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Abstract  

Commercially viable carbon-neutral biodiesel production from microalgae has potential 

for replacing depleting petroleum diesel. The process of biodiesel production from 

microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-

intensive processes. The development of effective large-scale lipid extraction processes 

which overcome the complexity of microalgae cell structure is considered one of the most 

vital requirements for commercial production. Thus the aim of this work was to investigate 

suitable extraction methods with optimised conditions to progress opportunities for 

sustainable microalgal biodiesel production. In this study, the green microalgal species 

consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) 

under high pressure and variable temperature and biomass moisture conditions using an 

Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent 

extraction was examined over a range of different process and sample conditions  (dry 
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biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 

120 °C, process time 5-15 min). Maximum total lipid yields were achieved at 50% and 75% 

sample dryness at temperatures of 90-120 0C.  We show that individual fatty acids (Palmitic 

acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima 

are influenced by temperature and sample dryness, consequently affecting microalgal 

biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant 

with biodiesel quality standards under all extraction conditions used. Our results indicate that 

biodiesel quality can be positively manipulated by selecting process extraction conditions that 

favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction 

conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and 

iodine values. Exceeding biodiesel standards for these two parameters opens blending 

opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.   

Keywords: Microalgae; fatty acid; lipid extraction; sample dryness; Soxhlet; accelerated 

solvent extraction; biodiesel quality 

1. Introduction 

There is increasing global demand for renewable and carbon-neutral environmentally 

friendly transport fuels [1, 2]. As a new source of renewable energy in the form of biodiesel, 

microalgae have received much attention [3-7]. Photosynthesis and carbon assimilation  

mechanisms of ancient microalgae are similar to higher plants [8]. Microalgae, however, can 

convert solar energy, and access water, CO2 and other nutrients more efficiently because of 

cultivation in aqueous suspensions [9]. Some of the main characteristics which make algae 

more attractive than other forms of biomass are higher yields per unit light and area, higher 

lipid contents, smaller land footprint, ability to grow in saline water and wastewater and 

ability to utilise CO2 from combustion gas [10, 11]. Quantitative and qualitative lipid 
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contents and compositions are critical parameters in the selection process of microalgal 

species for large-scale production [12]. Furthermore, careful downstream process planning 

for commercial biodiesel production from microalgae is also mandatory for establishing a 

microalgae-based renewable fuel industry [13]. 

Even though microalgae offer many advantages, they are not yet commercially viable 

for biodiesel production because of the high cost of the production process. The most 

important challenges lie in the fields of biomass harvesting and lipid extraction technology, 

which together account for around 70-80% of the total production cost, but biomass 

dewatering and drying are the main hurdles for economically and energetically sustainable 

biodiesel production from microalgae [9, 14, 15]. Unlike terrestrial oil feedstock such as soy 

or canola, from which lipids can be extracted by crushing of the seed followed by solvent 

extraction, the small size and presence of rigid cell walls hinder the extraction of lipids from 

microalgae currently investigated for biofuel production[16]. Compared to other microalgal 

groups and a few oleaginous green algae, freshwater green microalgae typically contain low 

amounts of fatty acids [17, 18], with most fatty acids being membrane fatty acids during 

favourable growth conditions [19]. For example, only 13% of the total lipids were 

tri-acylglycerides in Scenedesmus sp. [20], a dominant species of the Tarong polyculture 

biomass processed here. Membrane lipids are mainly polar lipids and require extraction with 

polar solvents.  

Optimal conditions for large-scale lipid extraction from microalgae are species-

dependent. Furthermore, sample dryness plays a role in lipid extraction. Dried biomass is 

preferred for optimal extraction yields but wet samples can be efficiently extracted at high 

pressure, since water acts as a solvent due to reduced polarity under these conditions [21, 22].  

Supercritical carbon dioxide (SC-CO2) is considered one of the most promising techniques 

for  producing solvent-free extracts [23]. However, supercritical CO2 is less effective for 
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polar lipids (membrane lipids) because of its low polarity [24]. It is also reported that super 

critical carbon dioxide (SC-CO2) can be used to extract lipid from wet microalgae biomass. 

However, the total fatty acid of extracted lipid by SC-CO2 was lower than conventional 

solvent extraction [25].  

Laboratory-scale lipid extraction procedures from microalgae are well developed for 

determining the total lipid content of a sample gravimetrically. On the other hand, parameters 

affecting large-scale extraction of lipids from microalgae for commercial biodiesel 

production are not well understood. Moreover, most of the reported research has focused on 

nutraceutical/maricultural application of microalgal lipids and does not assess the 

requirements for biodiesel production [23, 24, 26, 27]. Optimal commercial lipid extraction 

processes should not only consider total lipid yields and minimization of co-extraction of 

impurities such as pigments, but should also aim to preferentially extract specific fatty acids 

that provide optimal biodiesel characteristics [28-30]. Traditional hexane solvent extraction 

and in-situ transesterification [31] methods for biodiesel production may not be suitable for 

many microalgae because of the presence of water and cell wall barriers [32, 33]. The high 

levels of fat-soluble pigments in microalgae further complicate selective extraction of fatty 

acids and purification of the biofuel [34]. Recently one-step microwave irradiation has been 

reported as a faster and easier lipid extraction method compared to conventional two-step 

heating methods [35]. 

