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Abstract  

Chronic wounds, such as venous and diabetic leg ulcers, represent a significant health and 

financial burden to individuals and healthcare systems. In worst case scenarios this condition 

may require the amputation of an affected limb, with significant impact on patient quality of 

life and health. Presently there are no clinical biochemical analyses used in the diagnosis and 

management of this condition; moreover few biochemical therapies are accessible to patients. 

This presents a significant challenge in the efficient and efficacious treatment of chronic 

wounds by medical practitioners. A number of protein-centric investigations have analysed 

the wound environment and implicated a suite of molecular species predicted to be involved 

in the initiation or perpetuation of the condition. However, comprehensive proteomic 

investigation is yet to be engaged in the analysis of chronic wounds for the identification of 

molecular diagnostic/prognostic markers of healing or therapeutic targets. This review 

examines clinical chronic wound research and recommends a path towards proteomic 

investigation for the discovery of medically significant targets. Additionally, the 

supplementary documents associated with this review provide the first comprehensive 

summary of protein-centric, small molecule and elemental analyses in clinical chronic wound 

research. 



1 Introduction  

 

A chronic or non-healing wound is defined as any wound which takes a long time to heal (> 3 

months), fails to heal by the use of conventional medical or surgical means, or recurs [1]. 

They predominantly comprise venous and/or arterial leg ulcers, diabetic foot ulcers and 

pressure ulcers. In the USA chronic wounds affect approximately 2% of the population and 

cost an estimated US$20 billion per year [2]. This rate is expected to be comparable in 

Australia and would equate to almost half a million Australians suffering from a chronic 

wound in 2009. The prevalence of chronic wounds is greatest among older people with an 

estimated 25% of all residents of aged care facilities suffering from a wound or multiple 

wounds [3]. Recent reports indicate that treatment and care of these wounds is around 3% of 

total health care expenditure in developed countries. In Australia, this equates to $2.6 billion 

in direct health care costs [4]. 

 

Beyond the direct costs of wound care, significant non-fiscal personal, social and quality of 

life costs exist. This lifestyle burden is potentially significantly greater than the fiscal burden 

and pervades all aspects of the economic and social fabric of developed countries. Chronic 

wounds require anywhere from several months to years to heal completely and in some cases, 

remain unhealed for decades. During this time patients experience severe emotional and 

physical stress, reduced mobility and limited productivity [5]. Patients with wounds require 

high levels of care with anecdotal reports from community health providers suggesting up to 

50% of nursing time is spent caring for and treating chronic wounds. 

 

In severe non-healing lower extremity wounds, where all available therapeutic interventions 

have been exhausted, amputation of the affected limb is necessary. Globally, diabetic ulcers 



are the cause of 70% of all lower limb amputations, with one lower limb lost to diabetes every 

30 seconds. In the Australian context this equates to more than 3000 lower leg amputations 

per annum [6], with similar rates of amputations associated with non-healing arterial ulcers. 

Following amputation, an estimated 50% of patients will die within 5 years, while the 

remainder often suffer poor quality of life, limited capacity to work and require significant 

investment in rehabilitation and ongoing care [7].  

 

Clearly this health problem is set to amplify if innovative research is not engaged to improve 

the ability to diagnose, treat and manage chronic wounds. While numerous protein-centric 

studies have been reported in the quest for greater understanding of the chronic wound 

environment (e.g. [8-11]), proteomic approaches have been all but neglected. This review 

examines the current state of clinical chronic wound practice and research, and recommends a 

path towards proteomic investigation citing the potential for this approach to impact on health 

and healing. 

 

2 The state of play: Clinical diagnostics, therapy and prognostics in chronic wound 

care 

 

Diagnostic, therapeutic and prognostic technologies are the core of many clinical disease 

management strategies. These clinical approaches are underpinned by standard biochemical 

techniques for the efficacious treatment in most clinical presentations. This section outlines 

the current status of wound management and the opportunities for progress. 

 

 

 



2.1 Diagnostics 

 

Diagnosis of chronic wounds relies primarily on the classical clinical assessment of the 

presented wound [12]. Assessment criteria include analysis of the wound location, exudates, 

pain, location, oedema, lipodermosclerosis (fibrotic skin) and adjacent hyper-pigmentation. 

