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A SPEAKER REDIARIZATION SCHEME FOR IMPROVING DIARIZATION IN LARGE
TWO-SPEAKER TELEPHONE DATASETS

Houman Ghaemmaghami, David Dean, Sridha Sridharan

Speech and Audio Research Laboratory, Queensland University of Technology, Brisbane, Australia

ABSTRACT
In this paper we propose a novel scheme for carrying out
speaker diarization in an iterative manner. We aim to show
that the information obtained through the first pass of speaker
diarization can be reused to refine and improve the original di-
arization results. We call this technique speaker rediarization
and demonstrate the practical application of our rediarization
algorithm using a large archive of two-speaker telephone con-
versation recordings. We use the NIST 2008 SRE summed
telephone corpora for evaluating our speaker rediarization
system. This corpus contains recurring speaker identities
across independent recording sessions that need to be linked
across the entire corpus. We show that our speaker redi-
arization scheme can take advantage of inter-session speaker
information, linked in the initial diarization pass, to achieve a
30% relative improvement over the original diarization error
rate (DER) after only two iterations of rediarization.

Index Terms— Speaker rediarization, diarization, speaker
linking, complete-linkage clustering, cross-likelihood ratio

1. INTRODUCTION

The rapid expansion of spoken archives around the world has
brought about the need for technology capable of automat-
ically annotating large volumes of spoken recordings with
the identities of the speakers present in the analysed archive.
This can be achieved through determining ’Who spoke when?’
within a recording (referred to as speaker diarization) [1, 2],
and then identifying recurring speaker identities between
recordings. In the studies carried out by Viet et al. [3] and
Yang et al. [4] this task has been referred to as cross-show
speaker diarization. We believe that although speaker di-
arization is a necessary module for carrying out such a task,
the term diarization does not accurately reflect the problems
associated with extending diarization to a collection-wide
approach. When we compare within-recording speaker iden-
tities across temporally-independent recordings we may be
faced with challenges such as inconsistencies in the speak-
ers’ recording environments or changes in the voice of the
speakers due to aging or health complications. The study by
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van Leeuwen on cross-recording speaker identification [5],
refers to this task as speaker linking, which has since become
a widely accepted term in the field [5–9]. We also use the
term speaker linking to distinguish this task from speaker
diarization and have used the term speaker attribution in this
paper (and our previous work) to refer to the combined tasks
of speaker diarization and speaker linking [6, 10].

In recent literature, speaker attribution has been used as
a vital module for person recognition in multimodal con-
ditions using broadcast video data [9, 11]. As the size of
the analysed collection grows, so too does the demand for
greater efficiency. One challenge that directly impacts the ef-
ficiency of attribution is the clustering method employed for
speaker linking. In diarization, agglomerative model merg-
ing and retraining is commonly used for clustering within
a recording [1, 2]. This approach has also been applied to
speaker attribution [3, 4]. This retraining approach is inef-
ficient and is not feasible for dealing with large datasets.
As an alternative, van Leeuwen first proposed a linking sys-
tem using a form of agglomerative distance clustering [5],
to overcome the inefficiencies of model agglomeration. We
proposed complete-linkage clustering, a form of agglomera-
tive distance clustering, which eliminates the need for model
retraining and utilises a pessimistic distance rule to update
pairwise cluster scores after each merge [6, 10].

After performing speaker attribution over a corpus with
recurring identities across recordings, we achieve a set of
hypothesised annotations. These annotations show where
we believe each speaker is speaking in a single recording
and other independent recording/s in which an identity is
speaking. These annotations are not ideal and may contain
erroneous information. We propose, for the first time, a novel
scheme for using this additional information that is linked be-
tween independent recordings by a real diarization system, to
redo and refine the initial diarization process of each record-
ing. We call this speaker rediarization and investigate the
effect of iteratively applying rediarization to boost diariza-
tion accuracy across the NIST 2008 SRE telephone corpus.
We propose using the cross-likelihood ratio (CLR) metric
to predict improvement after rediarization for two-speaker
telephone recordings, allowing for blind selection/rejection
of new annotations.