However, optimal solvent-based extraction processes for microalgae will vary based on 

cell construction and chemical interactions of lipids and solvents used for extraction [36, 37]. 

In general, non-polar lipids will dissolve optimally in non-polar solvents, while polar lipids 

will extract better with more polar solvents [34]. Organic solvent-based extraction processes 

currently in use remain largely bench-scale methods. They are considered difficult to scale up 

for industrial processes due to the toxicity of the solvents and quantities required resulting in 
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expensive operation and infrastructure requirements. The use of higher temperatures for lipid 

extraction under pressure has gained popularity due to two main factors: (1) the rate of mass 

transfer increases at higher temperatures and pressures due to enhanced solvent access to 

pores within the biomass matrix [38], and (2) the dielectric constants are reduced at high 

pressures for immiscible solvents to better match the polarity of the lipid [24, 39]. 

Accelerated solvent extraction (ASE) methods use organic solvents at pressures and 

temperatures above their standard boiling points to extract lipids quickly and efficiently with 

minimal solvent use [39, 40]. Laboratory-scale ASE allows for extraction of 1-100 g biomass 

in minutes rather than hours required for more traditional extraction techniques [39]. 

Programed ASE extraction procedures additionally reduce labour costs and are also time-

saving. Therefore, this study, evaluated optimal lipid extraction conditions (temperature, 

moisture, treatment time and solvent requirements) using ASE from a green freshwater 

microalgal consortium cultivated in large outdoor ponds.  

2. Materials and Methodology 

2.1. Sample preparation 

Tarong polyculture was grown under outdoor conditions at the MBD Energy-James 

Cook University Research and Development Site at James Cook University, Townsville, 

Australia. The Tarong polyculture is a mixture of several freshwater green microalgae, 

including Scenedesmus dimorphus, S. obliquus, Franceia sp., Mesotaenium sp. Chlorella sp. 

and dominated by Senedesmus obliquus. The Tarong polyculture was grown in sterile filtered 

L1 medium [41] prepared in dechlorinated freshwater and omission of silicate, in 10,000 L 

horizontal covered aerated batch-cultures with a cultivation depth of 30 cm during the Austral 

autumn between March and May 2012. Outdoor temperatures did not exceed 28 °C and 
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photon flux densities varied from 80 to 2000 µmol photons m-2 s-1 during the day, with 

cultures receiving 400 µmol of photons m-2 s-1 on average during the 10 h day light period. 

Microalgal samples were harvested by centrifugation (Evodos Type 25) in stationary growth 

phase and freeze-dried. Freeze-dried biomass was posted via courier to the Queensland 

University of Technology for ASE-hexane extraction. The dried algae samples were mixed 

with water in order to produce samples of different moisture levels. Diatomaceous earth (DE) 

was added in different ratios depending on the dry biomass to water ratio (DBWR) as 

recommended by Thermo Fisher Scientific Inc. For ASE-350 (Dionex) shown in 

(Supplementary Table S1). While addition and recovery of DE adds additional costs to fatty 

acid extractions from microalgal biomass, advantages of DE are: absorbance fo some of the 

moisture and increase of the porosity of the sample, providing a cleaner transfer of the 

mixture to the ASE cell and enhancing the ASE extraction process [42]. Due to the silicate-

based nature of DE, recovery is possible by oxidizing the extracted microalgal biomass under 

acidic conditions. In a time, however, where agricultural productivities need to be enhanced 

significantly due to strong population growth, it is also possible to utilize the organic 

nitrogen- and phosphorous containing DE as soil additives, enhancing soil structure through 

carbon addition and thereby water retention, whilst simultaneously providing fertilization to 

crops. As such, the extracted biomass containing DE could be developed as a co-product for 

the agricultural market, providing an additional income stream, rather than additional costs. 

2.2. Experiment setup 

An ASE-350 (Dionex, USA) was used for solvent extraction. The instrument contains 

an automated extraction control system where temperature can be selected in the range of 40 

0C to 200 0C at pressures up to 11.7 MPa. In this experiment some of the parameters were 

fixed (cell pressure 10.3 MPa, rinse volume 40%, purge time 180 s, cell type 66 mL, solvent 
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saver mode off) while other parameters (sample DBWR, temperature and extraction time) 

were varied. For loading, hexane was pumped into the cell with the pressurized nitrogen gas 

(1500 PSI) until the pressure reached 10.3 MPa in the cell. The cell was then loaded into the 

oven for heating to the selected operation temperature with the heat-up time dependent on the 

operating temperature. After reaching operation temperature, fresh solvent was pumped to the 

cell throughout the process time. At the end of the process time, fresh solvent was pumped 

into the cell expelling the solvent and extracted lipids. 

