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Abstract 

In this paper, an interpolatory subdivision algorithm for surfaces over ar-
bitrary triangulations is introduced and its convergence properties over nonuni-
form triangulations studied.  The so called Butterfly Scheme (interpolatory) is  
a special case of this algorithm. In our analysis of the algorithm over uniform 
tr iangulat ions ,  a  matr ix  approach is  employed and the idea,  of  "Cross  Differ-
ence of Directional Divided Difference" analysis is presented. This method is a 
generalization of the technique used by Dyn, Gregory and Levin etc. to analyse 
univar ia te  subdivis ion algori thms.  While  for  nonuniform data ,  an extraordi-
nary point  analysis  is  in t roduced and the local  subdivis ion matr ix  analysis  is  
presented.  I t  i s  proved that  the  a lgori thm produces  smooth surfaces  over  ar-
bi t rary t r iangular  networks provided the shape parameters  are  kept  within an 
appropria te  range.  

§1.   Introduction 

Although subdivision algorithms have been being studied intensively for many years, 
they have been used for  scient is ts  and technicians  s ince long ago.  For  example,  the  
so  ca l led  Carpenter ' s  Technique  i s  a  very  s imple  a lgor i thm of  th i s  type .  Whi le  the  
de Rahm's "Trisection Algorithm" (1947),  the de Casteljau's  Algorithm (1959) for the 
Bernstein-Bézier curves and the Chaikin's Algorithm (1974) for curves are subdivis ion 
algorithms which contribute much to the rapid development and investigation of this type 
of algorithms.  Recent ly ,  a  lot  of  work has  been done in  this  area to  s tudy subdivis ion           
algorithms systematically. This includes the works by Dyn, Gregory, Levin, Dahmen,  
Micchell i ,  Cavaretta,  Daubechies and Largarias . . .  etc.  And Interpolatory Subdivision 
algorithms play a very important role in these applications. Our work in this area is to 
investigate explicit conditions under which a subdivision algorithm could produce smooth 
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surfaces with certain prescribed properties such as interpolatory and monotonicity.  That 
is, we try to generalize the Dyn-Gregory-Levin's uniform analysis (cf. [11]) for univariate 
subdivision algorithms to the surface case. 

In this paper, we report briefly some of our work on this subject. We firstly introduce 
a general  interpolatory subdivision algorithm for surfaces over arbitrary tr iangulations 
and then present a convergence analysis of a 10-point Interpolatory Scheme for surfaces 
over arbitrary tr iangulations.  The Butterfly Scheme, which is  a 8-point interpolatory 
scheme is  a  special  case  of  the  a lgori thm. In  the analysis ,  we use a  matr ix  approach 
and hence the idea of "Cross Difference of Directional Divided Difference" analysis is  
introduced. This method is a generalization of the "Diadic Parametrization" technique 
used by Dyn, Gregory and Levin (cf.  [11,13,14]).  which was first ly used to analyse 
uniform subdivision algorithms for curves.  I t  is  proved that  the algorithm produces 
smooth surfaces  provided the shape parameters  are  kept  within an appropria te  range 
and an explicit  condition for this is  also provided. From this condition,  i t  can be seen 
clearly that  the Butterfly Scheme cannot guarantee generating a smooth surface over an 
arbitrary triangulation which can also be shown by graphic examples. More details about 
the analysis can be found in [18].  Other analyses of uniform subdivision algorithms can 
also be found in [2,5,6,16,17,etc.]. 

This algorithm has wide practical applications. For example, it can be used to solve 
interpolatory-type surface fi t t ing problem, or reversely,  i t  can be employed to simplify 
problems l ike data reduction.  I t  is  also hoped that  subdivision algorithms could be 
applied successfully in some optimization problems such as optimized data-transmission 
and wavelets processing etc.  

§2.  Mathematical Description of the Scheme and its Basic Properties 

The construct ion of  the  scheme is ,  or iginal ly ,  motivated by the ideas  descr ibed in  
papers by Dubec (cf.  [10]),  Dyn, Gregory and Levin (cf.  [11,12]).  The scheme is formu-
lated in order to solve such problems as high accuracy surface fi t t ing and fast  surface 
representation.  Thus,  the aim is to generalize the "4-point interpolatory subdivision 
scheme" described in [10,11] for surfaces. The scheme is so constructed that it preserves 
the advantages of the "4-point scheme". The main property of the scheme, in addit ion 
to the properties of general  uniform subdivision schemes,  is  i ts  generation of smooth 
interpolatory surfaces and the reproductivity of cubic parametric polynomial surfaces 
provided that  the shape parameters are chosen within an appropriate range. 

