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Abstract 

A vector valued interpolation scheme for a pentagon is described 

which is compatible with surface patches which have a rectangular 

domain of definition. Such a scheme could be useful in computer- 

aided geometric design problems, where a pentagonal patch occurs 

within   a   rectangular   patch    framework. 



-1- 
 
 
 

1.     Introduction 

The   representation  of   a  curved   surface  by  piecewise   defined  vector 

valued  surface  patches  is  a  technique  which  is  widely  used  in  computer- 

aided  geometric  design.     Such  patches  usually  have  a  rectangular 

domain  of  definition  as,   for  example,   in  the  theory  developed  by 

Steve  Coons,   see   [3]   and   [4].      However,   non-standard  patches   can 

occur  within  a  rectangular  patch  framework,   for  example   in  a  previous 

paper   the   authors   consider   the  problem  of  constructing  a  surface  patch 

with  a   triangular  domain  of   definition  [7]. 

In  this  paper  we   turn  our  attention  to  the  problem  of  constructing  a 

surface  patch  with  a  pentagonal  domain  of  definition.     The  occurrence 

of   such  a  patch  for   a  model   problem  is   illustrated   in  Fig.    1.1   and 

further  examples   are   considered   in  Section  4. 

 

Fig.   1.1,     Model  Problem   1    :   A  corner  moulding 

Our  pentagonal   surface  patch  scheme   is   an  example   of  a  blending 

function  interpolant,  by  which  we  mean  that   the  interpolant  matches 

data  given  everywhere  on  the  boundary  of   the  patch.     The  patch,   as 

described  later  in  Section  3,   is  a  convex  combination  or  blend  of  five 

component   interpolants,   each  of  which  match  given  boundary   curves   and 

cross  boundary  slope   conditions  on  two  sides   of  a  regular  pentagon. 
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The   resulting  surface  patch  can  thus  be  joined  with  positional   and 

slope   continuity   to  adjacent   rectangular  patches   and   is   thus   called  a 

C1   scheme.     A  corresponding  C0   scheme  is   also  described,   which  can  be 

joined  with  positional  continuity  to  adjacent   rectangular  patches. 

The   component   interpolants   of   our pentagonal   surface  patch  can 

be   described   in  terms   of   a  parametric  coordinates   system   ( s , t )    as 

follows.     Let 

F ( s , t )    =   [x ( s , t ) ,    y ( s , t ) ,    z ( s , t ) ]  (1.1) 

be  a  given  vector  valued   function.     Then 

P ( s , t )    =  F (0 , t )    +  F ( s ,0 )    -   F(0 ,0)  (1.2) 

defines   an  interpolant  which   is   such   that 

P ( 0 , t )    = F ( 0 , t )      and    P ( s , 0 )    = F ( s , 0 )  (1.3) 

More  generally, 

                                                           (1 .4)
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defines   an  interpolant  which   satisfies   ( 1 . 3 )    together  with   the   cross 

boundary  slope  properties   that 

~
P S ( 0 , t )    =  

~
F s   (0,t)     and     

~
P t  ( s . 0 )    =   

~
F t (s.0)   

, 

(1.5) 

where    
~
F s    =  ∂  /∂s   ,   

~
F

~
F t   =   ∂ /∂t   ,   and 

~
F

~
F s, t  =   ∂ 2

~
F /∂s∂t. 

 

The   interpolants   (1,2)   and   ( 1 . 4 )    will  be   used  in  the   construction  of 

the   C0   and  C1   patches   respectively.     They   are   derived  using  Boolean 

sum  blending  function  theory,   a  theory  suggested  by   the  work  of   Coons 

[3]   and  formalised  later  by  Gordon  [5].     Here, the  interpolants   are 
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Boolean  sums   of  Taylor  interpolation  operators,   where  in   (1.4)   we 

assume   the   compatitiIity  condition  that 

~
F s , t  (  0  , 0  )    =   

~
F t , s

( 0 ' 0 )

i.e.   that  the  term  called  the   'twist'   is   independent  of  the  order  of 

differentiation.      If  this   is  not  so   the   function   (1.4)   does  not 

interpolate   the   cross   boundary  slope  condition  
~
F t      on  t   =  0   although 

the  interpolant  could  be  corrected  by  the  addition  of  the  rational 

term 

[ ])0,0()0,0(
,~,~

2

stts
FFts

ts −+  

cf. [1]   and   [6],     However,   in  this  paper  we   do  not   consider  such   cases. 

The Boolean sum Taylor interpolants ( 1 . 2 )  and ( 1 . 4 )  are applied on the 

pentagon by making an appropriate choice for the parametric coordinate 

system   (s,t).    This   system  is   introduced   in  the   following  section. 