Extraction conditions for the ASE were focused on testing the effect of sample DBWR, 

temperature and process time on the extracted lipid quantity. Samples of the Tarong 

polyculture were extracted under four different DBWR (100, 75, 50 and 25 %) and six 

different temperatures (70, 80, 90, 100, 110 and 120 °C) at three different process times (5, 

10 and 15 min) with 2 process cycles (Supplementary Table S2).  

2.3. Determination of total lipid and fatty acid methyl ester (FAME) content 

Samples of freeze-dried microalgal biomass were mixed with water to produce sub-

samples of different levels of DBWR. These sub-samples were then mixed with DE, and 

placed in the ASE Zirconium extraction cell with extraction solvent at temperatures from 70 

to 120 ○C. The Tarong polyculture samples were extracted using a single solvent, hexane. 

Extracted lipids were collected from the ASE into vessels in the collection tray. Loading and 

operation of the ASE was as described above.  Solvent was evaporated under a gentle stream 

of nitrogen in a DionexTM SE®400 solvent evaporator (Dionex, Thermo Fisher Scientific Inc, 

Australia) in a fume hood after transfer to pre-weighted glass vials. After evaporation to 

dryness, the vial was weighed to determine lipid yield, gravimetrically. The weight of the 

lipid was obtained by subtracting the tare weight of the vials from the final weight of the 

vials.  
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All extracts from ASE were resuspended and simultaneously extracted and esterified in a 

direct transesterification method adapted from [43] and[44] as described in detail in Gosch et 

al. [45]. The resulting FAMEs were separated and quantified on an Agilent 7890 GC (DB-23 

capillary column, 60m x 0.25 mm id x 0.15 µm) and an Agilent 5975C Electron Ionisation 

(EI) Turbo Mass Spectrometer (Agilent Technologies Australia Pty Ltd). The column 

temperature gradient was programmed following [46], ramping from 50 °C to 250 °C. The 

quantity and identity of fatty acids were determined using external standards (Sigma Aldrich) 

and NIST08 Mass Spectral Library. Total fatty acid content was determined as the sum of all 

FAMEs and was corrected for recovery of internal standard (C19:0). 

A detailed summary of high pressure FAME extraction profiles obtained in response to 

temperature, sample DBWR and process time can be found in supplementary materials 

Tables S3-S6. 

A controlled method  modified from Folch et al. [47] and Somersalo et al. [48] with less 

toxic solvents, i.e., hexane/methanol, was performed to extract lipids from the Tarong 

polyculture sample to confirm the extraction efficiency of ASE method. The details process is 

explained in [49]. FAME analysis was carried out as per [45] in scan-mode on an Agilent 

7890 GC equipped with a flame ionization detector (FID) and connected to an Agilent 5975C 

electron ionisation (EI) turbo mass spectrometer (Agilent Technologies Australia Pty Ltd., 

Mulgrave, Victoria, Australia). Detail process is given in our previous study (islam et.al. 

2013) [49]. 

2.4.  Determination of cetane number, kinematic viscosity, higher heating and iodine values 

Cetane number, kinematic viscosity and higher heating value were calculated from the 

mass fraction of individual fatty acids using equations 1-4 as in [50], respectively. 
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𝐶𝑁𝑖 = −7.8 + 0.302 × 𝑀𝑖 − 20 × 𝑁                                                       (1)       

Where 𝐶𝑁𝑖 is the cetane number, Mi is the molecular weight and N is the number of double 

bond in the ith FAME. 

The Kinematic viscosity (υ), density (ρ) and higher heating value HHV of each FAME 

can be calculated by using equations (2), (3) and (4), respectively and summation of all fatty 

acid fuel property provides the final υ, ρ and HHV of the biodiesel. 

ln(υ𝑖) = −12.503 + 2.496 × ln(𝑀𝑖) − 0.178 × 𝑁                               (2) 

 𝜌𝑖 = 0.8463 +
4.9
𝑀𝑖 

+ 0.0118 × 𝑁                                                            (3)                

𝐻𝐻𝑉𝑖 = 46.19 −
1794
𝑀𝑖

− 0.21 × 𝑁                                                           (4) 

 The iodine values were determined from the molecular weights of individual fatty 

acids following Kalayasiri et al. [51] as shown in equation (5). 

𝐼𝑉 = �
(254 × 𝐷𝑖 × 𝑁𝑖)

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡ℎ 𝑓𝑎𝑡𝑡𝑦 𝑎𝑐𝑖𝑑
𝑖

                                   (5) 

      where 𝑁𝑖 is the percentage of each component in the biomass and Di is the number of 

double bonds of the ith FAME. 

