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Abstract

A major challenge in studying coupled groundwater and surface-water interactions

arises from the considerable difference in the response time scales of groundwater

and surface-water systems affected by external forcings. Although coupled models

representing the interaction of groundwater and surface-water systems have been

studied for over a century, most have focused on groundwater quantity or quality

issues rather than response time. In this study, we present an analytical framework,

based on the concept of mean action time (MAT), to estimate the time scale required

for groundwater systems to respond to changes in surface-water conditions. MAT

can be used to estimate the transient response time scale by analyzing the governing

mathematical model. This framework does not require any form of transient solution

(either numerical or analytical) to the governing equation, yet it provides a closed

form mathematical relationship for the response time as a function of the aquifer

geometry, boundary conditions, and flow parameters. Our analysis indicates that

aquifer systems have three fundamental time scales: (i) a time scale that depends

on the intrinsic properties of the aquifer, (ii) a time scale that depends on the

intrinsic properties of the boundary condition, and (iii) a time scale that depends

on the properties of the entire system. We discuss two practical scenarios where

MAT estimates provide useful insights and we test the MAT predictions using new

laboratory-scale experimental data sets.
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1 Introduction1

Understanding the interactions between groundwater and surface-water sys-2

tems is an important aspect of water resources management. Using mathemat-3

ical models to study these interactions can help us better address associated4

water quality and quantity issues. In the published literature, groundwater and5

surface-water interactions have been studied using both physical and mathe-6

matical approaches (Clement et al., 1994; Winter, 1995; Chang and Clement,7

2012; Simpson et al., 2003a) that involve invoking a range modelling simplifica-8

tions and assumptions, such as assuming that groundwater flow takes place in9

a homogeneous porous medium, assuming that streams are fully penetrating,10

and assuming rainfall conditions are uniform. To provide further insight into11

real-world practical problems, some of these simplifications and assumptions12

need to be relaxed.13

A major challenge in studying groundwater and surface-water interactions14

arises from the fact that there is a considerable difference in the response times15

of these systems (Rodrigues et al., 2006; Hantush, 2005). For example, after a16

rainfall event, surface-water levels can respond on the order of hours to days,17

whereas groundwater levels might respond on the order of weeks to months.18

Current approaches for studying these problems can be classified into four cat-19

egories, each of which involve certain limitations: (i) field investigations, which20

can be expensive and time consuming; (ii) laboratory experiments, which can21

be limited by scaling issues; (iii) numerical modeling, which, due to the or-22
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ders of magnitude differences in the response times, might lead to numerical23

instabilities or other convergence issues (Hantush, 2005); and (iv) analytical24

modeling, which may be efficient but can have serious limitations in con-25

sidering practical scenarios involving variations in stream stage, recharge, or26

discharge boundary conditions (Moench and Barlow, 2000). Several previous27

researchers have presented analytical solutions focussing on aquifer response28

times (Rowe, 1960; Pinder et al., 1969; Singh and Sagar, 1977; Lockington,29

1997; Mishra and Jain, 1999; Ojha, 2000; Swamee and Singh, 2003; Srivastava,30

2003).31

Understanding groundwater response times near a groundwater surface-water32

boundary will help us make informed decisions about the use of different types33

of mathematical models. For example, if the water stage in the surface-water34

body is perturbed, we expect the local groundwater system in contact with the35

stream to undergo a transient response and eventually reach a new steady-36

state. Tools that can predict the time needed for such transient responses37

to relax to a steady-state condition could help to make informed decisions38

about using appropriate mathematical models. For example, immediately af-39

ter changing the surface-water elevation, we would need to apply a transient40

mathematical model to predict the groundwater response; whereas, after a41

sufficiently long period of time, we could describe the system using a simpler42

steady-state model (Simpson et al. 2003b).43

In the groundwater literature, response time (or lag time) is defined as the time44

scale required for a groundwater system to change from some initial condition45
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to a new steady-state (Sophocleous, 2012; Walton 2011). In the heat and mass46

transfer literature this time scale is known as the critical time (Hickson et al.,47