2. SPEAKER MODELING AND CLUSTERING

We utilise a joint factor analysis (JFA) modeling approach
with session compensation [12], based on the method pro-
posed by Vogt et al. [13]. We adapt models using a combined
gender universal background model (UBM) [12, 13]. We first
introduce a constrained offset of the speaker-dependent Gaus-
sian mixture model (GMM) mean supervector:

mi(s) = m(s) + Uxi(s), (1)

where m(s) is the speaker-dependent, session-independent,
GMM mean supervector of dimension CL × 1, C is the
number of mixture components used in the GMM-UBM and
L is the dimension of the feature vectors. xi(s) is a low-
dimensional representation of variability in session i, and U
is a low-rank transformation matrix from the session subspace
to the UBM supervector space. Then,

m(s) = m + Vy(s) + Dz(s), (2)

where m is the speaker- and session-independent GMM-
UBM mean supervector. y(s) is the speaker factors, which
represent the speaker in a specified subspace with a stan-
dard normal distribution [13]. V is a low-rank transforma-
tion matrix from the speaker subspace to the GMM-UBM
mean supervector space. Dz(s) is the residual variability
not captured by the speaker subspace, where z(s) is a vec-
tor of hidden variables with a standard Gaussian distribution,
N(z|0, I). D is the diagonal relevance maximum a posteriori
(MAP) loading matrix. We estimate the speaker independent
hyperparameters U, V, D, m and Σ, using the coupled
expectation-maximization (EM) algorithm hyperparameter
training by Vogt et al. [13].

Once JFA models are obtained, we employ the CLR met-
ric for a pairwise comparison. The CLR has been shown
to be a robust measure of model similarity when comparing
adapted models [1]. In addition, CLR scoring can be accom-
modated by JFA modeling.

Given two segments i and j, and their feature vectors xi

and xj , respectively, the CLR score aij , indicating similarity
of the segments with respect to their identity, is computed as,

aij =
1

Ki
log

p(xi|Mj)

p(xi|MB)
+

1

Kj
log

p(xj |Mi)

p(xj |MB)
, (3)

where, Ki and Kj represent the number of feature vectors in
xi and xj , respectively. Mi and Mj are the adapted models.
p(x|M) is the likelihood of data x, given the JFA model M ,
and MB is the GMM-UBM representing general population.

We need to incorporate JFA into the CLR framework.
This requires some notation to be defined. Σ is a CL × CL
diagonal covariance matrix containing C, GMM compo-
nents’ diagonal covariance matrices, Σc of dimension L×L.
Using this, for a model M of c (c = {1, . . . , C}) compo-
nents, adapted using data in x, the zeroth and first order
Baum-Welch statistics can be obtained [12].

Now let N be a CL × CL dimensional diagonal matrix
consisting of each component’s zeroth order statistics diago-
nal block Nc. Let F be aCL×1 dimensional vector achieved
by concatenating the first order statistics Fc of each compo-
nent. Using this, and the work by Kenny [12], the likelihood
function providing the likelihood of segment x given a JFA
model M , can be calculated using,

log p(x|M) = Z∗Σ−1F +
1

2
Z∗NΣ−1Z , (4)

where N and F of each segment were obtained over each
component, c, of the GMM-UBM. In addition, F is cen-
tralised on the GMM-UBM (MB) mean components, mc.

After the pairwise CLR scores are computed using (3) and
(4), we employ complete-linkage clustering to obtain the fi-
nal speakers/clusters. Complete-linkage clustering is a form
of agglomerative clustering that employs a linkage rule to up-
date the pairwise cluster scores after a merge [14]. For this
reason, complete-linkage clustering can be carried out with-
out a model retraining stage, using only the initial set of pair-
wise CLR scores. To do this, the most similar pair of clus-
ters (with highest pairwise CLR score) are first merged to
form a starting node. The pairwise score between this newly
formed cluster and each remaining cluster is then updated to
the CLR score between their most dissimilar elements. For
example, if we begin by merging two clusters Ci and Cj into
Ci′ = {Ci, Cj}, the CLR score (ai′x) between the newly
formed cluster Ci′ and any remaining cluster Cx will be up-
dated using the complete-linkage rule,

ai′x = min(aix, ajx). (5)

