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Abstract

In an earlier paper by Gregory & Delbourgo (1982), a piecewise rational
quadratic function is developed which produces a monotonic interpolant
to monotonic data. This interpolant gives visually pleasing curves and
is of continuity class C' . In the present paper, the data is restricted
to be strictly monotonic and it is shown that it is possible to obtain a

monotonic rational quadratic spline interpolant which is of continuity class

C*. An o (h%) convergence analysis is included.



1. Introduction
A set of data points (x;, £;), i=l,...,n, is given, with
X] <X7 <..<Xp and such that the values £; form a strictly monotonic

sequence. In the subsequent work it will be assumed that

H <D <...< £y,
since the case of a strictly decreasing sequence of function values can
be treated in a similar manner.

In Gregory and Delbourgo (1982), a piecewise rational quadratic

function s(x) e cl[xl, xpn] 1s constructed which is monotonic on [x1, Xn]

and satisfies

S(Xl) = fl’ S(l)(xl) = dl’ 1 = 1, .., n,

where the derivatives d; are positive for strictly increasing f;.

The piecewise rational quadratic s(x) is defined as follows: Let

hi = x{+1 — %4,
0 = (x — xi)/ hj,
Aj = (fi41 - f5)/ hy (1.1

Then for x € [xi, x5 411,

< T 0% + ATM(E 41 ds + £ dig1) B - 6) + £ - 07 12
s(x) = (1.
0% + A1 (di +dig1) 60 -6) + (1 - 0)7

The denominator is strictly positive for all 0< 0 < 1. Also, a

differentiation gives the result that for x € [xi,xi41],

) dit1 0% +2A; 0L —0) + dil — 0)°
©° + A7Hds v dig1) 0@ -0 + @ - 67

@,

and hence s"/(x) > 0 throughout any interval [x;, x; .11 .



In the earlier paper by Gregory and Delbourgo (1982), the derivative

Values d; are determined by local approximations which involve the values

f;. These approximations give a cl[xl, xp ] interpolant for which an
o (h’) convergence result can be obtained. In the present paper, positive

values of the derivatives d; are determined in an analogous way to cubic

polynomial spline interpolation, which make s(x) € Cz[xl, xp ] . Furthermore,
it is shown that an o (h*) convergence result can be obtained when accurate

derivatives d; and d, are available as end conditions.

It should be noted that if the data is monotonic but not strictly

monotonic, then there will be intervals [x,,x,,,] where A; =0 . The

1

requirement that s(x) be monotonic then implies that s(x) = f;, a constant,

on [ x,,X,, ]. Elsewhere, the data can be divided into strictly monotonic

i+l

parts and the proposed method of this paper can be applied.

2. The Monotonic Rational Quadratic Spline

If s(x) is a C? function then, necessarily, there is no jump
discontinuity in the second derivatives of s(x) at the interior knots
xij,1 = 2,...,n — 1, For cubic polynomial splines, such C’ consistency
conditions lead to a set of linear equations each relating three consecutive
derivatives d; . For the piecewise rational quadratic function employed
here, corresponding consistency equations arise which will be non-linear.

These are derived below and will then be shown to have a unique solution

with all d ; >0.

The requirement for C* continuity, namely that 8(2)(Xi+) - 8(2)(Xi_) =0

at all the interior knots, gives

2 d; + dj 2 dj_1 + dj
Z[Ay 4+ di - iy gy [Ay_q +dy - ==L T 71
hy Ai hi—1 Ai1




This can be written as

dil[-cj +aj—1di—1 +(@ji-1 +taj)di +aj di41] = by,

i=2,. n-1, (2.1)
where
ai = 1/hiAy),
bi = Aj_1/hi_1 + A; / hy,
c; =1/hj_1 + 1/ hj. (2.2)

Given d; and d,, (2.1) gives a system of n-2 non-linear equations

for the unknowns do, ..., dp_1. It should be noted that ¢c; > 0 and,
for data which is strictly increasing, a; > 0,b; > 0 for all 1 in
equations (2.1).