2009a; Hickson et al., 2009b; Hickson et al., 2011). Simpson et al. (2013)48

summarized several previous attempts to estimate the groundwater response49

time into three categories: (i) numerical computation, (ii) laboratory-scale50

experimentation, and (iii) simple mathematical definitions or approximations.51

All three categories involve making subjective definitions of the response time52

by tracking transient responses and choosing an arbitrary tolerance ϵ and53

claiming that the response time is the time taken for the transient response to54

decay below this tolerance (Landman and McGuinness, 2000; Watson et al.,55

2010; Hickson et al., 2011; Lu and Werner, 2013). There are several limitations56

with this approach. The most obvious limitation is that the response time57

depends on a subjectively defined tolerance, ϵ. Secondly, this approach does58

not lead to a general mathematical expression to describe how the response59

time would vary with problem geometry, changes in boundary conditions or60

aquifer parameters. Finally, this approach requires an analytical or a numerical61

solution to the governing transient equation. To deal with these limitations,62

Simpson et al. (2013) demonstrated the use of a novel concept, mean action63

time (MAT), for estimating aquifer response times.64

The concept of MAT was originally proposed by McNabb and Wake (1991) to65

describe the response times of heat transfer processes. MAT provides an objec-66

tive definition for quantifying response time scales of different processes. MAT67

analysis leads to an expression relating the response time to the various model68
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parameters. Simpson et al. (2013) used MAT to characterize the response time69

for a groundwater flow problem that was driven by areal recharge processes,70

but did not consider any groundwater and surface-water interactions. The ob-71

jective of this study is to extend the work of Simpson et al. (2013) and present72

a mathematical model which describes transient groundwater flow processes73

near a groundwater and surface-water boundary with time-dependent bound-74

ary conditions. We adapt existing MAT theory to deal with time-dependent75

boundary conditions and present expressions for MAT which describe spatial76

variations in response times for both linear and non-linear boundary forcing77

conditions. These theoretical developments are then tested using data sets78

obtained from laboratory experiments.79

2 Mathematical development80

We consider a one-dimensional, unconfined, Dupuit-Forchheimer model of sat-81

urated groundwater flow through a homogeneous porous medium (Bear, 1972;82

Bear, 1979), which can be written as,83

Sy
∂h

∂t
= K

∂

∂x

[
h
∂h

∂x

]
, (1)

where h(x, t) [L] is the groundwater head at position x, t [T] is time, Sy84

[−] is the specific yield and K [L/T] is the saturated hydraulic conductivity.85

When variations in the saturated thickness are small compared to the average86

saturated thickness, we can linearize the governing equation by introducing87
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an average saturated thickness, h̄, to yield (Bear, 1979),88

Sy
∂h

∂t
= Kh̄

∂2h

∂x2
, (2)

which can be re-written as the linear diffusion equation,89

∂h

∂t
= D

∂2h

∂x2
, (3)

where D = Kh̄/Sy [L2T−1] is the aquifer diffusivity. In this work, we will90

use Eq. (3) to model a groundwater system which changes from an initial91

condition, h(x, 0) = h0(x), to some steady-state, lim
t→∞

h(x, t) = h∞(x). We will92

consider two different classes of boundary conditions for Eq. (3): Case 1, in93

which both the left (x = 0) and right (x = L) boundary conditions vary as94

functions of time, and Case 2, in which one boundary condition is fixed and95

the other one is allowed to vary with time.96

2.1 Case 1: Two time varying boundary conditions97

We first consider the case where the surface-water variations at both the left98

(x = 0) and right (x = L) boundaries vary with time,99

BL(t) = h(0, t), (4)

BR(t) = h(L, t). (5)
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We assume that, after a sufficient amount of time, both BL(t) and BR(t)100

approach some steady condition,101

lim
t→∞

BL(t) = h∞(0), (6)

lim
t→∞

BR(t) = h∞(L), (7)

for which the steady solution of Eq. (3) is,102

h∞(x) =

(
h∞(L)− h∞(0)

L

)
x+ h∞(0). (8)