This merge and update process is repeated until a stopping
criterion is reached. When updating the pairwise scores,
complete-linkage clustering takes into account the worst-case
scenario scores to pessimistically reflect the outcome of each
merge. We have previously shown that this clustering tech-
nique is more efficient and more accurate than the standard
and state-of-the-art model merging and retraining techniques
used for diarization or linking [6, 10].

3. SPEAKER ATTRIBUTION

We employ an improved version of our proposed speaker at-
tribution system using complete-linkage clustering [10]. We
present the diarization and linking modules of our system and
evaluate this across the NIST SRE 2008 dataset [15].

3.1. Speaker diarization

Our proposed diarization system is inspired by the ICSI RT-
07 diarization system by Wooters et al. [2], and the base-
line method by Kenny et al. [12]. We utilise an implemen-
tation of the hybrid voice activity detection (VAD) and er-
godic HMM Viterbi segmentation technique from the ICSI



RT-07 system [2]. For VAD and the segmentation stages of
diarization, we use 20 MFCC features including the 0th or-
der coefficient, extracted using a 20 bin Mel-filterbank, 32 ms
Hamming windows and a 10 ms window shift. For clustering
we utilise 13 MFCC features including the 0th order coeffi-
cient and deltas, with added feature warping [16]. We use a
stopping criterion of 2 speakers, which is a common assump-
tion for diarization of two-speaker telephone used by Patrick
Kenny [12] and Vaquero et al. [17]. Our system consists of:
1. Hybrid VAD for 15 iterations, or until convergence.

2. Linear segmentation of audio into 3 second segments,
modeling each segment using 32 component GMMs and
3 iterations of Viterbi segmentation.

3. Obtaining zeroth and first order Baum-Welch statistics for
the N initial segments using the GMM-UBM.

4. JFA modeling and CLR scoring between all pairs of seg-
ments to achieve (N×N ) CLR score matrix.

5. Complete-linkage clustering of N segments.

6. Model non-speech as single Gaussian and each speaker
with 32 component GMMs for 3 iterations of Viterbi.

3.2. Speaker linking

Our linking system uses complete-linkage clustering for ef-
ficiency [6, 10]. We use JFA modeling to overcome inter-
session variability, with a previously trained combined gen-
der GMM-UBM of 512 mixture components. We use a 50-
dimensional session and 200-dimensional speaker subspace.
Our speaker linking module takes the output of our diariza-
tion system to initialise the inter-recording speaker models
and consists of the following stages:
1. Obtaining the zeroth and first order Baum-Welch statistics

for the N initial speakers using the GMM-UBM.

2. JFA modeling and CLR scoring between all pairs of
speakers to achieve (N×N ) attribution matrix [10].

3. Complete-linkage clustering of N segments.

3.3. Attribution results

We carry out attribution across the NIST SRE 2008 two-
speaker summed telephone corpus [15]. We use this dataset
as it contains reference diarization labels for each recording,
as well as multiple occurrences of unique speaker identi-
ties across independent recordings with a global identity key
for the participating speakers. This allows the mapping of
identities within recordings, to identities across the corpus,
making it suitable for evaluation of our system. The NIST
SRE 2008 provides an identity key for 1382 speakers across
691 recordings, consisting of a total of 751 unique identities.