Contour plots were chosen to evaluate the effect of ASE process temperature, sample 

DBWR at set process times on total lipid and FAME yields, as well as the biodiesel quality 

parameters described above. The interpolation process used Mathwork, MATLAB version 

2012a, Function “griddata” with the ‘Cubic interpolation’ method of temperature(x), and 

sample dry biomass water ratio (y) grid. The cubic method ensures ‘the interpolating surface 

is C2 continuous’ (second order derivatives).The “griddata” function interpolates the surface 

at the query points specified. Cubic interpolation found with R-square =1 and Sum of Squares 

Due to Error (SSE) =0. Contours were plotted against temperature and sample DBWR using 
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a minimum to maximum mesh grid, with interpolation for every single unit of temperature 

and sample DBWR.  

3. Result and discussion  

In wet biomass extractions, water plays a significant role by creating a water layer at 

the cell wall which restricts access of many hydrophobic solvents. Hexane is a non-polar 

solvent and its hydrophobic nature restricts extraction from wet microalgal biomass. Under 

high pressure and temperature conditions, water changes its polarity and becomes miscible 

with hexane. Therefore, high pressure hexane extraction of the Tarong polyculture was 

chosen for this study. It was found that with higher pressure and temperature at 50% sample 

DBWR it extract highest amount of fatty acids mainly poly unsaturated membrane lipids 

Supplementary Table S7. 

3.1 Impact of ASE process variables on total lipid yields as assessed through pigment 

content (colour saturation) of the extracts: 

The effect of temperature, sample dryness and process time on extracted total lipid 

yields was investigated for the freshwater chlorophyte microalgal consortium (Tarong 

polyculture). Process time had the least effect on extraction yields. Initially, extraction 

performance was evaluated qualitatively by colour being representative of the amount of 

pigment extracted under different temperature and sample DBWR condition. Darker the 

colour indicating higher the amount of pigment with lipid extracted. 

Sample dryness (25, 50, 75 and 100%) positively correlated with total extracted lipid 

yields, as judged by the increasing amounts of pigments, from the Tarong polyculture when 

extracted at a constant temperature 80 °C (Supplementary Fig. S1). Similarly temperature 
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(70 °C to 120 °C) also positively correlated with total lipid yields, as judged by a 

temperature-dependent increase in colour saturation, from the  Tarong polyculture extracted 

at a sample dryness of 25% (data not shown).  

3.2  Effect of temperature and sample dry biomass water ratio (DBWR) on total lipid and 

total FAME extraction 

Temperature, sample DBWR and process time affected single-solvent (hexane) ASE  lipid 

extraction yields from the Tarong polyculture.  In general, increased temperature improved 

extraction yields, with 50-75% as the optimal DBWR, except for 100% DBWR sample, 5 

min process time was optimal (Supplementary Table S2). 

 

Figure 1: Effect of temperature and sample dry biomass water ratio (DBWR) on extraction 

performance of total lipid (g 100g-1 DW) and total FAME (g 100g-1 DW). 

 

Figure 1 shows that maximum amount of lipid (31.3g 100g-1 DW) was extracted at 50% 

dryness and 120 ○C, followed by 27 g 100g-1of DW at 75% DBWR and 90 ○C. The lowest 
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percentages of total lipid (12-18 g 100g-1of DW) were extracted under three different sample 

DBWR and temperature conditions, 100% DBWR at all temperatures, 25 % DBWR at 70 ○C 

and at 100 – 110 ○C, confirming that optimal temperature and DBWR for maximal total lipid 

extraction should be between 90 °C and 120 °C for 50%, and 75% of sample DBWR. 

Qualitative and quantitative analyses of FAME extractions are very important for large-scale 

biodiesel production. Extraction conditions for optimal total lipid yields may not be 

representative for conditions for optimal extraction of fatty acids (estimated based on the sum 

of all FAMEs). Figure 1 shows that highest total lipid yields are achieved at 50% DBWR and 

120○C but total FAME yields improved only marginally. This indicates a larger contribution 

of pigments in the extract, which suggests that these extraction conditions are likely least 

suitable for ASE-hexane extract biodiesel production.  However, samples with 50% DBWR 

at 110 ○C and 90 ○C and 25 DBWR at 110 ○C and 120 ○C seemed to be optimal for FAME 

extraction without too much increase in total lipid. Under these conditions, total FAME 

content of the total lipid fraction improved from 42% for the highest FAME and total lipid 

yield to 48 and 46%, respectively. All other extraction conditions with moderate total FAME 

yields yielded only 17% or less total FAME content of the extracted total lipids, 

compromising not only fatty acid extraction efficiencies, but also yielding significantly 

higher contributions of other non-polar cellular constituents, such as pigments. Although, as 

documented ASE-extraction conditions can be optimised for improved fatty acid yields 

within the total lipid fraction, for biodiesel production removal of co-extracted pigments will 

be necessary even under optimal conditions.  