These factors in conjunction with a detailed clinical history form the basis of diagnosis. 

Venous and arterial etiology can then be inferred with the assessment of circulation in the 

lower limbs through sphygmomanometry and ankle to brachial pressure indexing (ABPI), 

whereby ABPI thresholds dictate venous and arterial state [13]. Doppler ultra-sonography is 

also commonly used in the determination of venous state [14]. In the case of diabetic and 

pressure ulcers, clinical history in conjunction with the assessment described above should be 

sufficient to determine wound derivation. Though work towards genetic [15] and biochemical 

[16, 17] profiling for diagnostics is reported, molecular markers are yet to be used in clinical 

practice for the diagnosis of chronic wounds [18]. 

 

2.2 Therapy 

 

Several treatments are available to patients with chronic wounds. Aspects of wound care 

common to all ulcer types include debridement (removing adjacent necrotic tissue), infection 

prevention, moisture balance and treatment of co-morbidities (e.g. diabetes, oedema). In 

addition to this core regime, treatments are allocated to specific wound etiologies. Common 

treatments include compression bandaging therapy for venous leg ulcers [19, 20], vascular 

surgery for arterial ulcers [21], hyperbaric oxygen therapy in the treatment of diabetic foot 

ulcers [22] and removal of pressure/friction in pressure wounds [23]. Surgical intervention, in 



the form of skin grafts and flaps, is also commonly engaged where conventional non-invasive 

treatments fail [24].  

 

More recently oral inflammatory inhibitors [25] and products impregnated with growth 

factors [26] and other wound-modulating molecules have been introduced. Presently, 

recombinant platelet derived growth factor is the only Food and Drug Administration (FDA)-

approved drug for the topical treatment of diabetic wounds and pressure ulcers [27, 28], while 

other growth factor treatments show promise [29]. These include vitronectin:growth factor 

complexes [30], which are currently undergoing clinical trial in Canada and Australia, and an 

epidermal growth factor-based formulation for diabetic foot ulcers [31]. Basic fibroblast 

growth factor is also in use in Japan as a topical therapeutic for the treatment of ulceration 

with scleroderma [32]. 

 

Other treatments include vacuum-assisted closure [33], topical hyperbaric oxygen therapy 

[34], acoustic therapy [35] and light therapy [36]. A good summary of other major approaches 

to chronic wound treatment can be found in [37]. 

 

2.3 Prognostics 

 

As with chronic wound diagnostics, biochemical strategies are not yet employed in prognostic 

testing of chronic wounds [38]. Prognostic tools in chronic wound practice are derived from 

the scoring of physical clinical data. These tools are best described as wound classification 

systems which allow prediction of healing given the establishment of a temporal trend. 

Scoring systems for this end include the Pressure Ulcer Scale of Healing (PUSH) score [39], 

University of Texas score [40] and M.A.I.D. (M: presence of multiple ulcerations, A: wound 



area, I: palpable pedal pulses, D: ulcer duration) score [41], which use a combination of 

wound area, circulation, exudate, oedema, duration and granulation tissue for calculation. 

While classification systems are unquestionably important in clinical practice, the use of 

multiple systems and the possibility for subjective assessment provides strong argument for a 

unified quantitative approach to chronic wound prognostics. As with many other conditions, 

the availability of such quantitative approaches requires considerable research and 

development. 

 

3 Chronic wound research: Approaches to clinical sampling and analysis  

 

3.1 Sample sources and collection  

 

Samples for chronic wound research originate from two sources: tissue biopsies and the 

proximal fluid bathing the wound site (chronic wound fluid; CWF). Both have advantages and 

shortcomings which are discussed in a recent review [42]. While there is no general 

consensus as to an ideal sample for biomarker discovery, it may be assumed that a non-

invasive approach would be best in a clinical setting. However, tissue biopsies may be 

necessary to ensure markers are sufficiently abundant for discovery, although they pose the 

risk of initiating a secondary chronic wound. Further, when it comes to controls, the gathering 

of proximal tissue from healthy patients may remain ethically challenging in some 

circumstances. Added argument for the use of CWF in wound research is gained from a study 

where differences in protein presentation in wound tissues showed significant variation 

between different sites of the same wound [43], potentially indicating superior consistency in 

the sampling of CWF. 