A mathematical description of a uniform subdivision scheme over uniform triangula- 
t ions,  which is  also called Binary Subdivision Algorithm, is  as follows. Suppose that  
the initial "control points" of a uniform triangular net work are denoted by , then, 20 Z,P ∈αα

the  ref ined control  points   are  obtained from  recursively         ,0k,Z,P 21k ≥∈+ αα ,Z,P 2k ∈αα

by the following formula ("Mask"): 
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where, γ  =: ( γ 1 ,  γ 2) and γ i  = 0 or l ,  i  = 1,2.  Thus, the scheme is interpolatory if and  
only if  

       (2.3) .Za 2
,o, ∈∀= αδαα

Equation (2.2) shows clearly that the scheme is a 4-step subdivision scheme which can     
be described by the following  
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The 10-point scheme is given by the following choice of the coefficients in (2.4): 
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where, wi ,i= 1,2,3, are three (tension) parameters. This special choice of the coefficients 
comes from the 3-D symmetric structure of the scheme. In fact, there is a simpler way to 
describe the scheme which uses only a single formula (only one ‘Mask’) to characterize 
the scheme. The formula is given below (cf. Figure 1). This is due to the 3-direction- 
symmetry property of the scheme. Since the scheme is interpolatory, only the inserted 
values are to be evaluated. The formula for an inserted point, Po, is given by 

  )P2P2PPPP()PP(
2
1P 1o fejhcafe w −−+++++=       6.2( )

)PPPP()PPPP( 32 fegdfeib ww −−++−−++   
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where, o is the midpoint of the edge joining the vertices e and f, see Figure 1. From this 
construction, it is obvious that the scheme can be used (possibly, with some modification 
at those so called Extraordinary Points) to produce surfaces over arbitrary triangulations 
(cf. [18]). 

In the uniform subdivision process, formula (2.6) is used to evaluate all “midpoint” 
values to produce a refined uniform triangular control  net  in which the tr iangulation 
of the refined control nets is formed by the “standard 3-D meshing rule” which will be 
explained later in our convergence analysis. Repeated applications of this process will 
therefore result in finer and finer control nets. Moreover, further studies show that if 
the shape parameters {wi} are chosen appropriately, the scheme will produce smooth 
interpolatory surfaces. This will be discussed in the next section. 

It can be shown that the scheme has the following properties. 

1. The scheme is interpolatory. 

2. The parameters {wi} work as tension controls along the three mesh directions respect-               
tively. 

3. The scheme reproduces linear surfaces for all {wi}. 

4. The scheme reproduces bivariate cubic parametric surfaces if {wi} satisfy 

   t
2
1,2

16
18t2,

16
9t 3121 −==−−=−= wwww     (2.7) 

where, t is any real number. 

5. The scheme reduces to the Butterfly Scheme [cf. 11] if the parameters satisfy 

 .0,2,: 321 =−== wwwww       (2.8) 

6. The scheme has certain data-dependent shape preserving properties. 

7. The scheme produces smooth surfaces if the shape control parameters are chosen prop-
erly. This will be discussed later. 

§3. Some Covergence Results of the Scheme 

To study the convergence property of the subdivision algorithm over arbitrary tri-
angulations and the property of the surfaces produced by it ,  a definition of conver-
gence of subdivision algorithms and a parametrization of the surfaces as well should 
be be introduced. By contrast to the univariate case, uniform convergence and the 
“dyadic parametrization” are natural choices for uniform triangulations. The "diadic 
parametrization" means that for uniform triangulations, the control points P  ∈αα ,k

Z2 ,k   0 ,  are  parametr ized at  the  “diadic  points”:  2 - k≥ α ∈α, Z2  in  the parameter  
plane, e.g., the u-v plane. So, if we define 
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       (3.1) ,,:v,u kkk 2Z2)( ∈∀= − αα

t hen ,  t he  con t ro l  ne t ,  wh ich  i s  de f i ned  by   c a n  b e  r e g a r d e d  a s  t h e  ,k,,k 0ZP 2 ≥∈αα

unique piecewise linear interpolant Pk(u,v) from the uniform 3-D meshed u-v plane, 
which is produced by mesh directions (0,1),(1, 0) and (1,1),  to R3 satisfying 

      (3.2) .,v,u kkkk 2ZP)(P ∈= αα

Hence, the convergence of the scheme can be defined as the convergence of the continuous 
surface sequence {Pk(u,v)}. So we say the scheme is convergent if for any initial dada, 
there is a continuous surface P(u,v) such that 