3.3 Effect of process time on total FAME extraction yields 

To evaluate the influence of process time on extraction performance, experiments were 

run for three different process times 5, 10 and 15 minutes and at temperatures of 80 °C, 
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100 °C, and 120 °C. Process time had little effect on total lipid/FAME extraction yields at 

80 ○C  and 100 ○C. A detail contour plots visualise 120 ○C with 50% sample dryness and 5 

min process time are optimal conditions for high pressure total FAME extractions from the 

Tarong polyculture (Supplementary Figure S2). 

3.4 Effect of temperature and sample dry biomass water ratio (DBWR) on individual fatty 

acid extraction yields  

The most common fatty acids produced by chlorophytic freshwater microalgae are 

Palmitic - (Hexadecanoic- C16:0), Stearic - (Octadecanoic - C18:0), Oleic - (Octadecenoic - 

C18:1), Linoleic - (Octadecadienoic - C18:2) and Linolenic -(Octadecatrienoic - C18:3) 

acids, with minor quantities of some other methyl esters and other compounds [52]. The 

cetane number depends heavily on fatty acid composition and defines ignition quality 

parameters, hence, for biodiesel production, a mixture with a 5:4:1 ratio of C16:1, C18:1 and 

C14:0 fatty acid has been recommended [8]. 

The extracted amount of Myristic acid (C14:0) was very low at all temperatures and 

DBWR levels compared to other fatty acids. Interestingly, maximal amounts of Myristic acid 

(1.2 % of total FAME) were extracted at 70 ○C and low DBWR levels (25%), while minimal 

amounts (0.4%) were extracted at 110 ○C and 50% DBWR level (data not shown). 

Temperature and sample DBWR strongly affected extraction yields of Palmitic acid (C16:0) 

and Palmitoleic acid (C16:1), with increasing sample DBWR reducing yields (Fig. 2 a,b) 

(Fig. 5a, b). Highest amounts (~ 42 and 4.5 g 100 g-1 of FAME, respectively) were extracted 

at a sample DBWR of 25% and temperatures of 100 °C and 90-120 °C, respectively, while 

lowest amounts were obtained at a sample DBWR of 75% at all temperatures, respectively. A 

sample DBWR of 50% and 100% at 90 °C and 70 °C yielded intermediate quantities of 

C16:0 (35 g 100 g-1 FAME and 23 g 100 g-1 FAME, respectively), while the second best 
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yield of Palmitoleic acid (C16:1, 3.6 g 100 g-1 FAME) was achieved at 90 ○C and 75% 

DBWR. Samples with a DBWR of 25% at 70 °C extracted the highest percentage (20 g 

100 g-1 FAME) of Stearic acid (C18:0), decreasing with increasing sample DBWR and 

temperature. The effect of temperature (70 to 120 ○C) and sample DBWR (25, 50, 75 and 

100%) on percentage extraction of individual fatty acids is shown in Figure 2 (a)-(e) for the 

fatty acids C16:0, C16:1, C18:1, C18:2 and C18:3. Selection of these fatty acids was based 

on extracted quantities and importance for optimal fuel properties. Based on the results, 

extraction procedures aiming at optimising Palmitic and Palmitoleic acid yields from the 

Tarong polyculture should use a sample DBWR of 25% and temperature between 100 °C to 

110 °C. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

  

Figure 2: Effect of temperature and sample dry biomass water ratio (DBWR) on individual 

fatty acid extraction yields (g. 100 g-1 of FAME) (a) Palmitic acid C16:0 (b) Palmitoleic acid 

C16:1 (c) Oleic acid C18:1 (d) Linoleic acid C18:2(e) α and γ-Linolenic acid C18:3 of 

Tarong polyculture  
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In contrast, longer chain unsaturated fatty acids (C18) generally extracted better at 

increased levels of DBWR and temperatures showing in (Figs 2c-e). Oleic acid (C18:1) 

extracted best (~11 g 100 g-1 FAME) at either 100 % or 25 % sample DBWR at 90 to 100 °C 

and 120 °C, respectively (Fig. 2c). Lowest amounts were extracted at 25 and 75 % DBWR at 

70 °C. In contrast, the level of DBWR rather than temperature strongly affected Linoleic acid 

(C18:2) yields, with highest amounts obtained at 50-75 % sample DBWR across the entire 

temperature range (Fig. 2d).  Optimal yields of α- (37 g 100 g-1 FAME) and γ-Linolenic acid 

(36 g 100 g-1 FAME) (C18:3) were obtained at 75% dryness at 70 °C and 110 °C, 

respectively, while a sample DBWR of 25% had the lowest yields (~19 and 21 g 100 g-1 

FAME, respectively) across the temperature range (Fig. 2e). The complete map of extraction 

of specific fatty acids under different temperature and DBWR levels is presented in Table 1. 

This table will be of value in selecting optimal operating conditions for extractions targeting 

fatty acid product development. Any particular combination of temperature and sample 

DBWR might be suitable for one purpose, such as biodiesel production but may not be 

suitable for other requirements. 