 



3.2 Wound fluid 

 

Chronic wound fluid is a unique bio-fluid enriched in wound-related proteins [18, 44, 45]. 

CWF is commonly gained through passive collection by trapping wound exudate behind an 

occlusive dressing. The fluid is then aspirated from behind the dressing and centrifuged to 

clarity [46]. Fluids have also been collected through alternate methods (see 5.2). The non-

invasive methods of collection have made this sample type popular for the study of chronic 

wound healing. Research has analysed many CWF components and noted the fluid’s cellular 

and extracellular modulating properties when the wound micro-environment has been re-

created in the laboratory in vitro [47-54]. 

 

Control fluid samples are a contentious issue in chronic wound research. Studies have used 

serum [55-57], plasma [46, 58, 59], acute wound fluid [11, 60] and acute surgical fluid [61-

63] for this purpose. Though no consensus has been reached, we contend that there is a strong 

rationale for patient matched serum or plasma. When biomarkers move to the clinic a 

patient’s own serum will be an ideal control providing easy access and optimally matched 

sample-control conditions. Alternatively, regular assaying of patient CWF could provide for 

the establishment of quantitative prognostic trends [64]. Given large patient-to-patient 

variation, as illustrated in [64], the establishment of threshold values for clinical diagnosis 

may prove problematic. 

 

3.3 Wound tissue 

 

Wound tissues samples, like CWF, have been shown to be enriched in wound-related 

molecules (e.g. [8, 65, 66]). Tissues have been sourced from multiple sites within the greater 



wound margin, commonly encompassing some of the surrounding intact epidermis. 

Specimens are either surgically removed or obtained by punch biopsy under local anaesthetic 

to be either snap-frozen or immediately formalin fixed. The invasive nature of this sampling 

procedure has, however, made research with clinical tissues less popular than CWF analyses. 

 

As with control fluid, tissue controls in wound research are similarly variable. Authors have 

reported control tissue biopsies originating from sites both proximal [8] and distal [66] to 

ulcerated skin. We ourselves advocate the use of tissue proximal to the wound site, but 

beyond the boundary of obvious inflammation, fibrosis or hyper pigmentation. However, at 

risk of initiating a secondary chronic wound through biopsy, the gathering of proximal tissue 

controls may remain ethically challenging in some circumstances. To further complicate this 

argument, some suggestion has been put forth that creating an acute wound adjacent to a 

chronic wound site may in fact promote healing [67]. 

 

3.4 Analysis strategies 

 

A number of strategies have been previously used in the identification and quantitation of 

proteins, small molecules and elements in clinical chronic wound research (Supplementary 

Tables 1-3). The primary source of absolute quantitation has been provided by enzyme-linked 

immuno-sorbent assays (ELISAs) for both tissue and CWF-based approaches, while Western 

blot analysis and immunohistochemistry have dominated identification strategies. Gelatine, 

casein and collagen zymographic techniques have also been important in implicating 

proteases, with chromogenic and photometric assays used to examine levels of proteolytic 

activity (see Supplementary Tables 1-3). Clinical and laboratory biochemical analyses are 



also described for the quantitation and subsidiary identification of some proteins, small 

molecules and elements [56, 68].  

 

To a far lesser degree, mass spectrometry (MS) and proteomic techniques, including 2-

dimensional (2-D) gels and 2-D liquid chromatography, have been applied as analysis tools in 

chronic wound research [69, 70]. Given the rapid adaption of MS technologies to protein 

analysis in the study of disease, the lack of activity in this area would seem counterintuitive. 

However, several challenges surrounding the adaption of proteomic technologies to this 

condition (see 5.0) may offer an explanation in this regard. 