We evaluate our diarization module using the standard
DER metric, as defined by the National Institute of Standards
and Technology (NIST) [15]. To only evaluate linking of

System DER AER Speakers found
diarization + linking 7.34% 26.08% 798

linking reference 18.68% 901

Table 1. Speaker attribution and linking performance before
applying speaker rediarization.

speakers between recordings, we employ reference diariza-
tion labels. The linking module can be treated as attribution
using our linking system after ideal diarization. We thus em-
ploy our proposed attribution error rate (AER) metric to eval-
uate linking, as well as attribution [6, 10]. The AER is the
same as the DER, obtained across the corpus when taking
into account speaker errors for linking inter-recording identi-
ties. We have thus renamed it to distinguish between within-
recording errors (DER) and, within- and between-recording
errors (AER). The AER will always be larger than the DER as
it displays this error as well as the between-recording errors.
Table 1 presents the performance of our proposed speaker at-
tribution system, with respect to the AER metric, across the
evaluation corpus. The performance of the speaker linking
module is also shown in this table. As previously mentioned,
the linking module was evaluated using reference diarization
labels. Our work in [10] and [6] provide further details of
the performance of these systems. Our objective is thus to
improve upon these results through speaker rediarization.

4. PROPOSED SPEAKER REDIARIZATION

In our speaker attribution system, the diarization stage pro-
vides speaker linking with a large set of intra-recording
speaker identities. The linking module then models these
speakers and clusters them to provide links between speaker
models, hypothesised to be the same identity across the cor-
pus. The most obvious approach to rediarization is then to
use this knowledge to find additional models to each intra-
recording identity and use the additional information to refine
the original diarization output. From the results in Table 1, it
can be seen that, even when reference diarization labels are
used, the speaker linking module can be erroneous (AER =
18.68%). We thus employ a different approach to our linking
system, for selecting similar speaker models to each speaker
in a recording and conducting speaker rediarization.

4.1. Selecting similar models

After diarization is carried out and the CLR measure is com-
puted between all intra-recording speaker identities, we seek
any additional models that may be of use for conducting
speaker rediarization. We propose using any inter-recording
speaker model that is similar to the speakers in each record-
ing for rediarization. We define this similarity based on the
value of the pairwise CLR metric (aik) computed between



inter-session speakers i and k using (3) and a CLR threshold,
θ. We propose the following rediarization strategy. First, in
each recording, for each speaker i and j, find set S of similar
speakers that are dissimilar to the competing speaker in the
same recording. We define the similarity set for speaker i as:

Si = {k|(k 6= i) ∧ (aik ≥ θ) ∧ (ajk < θ)} (6)

where k = {1, . . . , N} is the set of speaker labels for the N
initial speakers obtained across the entire corpus. We then use
the initial diarization labels for segmentation, treating speaker
turns as the beginning of new segments, such that no two seg-
ments are attributed to one another. This allows for revers-
ing of erroneous intra-recording clustering decisions that took
place in the initial diarization pass. We then model each seg-
ment using 32 component GMMs for 3 iterations of Viterbi to
refine speaker change points.

After obtaining C ideally homogeneous segments in a
recording, JFA modeling and CLR scoring are carried out to
obtain a (C × C) CLR score matrix. At this stage we allow
the larger linked models in sets Si and Sj to participate in
the rediarization process. Hence achieving a (M ×M) CLR
score matrix, where M = (C + |Si|+ |Sj |), and |S| denotes
number of speakers in similarity set S. We then cluster the
(M ×M) score matrix, using complete-linkage clustering, to
obtain a (M×1) vector p, containing the final speaker labels.
We use p to appoint labels i or j to each of the M partici-
pating segments, discarding the inter-recording models added
to assist with rediarization. Finally, we apply 3 iterations of
Viterbi resegmentation to refine the final boundaries.

We aim to use larger speaker models, linked across
independent recordings, to boost our knowledge of intra-
recording speakers and improve diarization of a single record-
ing through guiding the clustering of smaller intra-recording
segments. The larger participating inter-recording models
would ideally serve as initial nodes to which the smaller
segments can be attributed when performing rediarization.

4.2. Blind selection of improved diarization labels

Although we hope to improve accuracy in this manner, we
cannot guarantee the linking of matching identities. As CLR
is a pairwise similarity metric (higher is more similar), we
propose obtaining this measure between the final speaker
identities and interpreting a reduction in this measure as an
indication of improvement. This is simple for two-speaker
telephone data. We accept the labels obtained through re-
diarization if (a′ij < aij) is satisfied, where aij represents
CLR between the speakers before rediarization, and a′ij is
this score after rediarization.