Table 1: Extraction performance of some common fatty acids at different temperature (70 to 

120 ○C) and 4 different levels of sample DBWR 
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Along with the quantity of total FAME, the composition of FAME is also important for 

biodiesel production. Although the highest lipid and FAME yield zones were at 70, 90 and 

120○C and sample DBWR 50-75% (Supplementary Table S2), it is important to evaluate 

whether FAME composition is also optimal for biodiesel processing and production in a 

commercial facility at these settings. The fatty acid composition at the highest FAME yield 

zones are presented in Table 2, and detailed fatty acid compositions are presented in 

Supplementary Tables S3-6. Three examples are presented to demonstrate the significance of 

the selective extraction of individual or groups of fatty acids and their effects on fuel 

properties, namely: oxidation stability, cold filter plugging point and iodine value.  

Table 2: Fatty acid composition at highest FAME yield zone (70, 90 and 120○C and sample 

DBWR 50-75%). 

Fatty Acid 50% sample DBWR 75% sample DBWR 

70 ○C 90 ○C 120 ○C 70 ○C 90 ○C 120 ○C 
g 100 g-1 FAME 

C14:0 0.7 0.4 0.5 0.5 0.6 0.4 
C14:1 0.2 0.2 0.2 0.2 0.2 0.2 
C15:0 0.8 0.6 0.9 0.6 0.6 0.5 
C15:1 0.3 0.1 0.2 0.2 0.3 0.2 
C16:0 21.8 35.2 23.5 16.5 29.1 24.7 
C16:1 (7) 2.3 2.2 2.4 2 2.9 2.1 
C16:1 cis 9 0.8 0.6 0.7 0.6 0.8 0.6 
C16:2 (9,12) 0.6 0.4 0.5 0.6 0.5 0.5 
C17:0 0.5 0.5 0.5 0.4 0.5 0.5 
C16:3 (cis 6,9,12) 0.4 0.3 0.4 0.3 0.4 0.3 
C16:3 (7, 10, 13)   2.8 2 2 3.9 2.2 3 
C16:4 (4,7,10,13)  9.2 6.7 7.1 12.6 5.3 8.9 
C18:0 4.3 2.4 2.3 2.4 2.6 1.7 
C18:1  (cis) 8.8 8.2 10.6 6.6 10.9 8.6 
C18:1  (cis 7 or 8) 1.5 1.6 1.6 1.1 2 1.3 
C18:2 (cis, cis- 9,12)  6.1 5.4 6.7 5.4 6.5 5.9 
C18:3 (all cis 6,9,12) 1 0.8 1 1.1 0.8 0.9 
C 18:3 (all cis - 9,12,15)   31.3 27.8 32.2 37.3 28.8 33 
C18:4 (6,9,12,15)   4.3 3.6 4.1 5.8 3 4.5 
C 20:5  (EPA)   0.9 0.9 1.8 1.3 0.8 1.8 
C22:0 0.9 0.3 0.4 0.3 0.3 0.2 
C22:2 0.7   0.3   0.4 0.2 
C24:0 - - 0.2 0.3 0.4 0.2 
SFA 28.9 39.3 28.3 20.9 34.2 28.2 
MUFA 13.8 12.9 15.8 10.7 17.2 12.9 
PUFA 57.2 47.8 56 68.4 48.6 59 
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Oxidation stability is among one of the most important fuel properties for handling and 

distribution of any liquid fuel in large-scale production. In large scale biodiesel production 

fuels need to be stored longer period which may leads to oxidised and degrade fuel quality.  

In this regard, Palmitic - (C16:0) and Oleic - (C18:1) acid have a positive effect on oxidation 

stability, whereas Linoleic - (C18:2) and Linolenic acid (C18:3) have a negative effect [39]. 

If extraction conditions are to be optimised for oxidation stability, C16:0 and C18:1 must be 

selectively extracted, whereas the C18:2 and C18:3 groups should not be favoured. Extraction 

conditions that meet these opposing requirements were found at 90 ○C. Extracted amounts of 

C16:0 were higher, and Linoleic and Linolenic acid quantities were lower at 90 ○C compared 

to 70 ○C or 120 ○C. This signifies that under the optimal FAME yield settings, oxidation 

stability was best at 90○C.  

Another important fuel property is the cold filter plug point (CFPP), which is directly 

related to the amount of unsaturated fatty acids in the fuel. Higher the amounts of unsaturated 

fatty acids yield a higher CFPP for biodiesel [39]. Iodine value is also related to unsaturated 

fatty acid content, and is directly proportional to the unsaturated fatty acid quantity. Ten to 

20% fewer unsaturated fatty acid were extracted at 90 ○C compared to 70 and 120 ○C (Table 

2) that means decreased CFPP and IV at this temperature. More details on fuel properties 

based of fatty acid profiles will be discussed in section 3.6. 

3.5 Comparison of ASE with other selected extraction methods 

The trialled ASE extraction technique will now be briefly discussed in context with 

three commonly used extraction techniques, namely: conventional organic solvent extraction, 

Soxhlet and super critical fluid extraction.  
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Conventional solvent extraction has been extensively used for many applications [53]. 