 

3.5 The way forward 

 

Diagnostics and prognostics of chronic wounds have progressed little in recent times despite 

the rapidly growing ageing population. By correctly identifying and quantifying holistic 

proteomic changes associated with the progression of disease, or its state, an abundance of 

information can be gleaned [71]. In this case it is anticipated that markers of healing or new 

therapeutic targets will be identified from temporal proteomic research [69]. Presently, only a 

single investigation has attempted to identify the protein components of wound fluid without 

bias [69]. Rather than antibody or zymography-based methods, this study reported for the first 

time the use of immuno-depletion, multidimensional chromatography, mass spectrometry and 

data interrogation techniques to separate, identify and catalogue the components of pooled 

CWF samples.  

 



While limited in their approach, targeted studies are much more common throughout the 

literature and collectively are still able to provide valuable insights into the chronic wound 

environment.  

 

4 A literature-derived proteome catalogue and biomarkers of wound healing  

 

Although proteomic investigation of clinical wound samples is sparsely reported in the 

literature, a commendable body of protein-centric studies have facilitated important advances 

in understanding the wound environment. 

 

4.1 A literature-derived proteome catalogue 

 

As previously stated, the rationale for chronic wound fluid and tissue analysis is the potential 

for identification of therapeutic targets and/or prognostic and diagnostic markers of healing 

[44, 45, 63, 72]. Indeed, many investigations have been directed towards the evaluation of 

specific molecules hypothesized to be found in patient samples. The search for biomarkers 

can be easily assigned to three categories; protein analyses in CWF (Supplementary Table 1); 

small molecules and elemental analysis of CWF (Supplementary Table 2); and analyses of 

chronic wound tissues (Supplementary Table 3). This collection of published findings 

provides a somewhat limited, although available, literature-derived proteome catalogue as a 

reference for new and continuing investigators, as well as insight into the metabolic and 

electrolyte balance. Upon review, assembly of these data under their respective categories 

allows for analysis that highlights some additional information of interest.  

 

4.2 Progress towards biomarkers and therapeutic targets 



 

An initial analysis of the summarised data regarding the chronic wound-derived proteome 

emphasizes an overall focus towards chronic venous ulceration, which is not surprising given 

the dominance of this etiology. Duplication of targeted approaches is also evident in all three 

categories. Overall there has been a strong focus towards growth factors, cytokines and 

extracellular matrix proteins in previous research (Supplementary Tables 1 and 3). Again, this 

is unsurprising given the association of skin growth and regeneration (and associated 

imbalances) with these molecules. Duplicate investigation is particularly evident in the 

analysis of proteins in CWF, with elastase [43, 46, 55, 58, 61, 73-76], fibronectin [9, 11, 46, 

55, 59, 60, 75, 77, 78], matrix metalloproteases (MMP)-2 [43, 46, 57, 61-63, 79-82] and -9 

[43, 46, 62, 63, 79-81, 83, 84] actively investigated. These species in addition to others have 

been recommended as potential biomarkers or targets for therapeutic intervention. However, 

with the exception of elastase, MMP-2 and -9 [85, 86], few have progressed beyond 

recommendation. 

 

The comprehensive investigation of MMP-9 in chronic wound healing has proven to be 

particularly fruitful. Building on a compelling body of work two recent papers have identified 

MMP-9 as a potential prognostic marker of healing in venous [79, 84] as well as diabetic [87] 

ulcers. This work precipitated the announcement of the development of a tool using MMP-9 

levels for wound diagnostic purposes at the Third Congress of the World Union of Wound 

Healing Societies and the 7th National Australian Wound Management Association 

conference. In addition, this protease has been the focus of potential therapeutic intervention 

with the development of potential broad spectrum protease-modulating dressings [88] and 

other more targeted approaches [86]. 

 



The assessment of another member of the metalloproteases family, MMP-2, provides further 

evidence for the value of future proteomic investigation into clinical chronic wound healing. 