A schematic of these initial, transient and steady-state conditions are shown103

in Fig. 1.104

Fig:1 about here . . .105

The purpose of this study is to present an objective framework to estimate the106

time scale required for the system to effectively relax to steady-state condi-107

tions. To begin our analysis we first consider the following two mathematical108

quantities (Ellery et al., 2012a; Ellery et al., 2012b; Simpson et al., 2013),109

F (t;x) = 1−
[
h(x, t)− h∞(x)

h0(x)− h∞(x)

]
, t ≥ 0, (9)

f(t; x) =
dF (t;x)

dt
= − ∂

∂t

[
h(x, t)− h∞(x)

h0(x)− h∞(x)

]
, t ≥ 0, (10)

where h(x, t) is the solution of Eq. (3), h0(x) is the initial groundwater level,110

and h∞(x) is the steady-state level reached after a sufficiently long period111

of time and we require that h0(x) ̸= h∞(x), ensuring that a transition takes112

place. Theoretically, the transient response will require infinite amount of time113

to reach steady-state. This implies that at all spatial locations, F (t; x) changes114
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from F = 0 at t = 0 to F → 1− as t → ∞. We can interpret F (t;x) as a115

cumulative distribution function (CDF) and f(t;x) as a probability density116

function (PDF) (Ellery et al., 2012a; Ellery et al., 2012b; Simpson et al., 2013).117

The MAT, T (x), is the mean or the first moment of f(t;x), which can be118

written as (Simpson et al., 2013),119

T (x) =
∫ ∞

0
tf(t;x) dt. (11)

To solve for T (x), we apply integration by parts to Eq. (11) and make use120

of the fact that h(x, t) − h∞(x) decays to zero exponentially fast as t → ∞121

(Haberman, 2004; Ellery et al., 2012a; Ellery et al., 2012b) to give,122

T (x)g(x) =
∫ ∞

0
h∞(x)− h(x, t) dt, (12)

where we define g(x) = h∞(x) − h0(x). Differentiating Eq. (12) twice with123

respect to x and combining the result with Eq. (3) yields,124

d2[T (x)g(x)]

dx2
= −g(x)

D
. (13)

Expanding Eq. (13) by applying the product rule gives,125

d2T (x)

dx2
+

dT (x)

dx

[
2

g(x)

dg(x)

dx

]
+ T (x)

[
1

g(x)

d2g(x)

dx2

]
= − 1

D
. (14)

which is a differential equation that governs the MAT for any change from126

h0(x) to h∞(x), provided that F (t;x) monotonically increases from F = 0 at127

t = 0 to F = 1− as t→ ∞.128

To solve Eq. (14), we must specify boundary conditions at x = 0 and x = L.129

The appropriate boundary conditions can be found by evaluating Eq. (11) at130
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x = 0 and x = L, recalling that the time variation in head at these locations131

is given by BL(t) and BR(t), respectively. We apply integration by parts,132

assuming that BL(t) and BR(t) approach h∞(0) and h∞(L), respectively, faster133

than t−1 decays to zero as t→ ∞, to give,134

A =
1

α

∫ ∞

0
(h∞(0)−BL(t)) dt, where α = h∞(0)− h0(0), (15)

B =
1

β

∫ ∞

0
(h∞(L)−BR(t)) dt, where β = h∞(L)− h0(L). (16)

The constants A and B represent the mean time scales of the boundary con-135

ditions. With these two constants we may solve Eq. (14) to give an expression136

for the effective time scale of the system,137

T (x) =
x(L− x)

6D︸ ︷︷ ︸
Intrinsic time scale of

the aquifer

+
Aα(L− x) +Bβx

α(L− x) + βx︸ ︷︷ ︸
Intrinsic time scale of
the boundary conditions

+
xL(L− x)(α+ β)

6D[α(L− x) + βx]
.︸ ︷︷ ︸

Mixed time scale of
the system

(17)

