future.  

The proposed HEM scheduler to facilitate the RTP scheme ensures that the 

cost of energy consumption in a residence is reduced. However, the uncoordinated 

control of the proposed HEM scheduler may create unexpected network peaks during 

off-peak periods. Hence, the stochastic coordination of the HEM scheduler in a 

residential electricity network should be studied extensively to ensure a reliable 

network. 

HEM scheduler developed in third phase of the research can include both 

market variability and weather forecast as separate Markov processes. The stochastic 

nature of market variability, temperature sensitivity effects scholastic scheduling of 

loads. Therefore, an improved HEM scheduler can be developed in future, with the 

incorporation of both variables. 

Furthermore, different perceptions of appliance models can be included. For 

example, characteristics of air-conditioners such as fan and cooling operation can be 

considered. The lock-out time of air-conditioners has an implication in real time 

control. Therefore, a delay should be added during the control actions, reflecting the 

lock-out time. Moreover, different operation status of clothes washer can also be 

considered such as ‘cold water wash’. 

This research is carried out in four different phases. Reducing network peak 

and voltage violations are the main objective of first research phase. Second phase 

includes the reduction of wholesale price spikes as well. Reduction in the cost of 

energy consumption in each house is considered in third phase whereas the fourth 

phase considers frequency regulation services. However, a demand response method 

considering all four objectives together is not yet studied. Therefore, a study which 

considers the objectives of all four phases should be conducted in future. 
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Incorporation of batteries with the demand response developed by the integration of 

four objectives can also be studied in future.  

Additionally, communication capabilities of the DR schemes developed during 

this research should be studies. Sociological aspects of the developed schemes 

should also be focused to find the customer interest and participation rates.    
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Appendix A 

Detailed controllable appliance models such as WH, AC, PEV, DW, WA, DR 

and PP are discussed here. They are used for the research simulations. 

 Model of WH 

Energy flow equation in a WH is used to model the characteristics of it. It 

represents a first order differential equation for water temperature as in (A.1). It is 

briefly discussed in section 5.2.1 and section 6.3.1.  
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Where, n- time step, Twh
n
- hot water temperature at time n

th
 time step, Ta- 

ambient temperature, Tin- inlet cold water temperature, ψw- thermal capacity if water 

in the tank, Qwh- energy input rate, G- standby heat loss of the tank, B- heat 

consumption rate of water, Kwh- state of WH thermostat [119], [53]. Here, G, B and 

ψw can be calculated from (A.2), (A.3) and (A.4).  

SAUG   (A.2) 

ww

nn
wFB    (A.3) 

www Vol    (A.4) 

Where, U- stand-by heat loss coefficient, SA- surface area of the tank, σw- 

density of water, Vol- volume of water tank, Ωw- specific heat of water and Fw
n
 

average hot water draw at n
th
 time step. Values used for a WH model is tabulated in 

Table A.1 as per [119], [136]. Ambient temperature data is obtained from [91] for 

Brisbane, Australia. Furthermore, hot water flow rate hourly profile as per [133] is 

obtained with the information as in (A.5). Values proposed in [133] are used for 

constant values from a1-a13.  

Meanings for the symbols in (A.5) are as follows. Fw(nH) – hot water use in a 

house per hour; Nperson- number of persons in a house; Ninfants- Number of children 

between 0-5 years old; Nchildren- Number of children between 5-13 year old; Nadults- 

number of adults over 14 years old; Tset
nH

- set point of WH; Vol- Volume of WH 
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tank; Tin- WH inlet water temperature; Ta
nH

- ambient temperature, Kat home- presence 

of adults at home; Kspring, Ksummer, Kautumn and Kwinter are binary state to represent 

respective seasons; KWA- coefficient for the impact of clothes washer; KDW- 

coefficient for the impact of dish washer; Ksenior- coefficient for representing senior 

only house; Knot paying- Coefficient for house which does not pay for hot water. Hot 

water consumption rate Fw(nH), used in our study for a particular house in a day in 

shown in Fig. A.1.  

Table A.1 Data used for WH model 

Symbols Values Values in SI unit 

Tin 60°F 15.56 °C 

σw 8.34 lb/gal 0.02 kg/liters 

Vol 50 gal 189.27 liters 

Ωw 1 Btu/lb°F 6.461x10
-4 

kWh/kg°C 

Kwh
n
 1-‘ON’, 0-‘OFF’ 1-‘ON’, 0-‘OFF’ 

kW to Btu/hr unit conversion 3413 - 

G 3.6 Btu/°F hr 0.0011 kW/°C 

Qwh 3.5 kW 3.5 kW 
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Fig. A.1. Hot water flow rate of a house in a day during each season 

0 6 12 18 24
0

2

4

6

8

10
Water Flow rate

Time (hrs)

W
at

er
 f

lo
w

 r
at

e 
(g

al
/h

r)

 

 

Winter

Fall

Summer

Spring



144 

 

Thermostat operation is achieved by monitoring water temperature Twh
n
 at n

th
 

time step. Logic controls as in (A.6)-(A.7) are used. (i.e. thermostat maintains water 

temperature in between (T
set

wh ± T
db

wh) by controlling operation of water heater). 