      (3.3) .Rv,u),v,u(P)v,u(Plim k

k
∈∀=

∞→

If we assume here that the initial data are just real numbers and that they are 
funct ion values  on the uniform integer  gr id  ( i , j ) ,  i , j  ∈  Z in  the u-v plane.  Then at  
lever k, the control point values , will be the function values at a refined grid 2k Z,P ∈αα

2k Z)j,i(),j,i(2 ∈− since the diadic parametrization is assumed. By meshing the control 
nets  in the same way as the uniform grid 2-k (i,j) in the u-v plane, the 10-point k

j,iP
scheme can then be written in the following compact form: 
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with   and  being duals  of  the second equat ion.  Now the forward dif-1
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Using the above notion, the following convergence results are obtained (cf.[18,19j): 
Theorem 3.1.  The scheme produces C°  surfaces if  the parameters {w i} satisfy  
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A  s i m p l e  s y m m e t r i c  s o l u t i o n  t o  (3 . 6 )  i s  g i v e n  b y
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Remark 3.2. For the cubic precision scheme, (3.6) becomes 

.t
64
37

2
1

<<      (3.8) 

Remark 3.3. Other conditions for C° convergence can also be obtained (cf. [18]). 

In order to prove that the scheme produces C1 surfaces, the Cross Differences of 
the Directional Divided Differences, CDD ,  of the control nets are introduced and stud- 
ied. This process is similar to the Divided Difference Analysis of univariate subdivision 
schemes described in [2,3,10,ll,etc.]. 

The CDD at lever k along mesh direction m  and n, m,n  = 1,2, 3, m  n,  is defined ≠
as follows: 

.Zj,i,PC k
j,inm

kk
n,m,j,i ∈∀= ΔΔ2:     (3.9) 

Since the scheme is symmetric, we only need to study one type of CDD. Hence, without 
loss of generality, we assume that in (3.9), m = 1, n = 2 and the subscripts m and n will 
be omitted in our future discussion. 

From the subdivision process (3.4) and definition (3.9), one can show that if 

w2=-2  w1 ,       (3.10) 

then all these CDD terms will satisfy the following refinement equations: 
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By applying this recursive relation repeatedly, the following result is obtained: 
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Theorem 3.4. There  ex is t s  a  cons tant  B (w 1 ,  w 3 ) ,  which  i s  a  p iecewise  quadrat ic  func-
tion of w 1  and w 3 ,  such that 

,k,C),(B k
d31 0wwC 2k

d ≥∀≤+     (3.12) 
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and B(w 1, w 3) < 1 provided that the shape parameters w 1 and w 2 satisfy 

        (3.14) 
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Remark 3.5. Condition (3.14) means that the parameters {w i} should lie in a polygonal 
region  in the plane Ω π  :w2  =-2  w1 .   The region Ω  ∈  R3  is depicted in Figure 2 .  

Theorem 3.6. The  10-point scheme produces C1  surfaces if  the shape parameters satisfy 
(3.14). ■  

Corollary 3.7. The cubic  precision scheme produces smooth surfaces if  the tension 
parameter t  satisfy  

      .
100
54

100
49

≤≤ t  ■     (3.15) 

Remark 3.8. Condit ion (3 .14)  i s  a  s imple one.  Other C l  convergence condi t ions may 
also be obtained (cf.  [18]) .  

§4. The Scheme over Arbitrary Triangulations 

In this section, we study the 10-point scheme over nonuniform triangulations. Our 
main result  is that the limit surface is smooth even at the extraordinary points provided 
that the scheme is modified properly at these points.  In particular,  these results are valid 
for the butterfly scheme. The analyses of the scheme here are different from the previous 
analyses of the scheme over uniform data.  In fact ,  the analysis to be presented here is  
an extraordinary point analysis.  The Block-Circulant Matrix theory is used here. This 
technique is quite suitable for the nonuniform analysis.  
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4.1.   Generalization of the Scheme to Arbitrary Triangulations  

Since nonuniform triangular control polyhedrons often arise in practice, i t  is signif-
icant to investigate the behaviour of the scheme over nonuniform triangular networks. 
From its construction, we know that the scheme can be easily ajusted to refine triangular 
networks which leads to the generation of surfaces on arbitrary triangular networks. De-
pending on the local topology (more explicitly, the valances of the vertices),  the 10-point 
scheme can be easily generalized to arbitrary tr iangular networks in the following way. 