The first term on the right of Eq. (17) is independent of the details of the138

boundary conditions, and so we interpret it as an intrinsic time scale of the139

aquifer. The second term on the right of Eq. (17) is independent of D, and140

depends on the details of the boundary conditions. Therefore, we interpret141

this term as an intrinsic time scale of the boundary conditions. We note that142

the intrinsic time scale of the boundary conditions can also be interpreted as143

the weighted average of A and B, (Awa +Bwb)/(wa +wb), with linear weight144

functions wa = α(L − x)/L and wb = βx/L. This interpretation implies the145

influence of the boundary conditions on the time scale of the process at any146

point within the system depends on the distances from the boundaries and also147

on the magnitude of the changes imposed at the boundaries. For example, the148

time scale at a point close to the left hand boundary, x = 0, will be dominated149
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by the influence of the time scale of BL(t) and relatively unaffected by the150

influence of the time scale of BR(t), which is as we might expect intuitively.151

However, intuition alone cannot provide quantitative insight into the impact152

of the boundary conditions time scales at intermediate locations where the153

impact of both boundary conditions plays a role. Finally, the third term on154

the right of Eq. (17) depends on properties of the entire system including both155

D, the magnitudes of head changes at the boundaries, but is independent of A156

and B, which are the mean time scales of the boundary conditions. Therefore157

we consider this third term as the mixed time scale of the system.158

To provide additional information about the response time we also consider159

the second moment of f(t;x), known as the variance of action time (VAT),160

V (x), and quantifies the spread about the MAT (Ellery et al., 2012b; Ellery161

et al., 2013). VAT is defined as,162

V (x) =
∫ ∞

0
(t− T (x))2f(t;x) dt. (18)

Using integration by parts and noting that h(x, t) − h∞(x) decays to zero163

exponentially fast as t→ ∞, Eq. (18) can be written as,164

ψ(x) = 2
∫ ∞

0
t(h∞(x)− h(x, t)) dt, (19)

where have defined ψ(x) = g(x)[V (x) + T (x)2]. Differentiating Eq. (19) twice165

with respect to x and combining the result with Eq. (3) gives,166

d2ψ(x)

dx2
=

−2T (x)g(x)

D
. (20)
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To solve Eq. (20), we require two boundary conditions, which are given by,167

ψ(0) = α(C + A2), (21)

ψ(L) = β(E +B2), (22)

where C and E are the VAT at x = 0 and x = L, respectively. These constants168

are defined using Eq. (18), and can be written as,169

C =
1

α

∫ ∞

0

dBL(t)

dt
(t− A)2 dt, (23)

E =
1

β

∫ ∞

0

dBR(t)

dt
(t−B)2 dt. (24)

We solve Eq. (20) for ψ(x), recalling that V (x) = ψ(x)/g(x)−T (x)2 and that170

h(x, t)− h∞(x) decays to zero exponentially fast as t→ ∞, which gives us,171

V (x) =
1

180D2(α(L− x) + βx)
(γ + δ + η)− θ, (25)

where,172

γ = 3x5(β − α) + 15x4αL+ 180αLD2(C + A2),

δ = 10x3(−βL2 − 6βBD + 6DAα− 2αL2)− 180x2αLAD,

η = x
(
180D2(βE − αC + βB2 − αA2) + 60L2D(βB + 2Aα) + L4(7β + 8α)

)
,

θ =

(
x3(β − α) + 3x2αL− x(βL2 + 6βBD − 6DAα + 2αL2)− 6αLAD

6D(xβ − xα + αL)

)2

.

(26)

VAT is a measure of the spread of the PDF about the mean (Ellery et al. 2013).173

A small VAT implies that the spread about the mean is small, and that the174

MAT is a sufficient estimate of the time required for the system to effectively175

reach steady-state (Simpson et al. 2013; Ellery et al. 2013). Alternatively, a176

large VAT indicates that the PDF has a large spread about the mean and a177
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better estimate of the response time is T (x) +
√
V (x) (Simpson et al. 2013;178