The selection of appropriate polar/non-polar solvents for the particular species to be extracted 

is important for extraction performance [21]. Using co-solvents can assist to overcoming the 

polar/non-polar nature of some materials [54]. This extraction process is thermodynamically 

limited by the lipid mass transfer equilibrium condition. Typically all polar (mainly 

membrane lipid) and neutral lipid can be extracted but the required large amounts of toxic 

solvents and the relative slowness of the process limit the application of this technique to the 

laboratory. This extraction process is thermodynamically limited by the lipid mass transfer 

equilibrium condition [55]. 

To evade overcome the equilibrium condition limitation, Soxhlet apparatus is used 

where the cell wall is continuously replenished with fresh solvent which is continuously 

recovered in a condenser thus reducing solvent consumption [56, 57]. The Soxhlet operation 

of hexane extractions is of lipids are more efficient than conventional solvent extraction in 

[58], extracting where it extract 0.057 g lipid g-1 dried microalgae biomass compared to that 

of the conventional solvent extraction which achieved (0.015 g lipid g-1 dried microalgae 

biomass) [58]. Despite these advantages, the Soxhlet extraction method lipid/fatty acid 

extraction efficiencies are limited to co-solvents which have a similar boiling temperature, 

thus limiting placing restrictions on the simultaneous extraction of membrane and neutral 

lipid resulting in a reduction of the amounts of poly poly-unsaturated fatty acids [59]. The 

scale up of the Soxhlet extraction method is also limited due to its high energy requirements 

for continuous distillation of the large amounts of solvents required [57, 60].  

A modified solvent extraction, accelerated solvent extraction (ASE), using high 

pressures and temperatures, has been investigated and found to be highly efficient with 

maximal final lipid recovery of 90.21% of total lipid [22]. In the study presented here, ASE 

high pressure solvent extraction achieved a maximum lipid extraction of 31.5 g 100 g-1 dry 
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microalgae biomass (Supplementary Table S2) from the chlorophytic microalgal Tarong 

polyculture. ASE can also be used with wet biomass, reducing sample pre-treatment costs 

and preparation time compared to conventional hexane extraction. However, as shown here, 

ASE operating conditions with regards to temperature and moisture levels need to be fine-

tuned to for optimal membrane lipid or poly-unsaturated fatty acid extractions, as extraction 

of the latter is generally unfavourable for biodiesel production. Increasing the amounts of 

linoleic and linolenic acid content of the extracts reduces oxidation stability of the fuel, but 

increases the cold filter plugging point, the latter is valuable for biodiesel applications in cold 

climates, while the former can cause problems if longer storage times are intended. 

Compared to supercritical fluid extraction (see below), the large amounts of solvents required 

for industrial-scale applications limits scalability somewhat, however, an advantage of ASE 

is that the instrumentation is readily available and that solvent use can be minimised through 

recycling.  

Supercritical fluid extraction is believed to be the most promising extraction technique 

of those reviewed here due to favourable mass transfer, solvent-free (other than CO2) and 

more time-efficient crude lipid extractions compared to the other techniques. In-addition, use 

of co-solvents can manipulate the selectivity for certain compounds in the extract [54]. 

However, the expensive pressure vessel installation cost and unfavourable energy 

requirements, as well as CO2-demand limit the scalability of supercritical fluid extraction at 

present.  

An optimum lipid extraction process at large-scale will be a trade-off between key 

factors including extraction efficiency, time taken, reactivity with lipids, capital cost, 

operating cost (including energy consumption), process safety and waste generation. The 

scale-up potential of each method is summarised in [54] and presented here supplemented 

with our information in Table 3. 
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Table 3: Comparison of four extraction techniques using key factors 

Extraction 

Technique 

Energy 

Consumption 

Extraction time Toxicity Scale-up potential 

Organic solvent 

 

moderate moderate high moderate 
Soxhlet  high moderate high Lack of scalability 
Super critical fluid 

 

high low low moderate 
ASE high low high moderate 

Some advantages of ASE extraction have been demonstrated such as selection of 

process parameters for optimising FAME to lipid ratios, content and some desirable fatty 

acids, faster processing, and lower solvent use compared to conventional solvent extraction 

but further work is required to fully assess the costs of energy consumption and the capital 

costs for the equipment for large-scale extraction. Higher temperature and pressure processes 

are used in many processing industries including the refining of crude oil and the viability of 

using higher temperature and pressure processes for algal oil extraction will be dependent 

upon the relative economics of alternate processes. Such a techno-economic analysis will 

require a detailed investigation of relevant specialised processing equipment and co-

generation technology for the combustion of process waste to provide heat to the ASE 

extraction. Such analysis is not within the scope of the present focus of this paper, which is 

on temperature and moisture effects of extraction. This study will however, assist in 

providing data for such future techno-economic studies 

3.6 Fuel property analysis 

The primary purpose of this study was to examine the sensitivity of lipid/FAME 

extraction yields from microalgae to sample DBWR and temperature. Biodiesel has well 