MMP-2 levels have been shown by a number of studies to be significantly increased over 

controls or to have a relationship to wound healing in wound fluid [43, 46, 57, 63, 80, 82] as 

well as wound tissue [79, 89, 90]. These data, in combination with the finding that tissue 

inhibitor of metalloproteases (TIMP)-1 is dysregulated in chronic wounds [10, 61, 79, 80, 83, 

87] and that elastase activity and levels are also increased [43, 58, 61, 74, 91], led to the 

development of a protease modulating matrix, PROMOGRAN [85]. The matrix is composed 

of bovine collagen and oxidized regenerated cellulose and acts to absorb proteases and divert 

protease activity away from precious granulation tissue. 

 

With the clinical presentation of self-sustaining inflammation in chronic wounds, the 

molecules responsible have also been the focus of fervent research (Supplementary Tables 1 

and 3). As expected, a number of the inflammatory proteins targeted in previous 

investigations have been found to be increased over control concentrations [9, 92-95], or in 

some cases, related to the stage of chronic wound healing [95]. Following on from these 

results, research published in 2006 described the use of a recombinant chimeric protein for the 

ablation of tissue necrosis factor (TNF)-α activity in chronic wound fluid [25]. This paper 

showed the efficacy of this approach as a potential wound treatment. Subsequent work 

involved the use of infliximab, a TNF-α therapeutic antibody, in the treatment of chronic, 

therapy-resistant leg ulcers [96]. The paper demonstrated successful response in seven out of 

eight patients treated with the antibody therapy. Clinical trials are still required for the 

efficacy assessment of this approach in relation to traditional therapies. 

 



The role of growth factors in wound healing has also been the subject of much investigative 

power. Dysregulation in the presentation of vascular endothelial growth factor [57, 65, 97], 

epithelial growth factor [98], hepatocyte growth factor [99],  platelet-derived growth factor 

[82],  transforming growth factor-1 [65, 81, 87, 93, 98, 100, 101], transforming growth 

factor-2 [100, 102] and insulin-like growth factor-1 [57, 103] has been reported from several 

laboratories. Significantly, the altered presentation of basic fibroblast growth factor (bFGF) 

and its statistical association with wound healing has been demonstrated [81, 104]. This work 

has now resulted in the development a bFGF-based therapeutic for skin ulceration in 

scleroderma for use in Japan [32] and again highlights the potential for new therapeutic 

targets to be discovered through proteomic investigation. 

 

While substantial work towards examining chronic wound samples has been published, the 

selected approaches have provided only a limited number of targets (approximately 140 

proteins and 20 small molecules/elements). Without detracting from the significant 

contribution of this work to the understanding of the chronic wound environment, recent 

proteomic characterisation of a comparable biological fluid [105] suggests a great deal of 

information is yet to be obtained.  

 

Several recent relevant articles have advocated the use of clinical samples for biomarker 

discovery with the most recent directing readers towards protein profiling strategies [18]. 

Given this advocacy, the potential of proteomic investigation and the longevity of this 

research area, it begs the question: What’s stalling the application of proteomics to clinical 

wound healing research? 

 

5 Application of proteomics to chronic wound healing: Challenges and innovations 



 

As with analysis of any clinical condition, the application of proteomics to wound research 

has its specific challenges which have hindered the progress and adaptation of this 

investigative approach to wound healing research. This section outlines some of those 

challenges and appropriate steps for progress.   

 

5.1 Challenges of sample collection 

 

The recruitment and collection of samples is the first obstacle in any clinical investigation. 

Even prior to patient recruitment the collection of clinical data and samples should be 

conducted in such a way as to protect the patient. Chronic wound tissue biopsies can therefore 

be ethically challenging, and impossible in the authors’ own research experience, given the 

potential to initiate a secondary chronic wound. CWF is therefore the default sample type in 

some cases but can harbour its own drawbacks as outlined below.  

 

Given ethical clearance, patient recruitment for chronic wound research can prove equally 

difficult. Many patients present with co-etiologies and co-morbidities [106], including local 

infection and biofilms [107], and many may be unable to participate fully due to illness or 

mortality. Anecdotally, these conditions can limit patient recruitment given suitable study 

inclusion criteria.  