The existence and uniqueness of a solution dp,...,dy_7 of the non-
linear equations (2.1) with all d; > 0 will first be proved by analysing

a Jacobi typeof iteration. It will then be shown that a Gauss-Seidel

type of iteration can be used in practice.

Each equation (2.1) is a quadratic in the variable d; . Solving

for the positive root gives

1 2
di = -—————[ci —aj_1dj—1 —a1di+1 +{CiL —aj—1di—1 — aidj+1)
2aj—1 + aj)

1
+4as 1 +apbi)l,i=2...,0-1 (2.3)

A Jacobi iteration may be defined by the equation

[k+l) 1

] :

» k]_aid[k))z

-1 i+1

1
+4mr4+%mﬁzLi=Lw”‘L (2.4)

k
[c; _ai—ldi( _aidi[+l) + (¢ _ai—ldi(

where d(lkzl) = dj’ = dp anddy = dp” = dp are given end condition.
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Theorem 2.1. (Existence) For strictly increasing data and given end
conditions di = 0, dp 2 0, there exits a strictly positive solution

dp,...,dp—1 satisfying the non-linear consistency equations.
Proof. A set of functions G;, i=1,.., n, is defined initially on the
domain R™ by

G1(§) = dq
Gi) = ;[Ci —aj_1&i-1 —ajbi+l + (i ~aj_18i-1 — ai&is1)?
2aj—1 + aj)
1
+4@i_1 +ab)’l,i=2...,n-1
Gp(€) = dp, (2.5)

where & =(,...,&,) € R%. LetG =(Gy,...,Gy)andd=(dq,...,dp).

Then the Jacobi iteration (2.4) assumes the form
g(1<+1) = c@®)y .

Restricting & to have positive components, we now show that there exist.

constants o4 and i such that
0<oj <GE <P<ow i=2...,0-1.

Also, for G1(§) and G, (§), wemay define oy = 1 = d and ay = By = dp.

Now, for i=2, ..., n-1, examination of G;i (£) in the two cases

0 <aj_18i-1 +aifi+1 < cjandaj_18i-1 +ajéip > ci gives

1
1 2 2
B; = 2er 1+ a0 [cq + {c-l + 4a; -1 + aj)bit 1.

Finding a strictly positive value for o is slightly more complicated but

1t can be shown that

1
2
o |m i+ (Cf + 4aj_1 + aj)bi} 2b;
oy = min ’
2ai-1 + aj) ’]Z-
N; + {Ni + 4(a; 1 + ajbi}
where Nj = max {0,—c; + (@j—1 + aj) o557 Bit. Thusif Tj =[a; p;l.
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i=1,...,n, then the map G can be restricted to the n-dimensional

interval I = Iyx...xI , where G : I — I andhence maps positive vectors

into positive vectors.

Next, G is shown to be a contraction mapping on I: Let § n e I

and let
Xi =ci —aj-18i-1 —aiéi+1, ¥ =Ci{ —aj—1Di-1 — ainj+4+1-
Then, for i=2,..,n-1,
1
1 2 5
Gi® - Gim = —————[X4 —Y; + {Xj +4@j_1 +ajb;}
- 2ai—-1 + aj)
1

~ (¥{ + 4ai_1 + ai)bi)2)

SRS it N P
2@i-1 + aj) 1 1
o + 4ag_q +apbi) + Y +4ag —1+ag_1 +ajby)

and G1() — G1(Mm) = 0, G — GpMm) = 0. Now

Xy + Y5

|Xj_ - Yi| /(@ai—1 + aj) < Hé - HHOO, and

‘Xi + Yi‘ ‘Xl‘ + ‘Yi‘

<

1 1 1
{Xi +4(aj_1 +aplbil + {Yiz +4@j_1 +aj)bil {(xi| + \Yi\)2 + 8@aj_1 + ajbi)

1

1
QL+ 8as_q +ap) by /(xq] + [y )2

1

IA

l 14
{1+ 1})2

where, since each of |Xl| and |Yi| has an upper bound c; + a; _1Bi—-1 + aiBi+1 /s
= min max 2
L=2 o<i<n—1 @i-1 +ai)bi /o< (€1 +ai—1Bi-1 + aiPiy1)” >0.