Ellery et al. 2013). This framework gives an explicit estimate for the response179

time scale required for a groundwater system to respond to a relatively general180

set of boundary conditions. The method objectively describes the dependence181

of the time scale on various aquifer parameters (K, Sy, h̄, BL(t), BR(t) and182

L) and does not require any numerical or analytical transient solution of the183

governing equation.184

Our MAT framework involves certain limitations which should be made ex-185

plicit. The first limitation is that the boundary conditions must vary mono-186

tonically with time otherwise our definition of F (t; x) cannot be interpreted as187

a CDF. The second limitation is that BL(t) and BR(t) must asymptote to the188

corresponding steady values faster than t−1 decays to zero as t→ ∞. We also189

require that that BL(t) and BR(t) both increase or decrease, or that one of the190

boundary conditions must remain fixed with time. If one boundary condition191

decreases and the other increases, there will be some points in the domain at192

which the head distribution does not vary monotonically and F (t; x) cannot193

be interpreted as a CDF.194

2.2 Case 2: One fixed boundary condition and one time varying boundary195

condition196

Here we consider a fixed boundary condition at x = 0 and a time-varying197

boundary condition at x = L. We consider the water level variation at x = L198
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to be given by BR(t) = h(L, t), which eventually asymptotes to some steady199

value, h∞(L). As in Case 1, the differential equation governing the MAT is200

Eq. (14), which, in this case, simplifies to,201

d2T (x)

dx2
+

2

x

dT (x)

dx
= − 1

D
. (27)

Two boundary conditions are required to solve Eq. (27). The boundary con-202

dition at x = L is the same as in Case 1, and given by Eq. (16). To determine203

the boundary condition at x = 0, we multiply both sides of Eq. (27) by x,204

which gives,205

x
d2T (x)

dx2
+ 2

dT (x)

dx
= − x

D
. (28)

Evaluating Eq. (28) at x = 0 gives a Neumann boundary condition, dT/dx = 0206

at x = 0. With these boundary conditions the solution of Eq. (27) is,207

T (x) =
L2 − x2

6D
+B. (29)

To find the VAT we have ψ(0) = 0 and ψ(L) = β(B2 + E) as boundary208

conditions for Eq. (20). Recalling that V (x) = ψ(x)/g(x)− T (x)2, the VAT is209

given by,210

V (x) =
L4 − x4

90D2
+ E, (30)

where β, B and E are defined by Eq. (16) and Eq. (24), respectively.211

3 Laboratory experiments212

We now examine the validity of the theoretical developments presented in213

Section 2. To do this we consider two laboratory experiments performed in214
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a rectangular soil tank, using methods described previously (Goswami and215

Clement, 2007; Abarca and Clement, 2010; Simpson et al., 2013; Chang and216

Clement, 2012, 2013). An image of the physical tank is shown in Fig. 2. The217

tank has three distinct chambers. The central porous media chamber (50 cm218

× 28 cm × 2.2 cm) was packed under wet conditions with a uniform fine219

sand. The hydraulic conductivity and specific yield of the porous medium220

are estimated to be 330 m/day and 0.2, respectively. Two chambers at either221

sides were separated using fine metal screens; these chambers were used to set222

up the boundary conditions. Our coordinate system is such that x = 0 and223

x = L denotes the left and right boundaries, respectively. Siphon-type tubes224

connected to electronic manometers, shown in Fig. 2, were used to monitor225

head at two internal points.226

Fig.2 about here . . .227

3.1 Experiment 1: Laboratory data for Case I228

In this experiment, we consider a linearly varying boundary condition at x = 0229

and a quadratically varying boundary condition at x = L. We model the right230

boundary condition as,231

BR(t) =


(
h∞(L)− h0(L)

) t
N

+ h0(L), 0 6 t 6 N,

h∞(L), t > N,

(31)
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which is a linear change from h0(L) to h∞(L) in N units of time. We model232

the left boundary condition as,233

BL(t) =


at2 + bt+ c, 0 6 t 6M,

h∞(0), t > M.