2 .     The   Pentagonal  Domain

Let  Ω  be   a  regular  pentagon  of  height  unity and  with  vertices 

Vj   =   (uj,vj )    ,   i   =   1, . . . ,5   ,   in   the   (u,v)   plane,     The   surface  patch 

will  be   represented   in   terms   of   the  variables   λi  ,    i  =   1, . . .,5   ,   which 

denote   the  perpendicular   distances   of   the   general  point  V  =   (u,v)   from 

the   sides   opposite   the  vertices   Vi    ,   i  =   1 , . . . , 5    ,   see   Fig.   2.1. 

 
Fig.   2.1.     The  Pentagon Ω
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Note     Here,   and   elsewhere  in  this  paper,   a  suffix  i   is   interpreted, 

(i-l)mod  5   +   1   to  bring   it   into   the   range   1   ≤  i   ≤   5. 

The  variables   λi .   are   clearly  linearly  dependent   and  we  have   that 

                                                                                               (2.1) 
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where  θ  -  π /10  and  sin9  =   ( 5  -   l ) / 4 .      From  ( 2 . 1 )    it  follows   that 

λ1   +  λ2   +   λ3  +  λ4   +  λ5   =   1   +  4sinθ   =   5 . 
 

We  now  proceed  to   construct  a   local  parametric   coordinate  system 

(si ,ti ),   to  be   associated  with  each  vertex   Vi    ,    i   =   1,...,5.      Let   the 

sides   λ i +1    ,   =   0  and   λ i -1    =   0  intersect   at   the  point  Ri  ,    i   =   1.....5 

and   let   Ei    denote   the   intersection  of   λ i   =   0  with   the   radial   line 

joining  V  and  Ri .      In  particular,   we   consider   the   points   E i - 2  and 

E.       as   shown  in  Fig,   2 . 2 .  
1+2  

(2.2) 

 

Fig.   2.2.      Construction  of   the   Local   Coordinate  System   (si ,ti ) 
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Then  it  can  be  shown  that 
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                                                                      (2.3)

where 

s i = λ i+2 / (λ i -1 + λ i +2 )  , t i = λ i -2  / ( λ i +1  + λ i -2 ) (2.4) 

The  variables   (si,ti)   define   a   local   coordinate   system  for  the 

pentagon  with  the  property  that   si   =  constant  corresponds   to  the  radial 

line  through  R i -2  and  E i-2      and  ti constant  corresponds   to  the 

radial   line  through  Ri +2  and   E i +2   .  The  singularities due to the 

rational   terms   in   (2.4)   lie  well   outside   the  pentagon  Ω  and   for  V ∈   Ω 

we  have   that 

0   ≤  s i   ≤   1        and       0  ≤  t i  ≤   1 
  

Furthermore,   because  of   the  radial  construction,   E i-2   and  E i+2   remain 
 

on  the  boundary  of   the  pentagon  ft  for   all  V  ∈  Ω . 

Remark     An  alternative   local   coordinate   system  to   (2,4)   is 

si   =  λ i+2    ,     ti   -  λ i-2 (2.5) 
 

which  gives  parameter  lines   along  parallels   to   the   sides   and   corresponds 

to   that  used  in   [73.     However,   the  points   corresponding  to   (2.3)   can  now 

lie   outside  the  pentagon  ft   for  some  V  ∈   Ω.     Also,   we  have   found   that   (2.4) 

gives  a  better  interpretation  of  the   cross  boundary  derivative  which  leads 

to   a  smoother  surface.     We   thus  prefer  the  system  (2.4),   although  a  full 

description  of  the  pentagonal  patch  which  uses   (2.5)   can  be  found  in  [2]. 
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Note     Since 

t i+1   =   1   -   si      and  si -1     =   1   -  t i
  

it  follows   that   (2.3)   can  be  written  in  the  cyclic  form- 

⎭
⎬
⎫

+=+

+++=

Vi 1-si     1-Vi     ti    2i E

l Vi  Si  Vi    1 ti  2-xi

 

(2.6) 

Thus 

Ei  =  ti-2 Vi+2 + s i+2 V i-2 , i = 1,........,5  (2.7) 

where 

ti-2= λi+1/(λi-1+ λi+2) , si+2 =λ i-1/(λi-1 +λi+1 ). (2.8) 

 