 

5.2 Challenges of clinical chronic wound samples 

 

CWF is a highly variable clinical sample. Measurements of pH, protein concentration, volume 

and bacteriology have returned large ranges from a cross section of wound types. With regard 



to proteomic investigation, volume and protein concentration are fundamental. In the authors’ 

laboratories wound fluid concentrations have been determined to range from 0.05 – 50.5 

mg/ml while volumes have varied from 0.02 – 2.5 ml. Similarly, total protein amounts have 

spanned 0.07 – 47 mg protein per sample. Such variability in these CWF parameters 

challenges the clinical proteomic investigator in terms of analysis methods and technique 

development. 

 

Dynamic range is an issue well known in serum-based proteomics. Given the gross 

similarities evident between serum and wound fluid [108] and the presence of low abundant 

species, such as growth factors and cytokines, CWF components would appear to span a 

similar concentration range. Elevated proteases, leading to chronic wound-related protein 

degradation [11, 46, 55, 59], further contributes to the complexity of this sample. 

 

Several collection techniques are also prevalent in the literature. These include: passive 

techniques such as direct aspiration from beneath occlusive dressings [61]; direct extraction 

from wound dressings [52]; hydrophilic absorption [83]; micro-dialysis [68, 109]; and the 

active technique, and by-product of vacuum-assisted closure (V.A.C.), negative pressure 

accumulation [110]. The variation in these techniques may arguably impair the comparison of 

studies from multiple laboratories and eliminate robust metadata analyses. Indeed, 

comparison of passive CWF accumulation in dressings and CWF actively accumulated by 

V.A.C. has shown large differences in the amount of exudate and protein obtained [110], 

suggesting that molecules of interest may be diluted to the detriment of proteomic 

investigation. As yet there have been no objective investigations into the efficiency and 

efficacy of the available CWF collection techniques. Ideally, samples should be collected 



under comparable patient conditions with the least opportunity for irreversible adsorption, 

dilution, loss or degradation of components.  

 

Clinical wound tissue also shares the challenge of dynamic range. As skin composition is 

dominated by multiple keratin proteins, the wound researcher is required to engage pre-

fractionation or sophisticated multidimensional fractionation techniques. Also, as mentioned 

earlier, there is the irregular presentation of proteins from multiple sites within the same 

wound [43], suggesting that several sites may need to be biopsied which then raises ethical 

issues, as indicated in 5.1. 

 

5.3 Innovative approaches and recommendations for progress 

 

Multi-site recruitment and clinical sample collection is imperative for the progress of chronic 

wound research. In this regard, significant patient numbers which represent distinctive 

aetiologies can be obtained. Harmonization of collection, processing and storage methods 

between sites and laboratories may also prove useful if data are to be shared or comparisons 

drawn. Given the above criteria for optimal collection, aspiration of wound fluid which has 

been passively collected from beneath an occlusive dressing is the authors’ recommendation 

for standardized collection. While the other techniques have their merits, none offers the same 

non-selectivity, or possibility to obtain a whole, undiluted sample. CWF should then be 

clarified by centrifugation as soon as possible and stored frozen at -80 °C until analysis. In 

our experience CWF samples should also undergo the least number of freeze-thaw cycles and 

not be left at ambient or elevated temperature for any extended period due to the visible 

degradation of CWF components when analysed by gel electrophoresis. 

 



With regard to dynamic range, normalisation [111] or affinity depletion [112] technologies 

offer assistance. Current depletion strategies promise to selectively remove up to 20 of the 

most abundant proteins found in serum, plasma and related fluids [113]. Indeed, depletion 

technology has been shown to be adaptable to wound fluid samples [69], with the successful 

depletion of seven of the most abundant serum proteins and subsequent identification of 

several CWF proteins previously undescribed in this fluid. Caution in the application of this 

technology is necessary though as column binding capacities can be reduced, as stated by the 

manufacturers, if serum/plasma has originated from patients with an inflammatory condition 

(depletion-targeted components may be elevated to the point where they are not able to be 

retained using the recommended protocol). Dynamic range in wound tissue analysis may also 

be manageable with new technologies for high resolution separation such as pI-based liquid-

phase fractionation [114]. 