Here, Kwh
n
 is the control logic for thermostat (if Kwh

n
=1 WH is switched ON and OFF 

otherwise). T
set

wh is the set point of water heater and has a nominal value of 120 °F. 

T
set

wh variation can be allowed in between 100- 140°F as per [119]. Further, 

temperature deadband T
db

wh is considered as 2.5 °F and Pj
n
 is power rating of WH 

modeled as normal distribution with mean of 3.5kW and variance of 0.1.  
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 Model of AC 

Similarly, model of an AC is studied as in [54], [130]. Here, room temperature 

of a house is modeled as in (A.8).  
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(A.8) 

Where, n- n
th

 time step in a day, Ta- ambient temperature, Tm- mass 

temperature of the house, Tr- room temperature of the house, ψac- thermal mass 

capacity of interior air, Ua- heat loss coefficient, Hm- interior mass conductance of 

the house, Qac- energy input rate of AC and Kac- state of AC thermostat (if Kac=1 AC 

is switched ON and OFF otherwise). Table A.2 shows the data used for the modeling 

of an AC. 

Heating and cooling set points of AC have a nominal value of 75°F and 80°F 

respectively. Further dead-band of AC is considered to have a nominal value of 1°F 

during simulations. The variation in the capacity of ACs across different houses is 

modeled as normal distribution with mean of 2.5kW and variance of 0.1. Thermostat 
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operation of an AC as a heating load is illustrated in (A.9)-(A.10). Equations (A.11)-

(A.12) shows the thermostat operation of an AC as a cooling load.  

Table A.2 Data used for AC model 

Symbols Values Values in SI unit 

Ua 522.12 Btu/°F.hr 0.153 kW/°C 

Hm 7052.9 Btu/°F.hr 2.067 kW/°C 

ψac 1080 Btu/°F.hr 0.317 kW/°C 

Qac 1.2 kW 1.2 kW 

kW to Btu/hr unit conversion 3413 - 

Kac
n
 1-‘ON’, 0-‘OFF’ 1-‘ON’, 0-‘OFF’ 
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 Model of PEV 

Mathematical model in PEV is built using the data in [118]. Initially, the 

charging slope of PEV battery is calculated. Charging slope of the battery can be 

defined for two different modes of battery operation. They are, slow (CH1) and 

normal charging (CH2). Power consumption of slow (Pcharging
CH1

) and normal 

charging (Pcharging
CH2

) of battery can be found in Table A.3. Power consumption data 

is used for the calculation of total charging cycle duration of the battery as in (A.13). 

Charging cycle duration (Гtotal
CHk

) is found by dividing the nominal capacity of the 
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battery (Enominal) by the power consumption (Pcharging
CHk

) for k
th
 charging mode. Then, 

the slope of charging (Slcharging) is found as the inverse of charging cycle duration as 

in (A.14).  

Table A.3 Data used for PEV model 

Symbols Values 

Enominal N(16,0.1) kWh 

Pcharging
CHk

 Pcharging
CH1 

– 2 kW 

Pcharging
CH2

 – 3.3 kW 

SOCinitial N(0.5,0.1) p.u. 

tdept N(0800,0006) hours 

tarrival N(1900,0006) hours 

Sldischarging N(0.3333,0.1) p.u./hour 

Arrival (tarrival) and departure (tdept) time of PEV is modelled as a normal 

random variable as in Table A.3. Initial state of charge (SOCinitial) of the battery 

during tarrival is assumed as a normal random variable with 0.5 p.u. mean and 0.2 p.u. 

variance. The battery discharging slope (Sldischarging) is also assumed as a normal 

variable as in Table A.3. Fig. A.2 illustrates power profile and state of charge of a 

PEV in a selected house in two subsequent days. Here, the slow charging mode is 

used. Average charging and discharging patterns of PEVs in each house will vary. 

Therefore values of parameters of PEV in individual house are defined separately. 
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Fig. A. 2 Power profile and SOC of a selected PEV 
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Mathematical models of DW, WA and DR are simulated using the data in 

Table A.4. Here, power rating, starting (tstart) and operating time (toper) of appliances 

are generated using normal random variables. The operating range of DW, WA and 

DR in a week day is illustrated in Fig. A.3. Data in [137] is used for the modelling. 

Power profiles of DW, WA and DR in a typical house used in the simulated 

mathematical model for two subsequent weekdays are shown in Fig. A.4.  