3.     The   Pentagonal   Surface  Patch

Let 

~
F (V)   =   [x(V),   y ( V ) , z ( V ) ] '     ,     V  ∈  Ω 

denote  a  vector  valued   function   defined  on  the   pentagon  Ω,     In 

particular,   for  the  C0  patch,   we  assume  that    is  defined  everywhere 
~
F

on  the  sides   X-   =  0  ,   i   =   1 , . . . , 5 ,    of  the  pentagon  Ω.     In  addition, 

for  the  C1     patch,   we  assume  that   the   cross  boundary  slope  denoted  by 

~
F n i  is   specified  on  each  side   X.   =  0,   together  with  the   twist   condition 

~
F n i + 2,n i -2   at  each  vertex  V i ,    where  n

~
F  i + 2, n i - 2  = n

~
F  i - 2 , ni +2  .   This 

boundary  data  will  be  defined  by  that  of   the  adjoining  rectangular 

patches.     The   slope  condition  is   identified  with   the   cross   boundary 

derivative  of  the   rectangular   scheme,   appropriately  signed  to  be 

pointing  in  an  inward  direction  to   the   side   of   the  pentagon.     Likewise 

the  twist  condition  at  each  vertex  must  be  appropriately  signed.     In 

the  domain  of  the  pentagon,   the   slope   condition  is   interpreted  as  being 

defined  along the  direction  of   the  radial   line  from  Ri   to  Ei  . 
   

(3.1) 
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The  C 0  Patch.     From   ( 1 . 2 ) ,    with  the  local   coordinate   system   ( s i , t i ) ,  we 
can  define   the  vector  valued  function 

Pi (V)   =    (E 
~
F i +2)   +   (E

~
F i -2)  -    (V

~
F i ) . (3.2) 

This  function  interpolates    on  the   sides   λ
~
F i  + 2   =  0  and  λ i-2   =  0   of  the 

pentagon,   that  is 

~
P i (Ei +2)  =   (E

~
F i+2)  and  

~
P i (E i-2 ) =  (E

~
F  i - 2 ) (3.3) 

The  pentagonal  patch   is   now  defined  by   the   convex  combination 

                                                                                                                                                   (3.4))v(
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/1ii1i)V(i +λλ−λ

=
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Equation   (3.4)   is   a   convex  combination  since   the   αi   are   positive   on  Ω 

and,   by   construction, 

                                                                                                                                                                 (3.6) 1)V(i
5

1i
=α

=
∑

Furthermore,   since 

α i (Ej)  = 0   ,    i  = j-1,   j,   j +1    , (3.7) 

it   follows   that 

~
P  ( E j )    =   ( E

~
F j )       ,     j   =   1.....5   , (3.8) 

that  is      interpolates      on  the  entire  boundary   of   the   pentagon. 
~
P

~
F

Finally,   it   should   be  noted  that   the   rational  weight   functions   (3.5) 

are  well   behaved  on  Ω,   the   denominator  being  always   strictly  positive 

The  C1   Patch.     From  ( 1 . 4 )    we  can  define  the  vector  valued  function 

                                                  (3.9) 
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This  function  interpolates    on  the  sides   λ
~
F i +2  =  0  and  λ i-2   =  0  of  the 

pentagon,   that  is  equations   (3.3)   hold.     Furthermore  the  function 

interpolates   the  cross  boundary  slope  conditions   on  these  sides, 

namely 

      )2i(E
2in~

F)2i(E]it/
i~

P[and)2i(E
2in~

F)2i(E]is/
i~

P[ −
−

=−∂∂+
+

=+∂∂                                    (3.10)

The  pentagonal  patch   is   now  defined  by   the   convex  combination 

                                         )V(iP)V(i)V(
~
p α= ∑                                                                                                           (3.11) 

where                 2)1kk1k(
5

1k
/2)1ii1i()V(i +λλ−λ

=
+λλ−λ=α ∑                                                      (3.12) 

                

Here,   the   squared  terms   are   introduced  in   (3.12)   in  order  that   
~
P i (V) 

does  not  contribute   to  the  tangent  plane  of   (V)   on  λ 
~
P j   =  0   ,   i  =  j - l , j , j + l .  