Before describing the modified scheme, we introduce some conventions. In the fol-
lowing formulae, the index i  is a cyclic integer in the range: i  = 0, 1, 2, . . . ,  n-1, n. Here, 
n is the valance of the vertex. For simplicity, i t  is also assumed in scheme that the cubic 
precision parameters are used. That is,  the parameters {wi} satisfy (2.7).  

For simplicity, we assume also, without loss of generality, that the initial data is 
locally uniform except one extraordinary point V. (In fact,  this situation can be achieved 
locally after the first  subdivision.) Let  denote the corresponding refined k

i
k
i

k
i R,Q,P,V

control points near the vertex at lever k ,  then, the local scheme can be described as 
follows. 

Case I,  n = 2. 

In this case, there are several alternative choices that can be used. One of them is 
described by the following (Figure 3).  For i  = 0, 1, 2, . . . ,  n-1, n, we have the following 
subdivision process: 
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where t is the local tension control, and {w i} are defined by 
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Case II,  n   3 ≥

        I n  t h i s  c a s e ,  t h e  s c h e me  i s  j u s t  t h e  u t t e r f l y  s c h e me  T h a t  i s ,  u s i n g  t h e  b u t t e r f l y  
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formula everywhere. Since in this case the scheme also produces surfaces (to be proved 
later),  i t  is not necessary to construct more complicated schemes at this vertex although 
some other schemes may also be used. In fact, a cubic precision scheme can be constructed  
but the the coefficients of the formulae are quite complicated. The scheme is like this. 
Applying the butterfly scheme near the extraordinary point we obtain the following 
subdivision formulae (Figure 4) 
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    (4.3) 

 
where w  is the local tension control.  
 
4.2. The. Subdivision Matrix at the Extraordinary Point  
 

Writing (4.1) and (4.3) in a matrix form, we obtain: 
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From this expression, we introduce the following basic matrices:
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⎜
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⎟
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⎜
⎜
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and the control point vector: 
 
     (4.4) tk

n
k
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k
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kkkkkkkkkk RQPRQPRQPRQPv ),,,....,,,,,,,,,,( 222111000:F =



Subdivision Algorithm for Surfaces over Arbitrary Triangulations 10 
 
Here,  F k  i s  a  vector  of  length 3(n+1)+1.   Thus,  the  subdivis ion process  (4 .1)  and (4.3)  
a t  V can be wri t ten in  a  more compact  form: 
 
         (4.6) ......k,kk 0,1,2,A.FF 1 ==+

 
where, A is called the local subdivision matrix.  More explicitly the matrix is given in 
the form 
 

           (4.7) .
A| ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a
01

:A

 
Here,  a  is  a  vector  of  length 3(n+l)  and A'  is  a  Block Circulant  Matrix  defined by 
 
    )(A 1210 n,n, AA,...,A,AAcircB' −=
 
    

                (4.8) 
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⎟
⎟
⎟
⎟
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⎜
⎜
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⎛
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n
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nn10n
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and {Ai} are  some 3 by 3 matr ices  def ined by {C i }  and {w i } .  In  fact ,  for  n=3,  we have 
 

                      (4.9) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

+=

=

=

33

422

1,1

0,0

:
:
:
:

CA
,CCA

CA
CA

 
and  fo r  n=4 ,  we  have  
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n

n

Now, we have constructed the subdivision matrix upon which the properties of the 
limit surfaces depend. Next we will  study the convergent properties of the modified 
schemes at the extraordinary point.  
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4.3. The Spectrum Analysis of the Subdivision Matrix  

In order to study the C0  and C1  properties of the scheme over arbitrary triangu-
la t ions ,  i t  i s  su f f i c ien t  to  p rove  tha t  the  l imi t  su r face  o f  the  schemes  C 0  o r  C 1  i s  a t  
the  extraordinary point since the limit surface is C1  everywhere else provided that the 
tension parameter satisfies (3.14). Since the eigen-properties of the subdivision matrix 
play a very important role in the convergence analysis (cf.  [1,12,20]),  we first  study the 
eigen-properties of the subdivision matrix A. It  should be stressed that eigenvalues and 
their  corresponding eigenvectors of A can be evaluated analytically since the matrix is  
a Block-Circulant Matrix composed of 3 by 3 sub-matrices, therefore these eigenvalues 
are roots of cubic polynomials.  

Let the eigenvalues and their corresponding (generalized) eigenvectors of A be de-
no ted  by  { where  | |  },v, iiλ ,iλ 1λ +≥ i  fo r  a l l  i  >  1 .  Then ,  we  can  ob ta in  the  fo l lowing  
resu l t  ( c f .  [20] ) .  