(32)

which is a nonlinear change from h0(0) to h∞(0) in M units of time.234

To represent a linear head variation, BR(t), a pump was used to evacuate235

water from the right chamber at a uniform rate. To represent a quadratically236

varying head condition, BL(t), we allow water to drain through an orifice in237

the left chamber. Using the Bernoulli equation, we derive a quadratic relation-238

ship between falling head and drainage time (Bansel, 2005). To specify BL(t),239

experimental data for water elevation changes occurring at the left boundary240

were recorded. A quadratic expression, BL(t) = at2 + bt + c, was fitted to241

the data set. The initial state for the system was set to h0(x) = 22.5 cm.242

The left boundary condition set to vary quadratically from h0(0) = 22.5 cm243

to h∞(0) = 19.1 cm in 3 seconds, and the right boundary condition to vary244

linearly from h0(L) = 22.5 cm to h∞(L) = 19.1 cm in 20 seconds. Table 1245

summarizes the initial state, steady-state, transition time and transition func-246

tion of each boundary used in this experiment. We measured the transient247

head data at two intermediate points, x = 20 cm and x = 30 cm, using digital248

manometers with 0.01 cm H2O resolution.249

Table 1 about here . . .250
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To quantitatively assess our framework, we calculated α, β, A and B to give,251

α = h∞(0)− h0(0), (33)

β = h∞(L)− h0(L), (34)

A =
−1

α

[
1

3
aM3 +

1

2
bM2 + (c− h∞(0))M

]
, (35)

B =
N

2
. (36)

Values of α, β, A and B for this experiment were calculated as −3.4 cm, −3.4252

cm, 1.1 sec and 10.0 sec, respectively. Using Eq. (17), we predict that the253

MAT at x = 20 cm and x = 30 cm are T (20) = 11.2 sec and T (30) = 14.3 sec,254

respectively. Similarly, after using Eqs. (23)-(24) and evaluating the constants255

C = 0.4 and E = 33.3, Eq. (25) gives
√
V (20) = 10.4 sec and

√
V (30) = 8.6256

sec, respectively.257

Predictions of MAT and
√
VAT are summarised in Table 2. To test these258

predictions, we analyzed our laboratory data from Experiment 1 at x = 20 cm259

and x = 30 cm, as shown in Fig. 3. To compute f(t;x), we used the data from260

Figs. 3(a)-(b). We apply Eq. (10), using a central difference approximation261

to estimate ∂h/∂t (Chapra and Canale 2009). Our estimates of t× f(t; x) at262

x = 20 cm and x = 30 cm are given in Figs. 3(c)-(d). We applied Eqs. (11)263

and (18) to estimate T (x) and V (x) using the trapezoidal rule (Chapra and264

Canale 2009) to estimate the integrals. The results are summarized in Table265

2. Our results, reported in Fig. 3(a)-(b), show that the predicated effective266

time scale, MAT +
√
VAT, is a good approximation for the time required for267

the system to effectively reach steady-state. Furthermore, the results in Table268
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2 show that the predicted estimates of MAT and VAT compare well with the269

values estimated directly from the experimental data set.270

Table 2 about here . . .271

Fig. 3 about here . . .272

273

3.2 Experiment 2: Laboratory data for Case II274

In this experiment, a fixed boundary condition was maintained in the left275

chamber, and a linearly varying boundary condition at the right chamber. We276

used Eq. (31) to model the right boundary condition. A pump was used to277

evacuate water from the right chamber at a uniform rate. As shown in Table278

3, in this experiment, the following conditions were used: h0(x) = 25 cm,279

h∞(L) = 23 cm and N = 25 sec for the right boundary condition.280

Table 3 about here . . .281

To quantitatively assess our MAT predictions, we first calculated the con-282

stant B defined by Eq. (16) as B = N/2 = 12.5 sec. Using Eq. (29) we283

found T (20) = 19.4 sec and T (30) = 17.7 sec, respectively. Similarly, apply-284

ing Eq. (24) we found E = N2/12 = 52.1 sec2 and
√
V (20) = 9.9 sec and285 √

V (30) = 9.7 sec, respectively, using Eq. (30). Our predictions of MAT and286

√
VAT values are summarized in Table 4. The transient data collected from287

Experiment 2 are reported in Fig. 4. Similar to Experiment 1, MAT,
√
VAT288
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and MAT +
√
VAT at x = 20 cm and x = 30 cm were calculated and the289