Hence

1
6® —cm| < o+1/a+w21 & -n| .
2 00

— oo

from which it follows that G is a contraction mapping on I. Thus the
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Jacobi iteration converges to a unique fixed pointd € I, ie. d = G(d)

and it follows that d is a solution of (2.1), which thus completes the

proof.

Equations (2.3) are derived from (2.1) by solving for the positive
root. The alternative choice of negative root must lead to a d; < 0,
if such a solution exists. Thus uniqueness of a positive solution of

(2.1) follows directly from the uniqueness of the solution of d = G(d),

where G is a contraction map. Alternatively, uniqueness of a positive

solution of (2.1) may be proved directly as follows:

Theorem 2.2. (Uniqueness) The solution of the non-linear consistency

equations which satisfies the monotonicity conditions d,>0 is wunique.

Proof. Assume that d;,...,d, and ey, ..., e are two sets of values
each satisfying the consistency equations, where d; = e; = 0 and
dy, = ey = 0 are given and d; > 0,e; > o, i =2,...,n -1, Then

bij /di +cj —aj—1di—1 —(@i—-1 +aj)di —ajdiy1 =0

by /e{ +cy —aj_1ei—-1 — (@j—1 + ajle;y —ajei+1 =0, 1 =2,...,n-1.

Substraction gives
(ei —di) [bi /(diei) + aj—1 +ajl = aj—1di—1 —ei-1) + aidi+1 — €i+1)

.Consider thejth equation, where j is chose so that

o5 = a| = L5V _1 les - i)

Then taking moduli gives

14

‘ej — dj‘{bj / (djej) +ag-1 + aj} < (aj_l + aj)‘ej — dj

and thus

‘ej - dj‘bj / (dseq) < 0.



Hencedj = e andso dy =e5, 1 =2,...,n =1.

In practice a Gauss-Seidel type of iteration can be used to solve
(2.3). This iteration is defined by

(k+1) _ 1 , , k+1) _ .. 4K oA (k+1) _ -, k) |2
A T i ey O T -~ aiding UG mai-adigt — aidiLy)
1
2
td(aj 1 + ai)bi} 1,
i=2...,n-1, (2.6)

where a1 =l = q; anaaf*P = o = g, are given end conditions.

A convenient starting vector c_i(o) for this iteration is given by

1
d(io) ={b;/(@aj_1 +ap)}2, 1 =2 ...,n—1.

Theorem 2.3. The Gauss-Seidel iteration (2.6) converges to the unique

positive solution of the non-linear consistency equations.
Proof. By Theorems 2.1 and 2.2 there exist uniqued; > Osatisfying
by /dj +¢ci —aj-1di—-1 —(@3-1 +aj)d; —ajdiy1 =01 =2...,n—-1.

Also, the Gauss-Seidel iterates satisfy

(k+1)
i

+ cq{ — ai_ldg_kjll) - (aj—-1 + ai)d(k+1)

i

b; / d

(ik): d; + s(k) Then

Subtract and write d :

[bi /{di(di + s(ik+l)) }+aj—1 + ajil s(ik+1) = —ai_ls(ik_+ll) - ais(ikzl

(k+1) (k+1)

Since dj + ey = dj > 0, on taking moduli we obtain
[by /{di(d; + 8(ik+l)‘)} + aj_1 + ai]s(ik+l)‘ < aj-1 S(ik__'_ll)‘ + aj g(ikj-l"