 
Theorem 4.1.  The subdivis ion matrix  A has the fol lowing propert ies :  
 

    
⎪⎩

⎪
⎨
⎧

+++=<

=

43,33,332,3,1λ
11,1,11λ

i

11

nnn.....,i,
),....,(, tν

    (4.11) 

 
Provided that 

⎪⎩

⎪
⎨
⎧

≥<<−

=<<

.nforw

nfort

30,
12
1

20.6000,0.3125
     (4.12) 

 
Fur thermore ,  We have  
 

    
⎪⎩

⎪
⎨
⎧

=

≥<<=<

2spandim
40

32,

2132

}{
,i, i

νν
λλλλλ

     (4.13) 

if 

    
⎪⎩

⎪
⎨
⎧

≥<<−

=<<

.for,w

,nfor,t

3n0
12
1

20.55000.5275
     (4.14) 

 
Remark 4.2. Tlae eigenvalue  is a double root of A and has two linearly independent 2λ
eigenvectors .  This  can be shown expl ic i t ly  by using the Block Circulant  Matrix  theory 
(cf.  [20]) or the Fourier Transform Technique (cf .  [1] ).  
 
4.4. The Convergence Analysis 
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In this section, we will  prove that the limit surface has tangent plane continuity at 
the extraordinary point.  Thus, the surface is smooth everywhere. Firstly, we have the 
following C0 and C1  convergence results that can be proved in a similar way as in in the 
uniform case. For details see reference [20]. 

Theorem 4.3.   The limit surface is C0 if (4.12) holds. ■ 
Theorem 4.4.  The limit surface is C1 if (4.14) holds. ■ 

Remark 4.5 (cf .  [20] ).  The l imi t  surface of  the  interpolatory scheme has a unique 
tangent  plane at  the  extraordinary point ,  that  is  the  surface is  C1  i f  the  subdivis ion 
matrix  has fol lowing propert ies:  
 

   ;
.n....,i,iii

},{,ii
;)(,.i

i

t

⎪
⎩

⎪
⎨

⎧

+=<

=<=<
=

434,5,λλ)(
2spandim1λλ0)(

1,1,....,11λ)(

2

3232

11

νν
ν

          (4.15) 

 
It  can also be shown that a necessary condition for the limit surface to have a unique 
tangent plane at the extraordinary point is: 
 

         { }
⎪
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⎩

⎪
⎪

⎨

⎧

++=<

=<====<
≥

==

431,λλ).(
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1)(1,1,....,1λ).(

02i

32432

0

11

00

n,......,Niiii

v,...,v,v,
,ii

;v,i

NN

t

   

(4.16) 
 

Remark 4.6.  The Extraordinary Point analysis is stil l  valid for other subdivision algo-
rithms.  

§5. Conclusions 

In this paper, an interpolatory subdivision algorithm for surfaces over arbitrary 
triangulations is introduced and its convergence properties over nonuniform triangula-
t ions  s tudied and the local  subdivis ion matr ix  analysis  is  presented.  I t  i s  proved that  
the  algorithm produces smooth surfaces over arbitrary triangular networks if  the shape 
parameters are chosen properly. 

 The analyses of the scheme here are different from the analyses1 8 , 1 9  of the scheme 
over uniform data. In fact,  the analysis presented here is a pointwise analysis.  The Block-
Circulant Matrix theory is used here. This technique is quite suitable for the nonuniform 
analysis.  
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§6.   Graphic Examples  

Here, we present a graphic example of the subdivision algorithm with the shape 
control parameter w = —1/12 to show the smoothing process of the scheme. The initial 
data comes from the standard unit cube and the initial triangulation of the unit cube is 
produced by adding six diagonal lines on each face of the cube (the direction of each line 
is either (1,1,0),  (0,1,1),  or (0,1,1) therefore there is a symmetry in the triangulation as 
shown in Figure 5.) Hence, there are 8 vertices, 12 triangles and 18 edges in the initial 
tr iangulation.  All  the vertices are irregular vertices:  four of them are 4-poked vertices 
and the other four are 5-poked vertices. The graphics are plotted on the Postscript Laser 
Printer at the Computer Centre of Brunei University, U.K. 
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Figure 1.  Geometric construction of the scheme. 

 

Figure 2.  The C1   convergence region Ω  of  the scheme.  
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Figure 3. The scheme at a 3-poked vertex. 

 

Figure 4. The scheme at a n-poked vertex. (n > 3). 
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