results were compared against theoretical predictions. As shown in Table 4,290

the theoretical predictions are in good agreement with experimental results.291

Results in Fig.4 (a)-(b) illustrate that the predicted time scale required for292

the system to effectively reach steady-state, MAT+
√
VAT, is consistent with293

our experimental observations.294

Table 4 about here . . .295

Fig. 4 about here . . .296
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4 Summary and Conclusions297

The focus of this study is to present a mathematical framework which can298

predict the response time scales of groundwater flow near a groundwater299

surface-water interface. To achieve this we applied the theory of MAT (Mc-300

Nabb and Wake, 1991) to estimate the time scale required for flow in a one-301

dimensional aquifer to respond to various types of surface-water boundary302

perturbations. We tested the proposed framework using two data sets col-303

lected from a laboratory-scale experiment. Results show that the experimen-304

tal data are in good agreement with model predictions. A key limitation of305

previous approaches for estimating the response time scales is that they gave306

no simple framework for studying the sensitivity of the time scale to various307

system parameters. Alternatively, out MAT framework provides a relatively308

straightforward mathematical relationship between the response time scale309

and various system parameters.310

The limitations of our framework are that the boundary conditions must vary311

monotonically and that they must approach some steady value faster than t−1
312

decays to zero as t → ∞. Furthermore, we also require that both boundary313

conditions must either increase or decrease, or that one of the boundary con-314

ditions remains fixed. In practice, these limitations are not overly restrictive315

and a wide range of transient groundwater problems can be analyzed using the316

proposed framework. We also acknowledge that for all systems considered in317

this work we always considered an initial condition, h0(x), that was spatially318
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constant, independent of position. We note that the same mathematical pro-319

cedure used to find MAT and VAT also applies to other conditions where the320

initial condition is genuinely spatially variable and these mathematical details321

can be found in our previous work (Ellery et al. 2012).322
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Appendix- Notation [SI units]426

The following notation is used in this paper:427

a, b, c, quadratic coefficients; [m/s2], [m/s], [m]428

A =
1

α

∫ ∞

0
(h∞(0)−BL(t))dt; [s]429

B =
1

β

∫ ∞

0
(h∞(L)−BR(t))dt; [s]430

C =
1

α

∫ ∞

0

dBL(t)

dt
(t− A)2 dt; [s2]431

D, aquifer diffusivity; [m2/s]432

E =
1

β

∫ ∞

0

dBR(t)

dt
(t−B)2 dt; [s2]433

F (t;x), cumulative distribution function; [-]434

f(t; x), probability distribution function; [1/s]435

g(x) = h∞(x)− h0(x); [m]436

h(x, t), groundwater head at point x and time t; [m]437

h0(x), initial groundwater head; [m]438

h0, horizontal initial condition in laboratory experiments; [m]439

h∞(x), steady sate groundwater head; [m]440

h0(0), h0(L), initial groundwater head at the left and right boundary condi-441

tions; [m]442

h∞(0), h∞(L), steady sate groundwater head at the left and right boundary443

conditions; [m]444

h̄, average saturated thickness; [m]445

K, saturated hydraulic conductivity; [m/s]446

L, length of the aquifer; [m]447

M , right boundary condition transition time; [s]448
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N , left boundary condition transition time; [s]449

BL(t), BR(t), left and right varying boundary conditions; [m]450

Sy, aquifer specific yield; [−]451

T (x), mean action time (MAT); [s]452

V (x), variance of action time (VAT); [s2]453

wa, wb, weight functions of A and B, respectively; [m]454

α = h∞(0)− h0(0); [m]455

β = h∞(L)− h0(L); [m]456

γ, δ, η, θ, parameters used to calculate V (x); [m4s], [m4s], [m4s], [s2]457

ψ(x) = g(x)[V (x) + T (x)2]; [ms2].458
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