. .th. . .-
Consider the j ~ inequality , where j is chosen so that

€ € =

] “2<i<n-1 [*i

(k+ 1)‘ _ max

(k + 1)‘ Hg(k + 1)”

o0

Then
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by /{ds(ds + (k+1)H +aq_q + H (k+1)H
by /{dj(dy + Je I tag-1 +agle -
< aj—1 8(k+1)H —+ a &‘oo,
o0
which reduces to
e (X)
(k+1) * ‘S—HOO

‘8

o  aj + b3 /{didy + Hg(“l)u )}

It follows that

(o], <0
o0

where

B =
aj + by /{dydy + Hg(

S
8
—

(k+1)

And 0 < B< 1. Thus Hg(k)H — Oask— o and hencedy — dy,

o0

3. Convergence Analysis of Rational Quadratic Spline

We begin by quoting a theorem which was given with proof in the
earlier paper Gregory and Delbourgo (1982) and which will be required in

the subsequent work.
Theorem3.1 Let f(x)e C4[x1,xn] and f(l)(x) > 0 on [x7,%n]. Let

s(x) be the piecewise rational quadratic interpolant such that s(xj) = f(x;)

and s(l)(xi) = d4y 2 o. thenfor x € [x4,%{4+1], 1 =1,...,n -1
[£x) — sx)| < ' fﬂl - di+1‘}

h.
- Hf(l)H max {‘fgl) - dj
4c 1

4

% 2
el i R

2
o ] e
384c 3

1, 3.1)

Where hy = %4471 — %3, c 1isaconstantindependent of i whose value is at least
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1 min 1)
2

£

(x) and | denotes the uniform norm on [x1  xp].
Z1r Xn ’

max

The next theorem establishes an upper bound for , S _4 fél) - dj

when the d; are the solutions of the non-linear consistency conditions
(2.1).

_p(D) O i -
Theorem 32 Let di=fy’ and d, = f5 in the rational quadratic

spline interpolant. Then, with the assumptions of Theorem 3.1 and for

h sufficiently small,

DN i .

max (1) .
o<i<n—1ffi —di| =
- /H [ e

where

w-tole] B v B R e e

_ ) _ min (1)
and h=max hi, m (%1 %p] £ (x%) > 0 (3.4)
Thus , 0% e — a3 = om?)

Proof. Consider the consistency equations
bj /dj +cj —aj—1di—1 —(aj—1 +aj)dj —ajdjyg =0
and let
by /£ + ey —aj £ —(az_q +ap e —ay £ = gy,
i=2...,n-1.3)5)
where, from (3.4), 0 < 1/ fi(l) < 1/ m.Subtracting and writing

dy - £ =2y (3.6)
gives
bihi /{fi(l)(fi(l) + A t+ajqhio1 Hl@i-1 +aihi +ajhipl = Ej,

i=2,..,n-1, (3.7)
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where we require a bound on ZIEaiX<n—1|7‘i|' Now, from (3.5) and the
definitions (2.2), it follows that
E; h;y_1 hi Aj_1 Ay ={h; A%L—l As +hi_1 Ay A2i} / fil) +h; +hi_1)A; 1 Ay

~ny Ay Y ) —nyogay o @)

On the right the following Taylor expansions are made:

e e B e e R s B B Y
_ o+ @ , 1.2 .03 3 £(4)

Aj = £+ - hy £ +6h1f1 +24hifi+[3’

D D #2213

i-1" "1 i-1 4 > 1-171 g 1-17i-y’

L _ Q) _ @ ,1.2.03,1.3 4

£ = -ny g7+ Snf e 4 ond £,

where £%  means £* (x; —ahi_1),0<a<1, etc. After some algebra,

i—o

the result of these substitutions gives

AL L2 9 2 (4) 1 2.4 2 4
Bihi-1 AL =HTE 0y Hip ~hi g f o) - 0 fis—hy g Ho,)
1
+ E(hi ~nf_ ) £2 £ 4 omd

Now A{_1 Ay 2 m2, where m is defined by (3.4). Thus it follows that
GRS PRl o B s DR