 

Given the variable protein amounts available from small clinical samples it may be necessary 

to engage highly sensitive MS or antibody array [115] technologies. These array technologies 

are particularly attractive to the chronic wound researcher given the use of small sample 

amounts and the high specificity of the technology. Arrays can further be targeted to specific 

molecular functions, such as protease action, growth factors or structural proteins [116]. 

Alternatively, chemical labelling strategies where temporal samples are pooled prior to 

identification (e.g. iTRAQ, ICPL, ExacTag, DIGE) offer another approach to deal with 

sample scarcity. Multiple reaction monitoring may also prove useful in the validation of 

targets, or as a means to analyze large temporal/multi-patient sample sets, due to its enhanced 

selectivity and sensitivity and ability to schedule transitions [117, 118]. 

 



Innovation in the validation of chronic wound fluid targets may also offer valuable insights 

into the wound environment. The development of an in situ western blot technique, where a 

membrane is placed directly on the surface of a wound bed to maintain spatial information 

could be easily implemented. The membrane could then be probed for a target of interest, 

thereby identifying the region of the wound where that molecule is present and therefore the 

region best targeted for appropriate therapy. 

 

6 Potential for proteomics to impact chronic wound practice 

 

The identification of therapeutic targets and prognostic or diagnostic markers of healing has 

the potential to revolutionize chronic wound care. We believe that proteomic approaches in 

chronic wound research are the likely avenue for the discovery of wound healing-related 

molecules for the development of biochemical analyses and/or therapy development. Rapid 

and specific identification of the wound etiology will inform clinical decision making and 

ensure patients are correctly managed, while the development of advanced therapies will 

further reduce practitioner burden and decrease financial load on healthcare systems.  

 

Indeed, as the economic and social burden of chronic wounds is set to increase due to the 

ageing of the population and a surge in associated underlying medical conditions, these 

innovations are desperately needed. Older people and those with chronic diseases, such as 

diabetes and vascular disease, are at greatest risk of developing a chronic wound. The 

Australian Bureau of Statistics projects that by 2050 over 25% of the population will be over 

65 years of age, almost twice that in 2007 (13%). By 2031 it is predicted that 3 million 

Australians will be diabetic, with 20% of these patients being at risk of developing chronic 

wounds (http://www.aihw.gov.au/publications/index.cfm/title/10394).  



 

Improving capacity to manage, treat and plan for chronic wounds is therefore essential for the 

future of health care systems world-wide. The projected increase in the prevalence of chronic 

wounds is also reflected in the size and growth of the advanced wound care products market, 

which in 2006 was estimated at US$2.6 billion with a growth rate of 12.3% per annum over 5 

years to US$4.6 billion according to market research firm Piribo Ltd.  

 

Despite the significant economic and social impact of chronic wounds, efforts to overcome 

this challenge have been limited in Australia and world-wide, with wounds typically managed 

as co-morbidities of other conditions and by clinicians with limited specialization or 

fragmented training. 

 

7 Conclusion and perspective 

  

Clinical chronic wound research has yet to venture beyond targeted strategies for the 

identification of molecules of medical interest. Proteomics offers a powerful technique for 

this purpose. Previous targeted approaches have identified significant differences between 

chronic wound samples and related controls eliciting the question of the yet undescribed 

whole proteomic changes to be identified. Several barriers have historically delayed the 

uptake of this approach in wound research; however, advancements in tools for the 

improvement of proteomic depth offer encouragement to move forward into this arena.  

 

The collation of previous research findings and recommendations for research outlook 

described herein outline a path towards the discovery of molecules of medical interest in the 

diagnosis, treatment and management of chronic wounds. The uptake of antibody array 



technologies in this quest is particularly attractive given issues with clinical sampling and 

their multiplexed and targeted nature. Chemical labelling techniques [119] and enrichment 

strategies [69] also offer avenues to negate issues of sample size and complexity which, like 

serum-based proteomics, appear to plague CWF research. 

  

Given the current scope of chronic wound proteomics, any information gained through this 

approach will contribute to greater understanding of these collective conditions. The 

discovery of definitive diagnostic or prognostic markers, or novel therapeutic targets, will 

significantly improve what is a major and increasing health challenge. It remains now for the 

research community to take up this challenge for the improvement of health and healing. 
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