4.3. Rediarization and attribution results

We employ a range of CLR thresholds (θ) to select similar
models for rediarization. We apply 3 iterations of our redi-
arization scheme after diarization. Figure 1 provides the DER

Fig. 1. DER at each rediarization iteration and CLR threshold.

Initial DER Iteration 1 Iteration 2 Iteration 3
7.34% 5.75% 5.12% 5.11%

Table 2. DER decreases after applying each iteration of
speaker rediarization at CLR threshold θ = −0.15.

of our diarization module after each iteration of rediarization,
at various CLR thresholds. Table 2 provides the performance
of our rediarization system at its best performing threshold.

After two iterations of rediarization the DER is reduced
from 7.34% to 5.12%. This is a relative improvement of
30.24% in DER. From Figure 1 and Table 2, virtually no im-
provement is observed after iteration 3 compared to iteration
2. This is because after iteration 2, the purity of the speaker
models is not improved enough to reliably find similar mod-
els. The improvements are achieved within the CLR range of
θ = [−0.25, 0.25]. This can be explained using (3) and (7):

aij =

Ti︷ ︸︸ ︷
1

Ki
log

p(xi|Mj)

p(xi|MB)
+

Tj︷ ︸︸ ︷
1

Kj
log

p(xj |Mi)

p(xj |MB)
, (7)

where Ti is the likelihood that data for speaker i is produced
by the competing speaker model Mj , compared to likelihood
of this segment being produced by the general population
model (UBM). Tj represents this measure for speaker j.
Hence, aij will be negative if the general population is a
better representative of a speaker than its competing model.
A positive aij signifies that speakers i and j are more similar
to each other compared to the UBM. Given ideal models, we
would not expect Ti and Tj to have opposite signs as we do
not expect speaker i to be similar to j but for j to be different
to speaker i. Hence, a CLR threshold of (θ = 0) would be an
ideal threshold for choosing similar models. As larger thresh-
olds are employed, the chance of correctly linking speakers is
higher, however less recordings are found that meet the simi-
larity constraint defined in (6). As θ is lowered more models
are found, however once θ becomes too low (θ < −0.25)
more false models are linked that lead to an increase in DER.

We found that our proposed blind label selection criterion
was able to perform with great accuracy. Table 3 provides



Metric Iteration 1 Iteration 2 Iteration 3
MR 1.2% 2.9% 3.6%
FAR 13.9% 18.4% 19.5%

Table 3. False alarm rate (FAR) and miss rate (MR) of blind
selection of improved labels.

System DER AER Speakers found
attribution 7.34% 26.08% 798
attribution + rediarization 5.12% 23.55% 897

Table 4. Speaker attribution evaluation results before and after
applying rediarization show reduction in both DER and AER.

the performance of this criterion in terms of the miss rate
(MR) and false alarm rate (FAR) of the criterion in success-
fully predicting improvement to the diarization labels. Table 4
displays the performance of our attribution system versus the
performance of this system with rediarization. The AER of
the attribution system is reduced through rediarization. This
reduction is more than the absolute reduction in the DER met-
ric, indicating that the improvement in DER has also provided
the linking module with more pure models.

5. CONCLUSION

We proposed a novel speaker rediarization algorithm for im-
proving the performance of speaker diarization and linking in
large two-speaker telephone datasets. In this work we demon-
strated that the information obtained through speaker diariza-
tion and linking across a corpus (although erroneous) can be
used, through our proposed rediarization technique, to im-
prove and refine the initial diarization outcome. We proposed
an iterative rediarization system and evaluated this approach
over the NIST SRE 2008 telephone corpus, showing a relative
improvement of 30% in DER and 10% in AER. In addition,
we proposed a blind label selection criteria, based on the CLR
metric, for successfully predicting improvements to the orig-
inal diarization labels after rediarization.
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