established standard fuel properties for use in regular diesel engines. Cetane number is one of 

the most significant indicators of fuel combustion ability [61]. The minimum desired cetane 
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number of biodiesel is 47 and 51 according to  ASTM D6751 [62] and EN14214 standards, 

respectively [9], while a maximal iodine value of 120 is defined in the EN 14214 only.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3: Effect of temperature and sample dry biomass water ratio (DBWR) on fuel 

properties (a) Cetane number (CN) (b) Iodine value (IV) (c) Kinematic viscosity (KV) 

 mm2s-1 and (d) Higher heating value (HHV) MJ kg-1 of extracted FAME of the Tarong 

polyculture. 

 
Increasing sample DBWR generally negatively affected cetane numbers and iodine 

values obtained for FAME extracts of the Tarong polyculture (Figs 3a, b). A sample DBWR 
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of 25% yielded the highest cetane number (54) irrespective of temperature (Fig. 3a), 

positively correlating with extracted amounts of saturated fatty acids under those conditions 

(Fig. 4a). A sample DBWR of around 30% at temperatures between 70-75 ○C and 95-120 ○C 

was ideal for obtaining iodine values below the maximal threshold. Lowest cetane numbers 

were obtained at 75% dry matter content at 70 ○C. Thus to obtain biodiesel with high cetane 

numbers and iodine levels below the maximal threshold for the Tarong polyculture, high 

pressure extractions should be carried out at low sample DBWR (25%) and temperatures of 

70 and100 ○C, because it allows for blending to improve the cetane number of lower quality 

biodiesel. In contrast, temperature and sample DBWR had little influence on kinematic 

viscosity and higher heating value of biodiesel derived from the Tarong polyculture, with 

kinematic viscosity staying within the set standards of  1.9 to 6.0 mm2·s-1 (ASTM D6751) 

and 3.5 to 5.0 mm2·s-1 (EN 14214) under all extraction conditions (Figs 3c, d). 

The relative compositions of saturated and unsaturated fatty acid methyl ester are 

important parameters to be considered in assessing the overall quality of biodiesel. 

Figure 4(a) Figure 7(a) shows that the saturated fatty acid concentration has a similar trend to 

cetane number. 
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(a) 

 
(b) 

 
(c) 

 
Figure 4: Effect of temperature and dry biomass-water ratio (DBWR) on percent of extracted 

(a) saturated, (b) mono-unsaturated and (c) polyunsaturated fatty acid methyl esters (g 100g-1 

of FAME) from the Tarong polyculture 

22

24

26

28

30

32

34

36

38
4042

44
40

26

4644
46 4848

50
5254 5056

  

D
ry

 b
io

m
as

s-
w

at
er

 r
at

io
(%

)

 

 

70 80 90 100 110 12025

50

75

100

25

30

35

40

45

50

55

10

11

12

13 1415

15

16

14
16

17

17

16

13

18

14

  

D
ry

 b
io

m
as

s-
w

at
er

 r
at

io
(%

)

 

 

70 80 90 100 110 12025

50

75

100

10

11

12

13

14

15

16

17

18

34 3840

42
44

46
48

50

52
54

56
54 5856

58

60

6062

64

66

60

68

 Temperature (°C)

D
ry

 b
io

m
as

s-
w

at
er

 r
at

io
(%

)

 

 

70 80 90 100 110 12025

50

75

100

35

40

45

50

55

60

65



Page | 25 
 

  

Highest amounts of mono unsaturated fatty acids were achieved at 25% dryness from 

90 to 120 ○C and at 75% DBWR at 90 ○C (Fig. 4b), while 25% DBWR at 70 ○C and 100 ○C 

extracted minimal amounts of polyunsaturated fatty acids (Fig. 4c). Thus high pressure 

extraction conditions are inversely correlated for polyunsaturated fatty acid amounts and 

ideal cetane number. In addition; the amount of polyunsaturated fatty acid can also be used as 

an indicator for non-compliant biofuel iodine values.  

4. Conclusion 

High-pressure solvent extraction under optimised extraction conditions (level of 

DBWR, temperature and to a lesser extent process time) could be a critical step forward for 

large-scale lipid extraction for biodiesel production from microalgae. The results of this study 

show that the efficiency of high-pressure single solvent (hexane) extraction is strongly 

influenced by process temperature and sample DBWR rather than process time. Maximal 

total lipid yields from the Tarong polyculture were achieved at 90-120 °C at a sample DBWR 

of 50% and 75%. Our results show that individual fatty acids (Palmitic acid C16:0; Stearic 

acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by 

temperature and sample DBWR. Therefore, biodiesel quality parameters of the microalgal 

biodiesel can be positively manipulated by selecting process extraction conditions that favour 

extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions 

for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values 

allowing for potential blending with biodiesels that fall outside the minimal cetane and 

maximal iodine values. 
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