Table A.4 Data used for DW, WA and DR models 

Parameters DW WA DR 

Power (kW) N(1,0.1) N(1.2,0.1) N(2.5,0.1) 

tstart: Starting time (hrs) N(1800,0012) N(1900,0012) tstart
WA+toper

WA+N(1900,0012) 

toper: Operating time (hrs) N(0050,0010) N(0100,0010) N(0110,0010) 

0 4 8 12 16 20 24

DR

WA

DW

Time (hrs)

 

Fig. A.3 Operating range of DW, WA and DR in weekdays 

 

Fig. A.4 Power Profiles of DW, WA and DR in two subsequent weekdays of a house 

 Model of PP 

Mathematical model of a swimming pool pump (PP) is built using a normal 

random variable for power rating, starting and operating time of it. Table A.5 shows 

the values for the PP parameters. Power profile of a PP in a selected house is shown 

in Fig. A.5.  
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Table A.5 Data used for PP models 

Parameters Values 

Power rating (kW) N(1.8,0.1) 

tstart: Starting time (hrs) N(1800,0012) 

toper: Operating time (hrs) N(0800,0030) 

 

Fig. A.5 Power Profile of PP in two subsequent weekdays of a house 

 Total House Consumption 

Controllable appliances such as WH, AC, PEV, DW, WA, DR and PP are 

modelled according to the above mathematical data. The non- controllable appliances 

such as lighting, fridge, freezer, cooker, electric oven, microwave, television, 

computer, stand-by appliance, and miscellaneous appliance are also considered 

during the study as in [32]. The detailed models of these appliances are not included 

in this appendix. The total house consumption profile for a selected house is obtained 

as in Fig. A.6. It is for two subsequent days in winter. 

 

Fig. A.6 Power Consumption Profile of a selected house in two subsequent days  

0 6 12 18 24 30 36 42 48
0

1

2
SP Power

Time (hrs)

P
o
w

er
 (

k
W

)

0 6 12 18 24 30 36 42 48
0

2

4

6

8

10

12

14

House power consumption with and without control

Time (hrs)

P
ow

er
 (

kW
)



149 

 

Appendix B 

Three Phase Load flow program 

Three phase load flow program is based on Newton Raphson algorithm. It 

solves a three phase nonlinear load flow problem assuming the loads are considered 

as constant power sinks in a specific unbalanced state. It is also assumed that the 

system contains only PQ buses and a slack bus. The mismatch equations and the 

Jacobian matrix for the load buses are derived separately for all three phases. The 

three phase Y- bus matrix is simplified to a 3Nx3N matrix using Kron’s reduction 

[134], where n is the number of buses. Instantaneous voltage values are calculated 

according to the time varying power values at each node/ house. The per- unit 

complex power for p
th

 phase at bus bar k at all nodes n is given by equation (B.1).  
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Here, Y represents the admittance matrix and the negative sign indicates that 

the total current is entering the network. This proposed method is better for a 

distribution system due to large voltage angles and non-convergence problems in. 

The derived mismatch equations for the load buses are (B.2) and (B.3). 
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A Jacobian matrix(J) for a 3- phase system is derived with matrix blocks of 

6x6 with diagonal and off- diagonal block elements following the similar pattern as 

in [135]. The above mismatch equations are used to form a 6Nx6N Jacobian matrix. 

The mismatch quantities ( M ) and J is used to form incremental voltage quantities

V  as in (B.4). Iterative procedure is used to achieve convergence and the voltages 

are updated as in (B.5). The form of M  and V  are given in (B.6) and (B.7).  

VJM   (B.4) 

VVV   (B.5) 
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 The diagonal block elements of a 3 phase Jacobian matrix are represented by 

the following equations from (B.8) to (B.15). 
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The off- diagonal block elements of the 3 phase Jacobian matrix for all values 

of i except i=k are represented by the following equations from (B.16) to (B.19). 

Table B.1 shows the important parameters used in this study. 
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Table B.1 Parameters used during the load flow study 

Parameter Value 

Reference voltage 1pu 

Load impedance (Zload) (0.0361+0.0149j) pu 

Source impedance (4.46+1.24j)x10
-4 

pu 

Transformer impedance 0.05j pu 

Distance between houses 20 meters 

Number of buses/ phase 11 

Apparent power base 100 MVA 
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Appendix B 

Simulations in Chapter 3-6 were performed using MATLAB software platform 

in a 64 bits operating system with 2.10 GHz processor using m-files. Block diagram 

to illustrate the software being utilized for each chapter is presented from Fig. C.1 to 

Fig. C.4.  

M-file to provide Retailer information

M-file of DR Controller

M-file for Network Model

Information of network peak 
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Performing selection of appliances to control
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Fig. C. 1 Developed software program in MATLAB for Chapter 3 

M-file to provide Retailer information
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Fig. C. 1 Developed software program in MATLAB for Chapter 4 
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Fig. C. 4 Developed software program in MATLAB for Chapter 5 
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Fig. C. 4 Developed software program in MATLAB for Chapter 6 

Separate m-files for retailer information, DR controller and network model are 

developed during the studies. A main program is developed in a separate m-file 

which is linked with the other m-files. It runs the timely simulation of the DR 

processes.  
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