Thus,   on  A.   =  0,   the  position  and  slope  of   is   determined  by  a  convex 
~
P

combination  of  
~
P  j -2   and  

~
P  j+2 .     Hence      interpolates   ,   and  has   the  same 

~
P

~
F

tangent  plane  as  ,   on  the  sides  A.   =  0   ,   j   =   1 , . . . , 5 ,    of  the  pentagon 
~
F

Ω 
 
Remark.     In  (3.9),   the  cross  boundary  slope   conditions  Fn i +2    and  Fn i -2

are   interpreted   locally  as   ∂F/∂si   and  ∂F/∂ t i   respectively,   where  F   is 

considered  as   a  function  of  the  local  parameters   si   and  ti    (In  fact, 
for  slope  interpolation,   we  must  have   that 

                    
)i(V
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although   these   conditions   follow  as   a  consequence   of  using   the 

rectangular  patch  da t a . )      This   interpretation  of   the  slopes   cannot  be 

made  for  the  final   scheme,   however,   because  the  magnitudes  of  the 

derivatives  along   the   radial   lines   are   determined  by  a  convex 

combination-     Such  magnitudes  do  not  affect  tangent  plane  continuity 
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arguraents  for  vector  valued  schemes,   but  they  would  have  to  be 

considered  in  generalizing  the  pentagonal   scheme  for  higher  order 

derivative  boundary  conditions   or   in  adapting   the   scheme   to   scalar  valued 

interpolation. 

4.     Examples

We  have  applied  the  C1  pentagonal  scheme   to  three  model  problems,  where 

the   rectangular  patches   are   defined  by   tensor  product  bicubic  Hermite 

interpolants.     Thus   on  the   square   S  =   [0,1]   x   [0,1]  we  have 

          ⎥
⎦

⎤
⎢
⎣

⎡
φ+φ∑

=
∑
=

= (0,1)
ji,~

F(v)j(u)Ψi(0,0)
ji,~

F(v)i(u) φi
1

0j

1

0i
v)(u,

~
p

 

+  ψi  (u)φ j (v)F i, j (1 ,0 )   + ψ i  (u) ψj (v) F i ,  j  (1,1) ] 

,   (u,v) ∈    S   , (4.1) 

where 

φ0   (u)   =   1   -   3u2  +  2u3   ,  φ1 (u)   =  u  -  2u2   +  u3 (4.2) 

and 

ψ i(u)   =   (-1) 1 φ i ( 1 - u )       ,     i  =  0, 1 ,      In   this   case   the   boundary 

data  for   the  pentagonal  patch   is   defined  by 

~
F  (Ei )   =  φ0 (si+2 )   ( V

~
F i + 2 )  +   φ 1(s i+2 )  n

~
F i - 1   (V i +2  ) 

 

+ φ 0(t i -2)  (v
~
F  i -2)      +  φ1( t i -2) n

~
F i +1(Vi +2 ) 

 

   n
~
F i   =  φ 0 (t i -2 ) n

~
F i (v i +2 )      +  φ1 (si +2) n

~
F  i , n i -1 ( V i +2 ) 

+  φ 0 (t i-2 )  n
~
F i (V i -2 )  +   φ 1 (t i−2 ) n

~
F i ,n i-1 (Vi -2 ) 

where 
Ei   =   t i -2      V i +2    +  s  i +2    Vi -2   ,  t i -2   +  s i +2  =   1. 

(4.3) 

(4.4) 

(4.5) 

 

For  the   three  model  problems,   the  rectangular  patches   are  shown  plotted 

at  intervals   of   1/5  in  the  parameter  plane,   whilst  the  pentagonal  patches 

are   shown  with  the  plotting  lines  λ i  =  2k  sin θ/5   ;  k  =   1,...,5.     The 
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results  of  an  algorithm  giving  cross   sections   through  the  patches   are 

also  shown  in  two  cases. 

The  first  model  problem  is   the  corner  moulding  shown  in  Fig.    1.1   of 

the  introduction.     Fig.   4.1a  shows  the  boundary  curves  of  the  patch 

system,   whilst  Fig.   4.1b  shows   the  patches  viewed  with  the  plotting 

lines   described   above.      Fig.   4.1c   shows   the   patches   viewed  with   cross 

sections. 

The  second  model  problem  is  the   end  of  a  ridge  protruding  from  a 

plane.     This  problem  is  of  particular  interest   since   it   includes  a 

triangular  patch  together  with   the  pentagonal  patch.     The  triangular 

patch  illustrated  here   is   that   described  in  [7],     The   final  model 

problem  is   the  half   of  a  cylindrical  T  joint   shown  in  Fig.   4.3. 
 

a)      Boundary  curves   of  patch  system 

b)     Plotting  lines  λi.   =  constant c)     Cross   sections 

Fig.   4 . 1 .      Model  Problem'1   :   A  corner  moulding 
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a)     Boundary  curves  of  patch  system        b)     Half  of  patch  system 

 

c)     Plotting  lines   λi   =  constant d)     Cross  sections 

                                  Fig,   4 . 2 .      Model  Problem  2   :   A  ridge 

 

a)    Boundary  curves  of  patch  system    b)     Plotting  lines  λi  =  constant 

                               Fig.   4.3.      Model  Problem  3   :   A  cylindrical  T  joint. 
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