Hence

-2 2

Ei] < m h* XK (h) , (3.8)
where K (h) is defined by (3.3). We now consider equation (3.7) with

index 1 = j taken so that ‘Aj‘ = max |}\i| . Then
2 < i< n-1

[bj /{fj(-l) (fj(-l) + )\j) }+ aj—-1 + aj] )\j = Ej - aj-1 )\j—l - aj }\j+l ,
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where ‘}\j‘ =|a[,, - since A1 =0= A, . Taking moduli and noting that

1 1 ,
o<l 4ny < fj(. |, gives
o3 /45 (&S + [Al) b+ ago1 + a3l [, < By + @3-1 + ag) 2l
This inequality reduces to
M, < £ fos] /7 05 / £ — [ 3, (3.9)

under the assumption that the denominator is positive. Now

1) _ (1)
by /£ =(Aj-1 /hy_1 + A3/ hy) /£,

(3( o/ hi_ 1+fj() /h)/f()forsome 0<6,h<1,

v

o s o)
Thus, from (3.8)

by / f ‘E | > 2m / Hf‘l)H }— m~%h? K (h) (3.10)
which is positive for h sufficiently small. Finally, substituting (3.10)
and (3.8) in (3.9) gives the desired result.

Remark. When the results of Theorems 3.1 and 3.2 are taken together, it

can be seen that f(x) - s(x) = O(h4) on the assumption that dj = f{l)

and dp = fr(ll) are given end conditions.

4. Numerical Results and Discussion

Our first set of results is concerned with the order of convergence
of the interpolation scheme. Tables 1 and 2 show the interpolation errors

arising from the application of the rational quadratic spline scheme to
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f(x) =exp(x) over [0,1] when the exact choice of end conditions
dy = f(l)(O) = 1 and dq = f(l)(l) =1 a=-exp(1)is made. The knots are
taken to be equally spaced with four choices of interval lengths, namely
h=0.2,0.1, 0.05, 0.025. In one experiment, the errors ey, ey, e3,
eq corresponding to these four choices of h are evaluated at 6= 1/3,
where, for each h, the interval of interpolation is that containing
the point x = 0.86. In a second experiment the four intervals containing
the point x = 0.86 are selected with 6 = 2/3.

error e, error e, error e, error e,

(h=10.2) (h=10.1) (h=0.05) (h=0.25) | e /e, |e,/e; | e5le,
17.08 ‘15.60 ‘ 16.22

-45217x107°| -.26477x10°° | -.16973x1077 | -.1046x10°*

Table 1. Rational quadratic spline interpolation errors at 6 =1/3 in
interval containing x = 0.26, f(x) = exp(x).
error ¢, error e, error €, error e,

(h=0.2) (h=0.1) (h=0.05) | (h= 0.25) e /e, | e,/es | esl/e,

-.84774%x107°| -.47378x10°° | -.30788%x 1077 | -.1902x107* ‘17.89 ‘15.39 ‘16.19

Table 2. Rational quadratic spline interpolation errors at = 2/3 in
interval containing x = 0.86, f(x) = exp(x).

The theory of Section 3 shows that a convergence rate of O(h4) is

expected and this is confirmed by both tests which clearly show the tendency

of the ratios er / ex 41 to approach the value 2%,

Our second set of results is concerned with the application of the

rational spline scheme to the monotonic data sets of Tables 3, 4, and 5.

7.99 8.09 8.19

X

8.7 9.2 10 12 ‘ 15 ‘ 20

Y\ 0 ‘2.76429><10‘5 437498 %102

0.169183 ‘ 0.469428 ‘ 0.943740 ‘ 0.998636 ‘ 0.999919 ‘ 0.999994

Table 3. Monotonic Data Set 1 [Fritsch & Carlson (1980)]
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X ’ 22 ’22.5 ‘ 22.6 ‘ 22.7 ’ 22.8 ‘ 22.9 ’ 23 ‘ 23.1 ‘23.2 ‘ 23.3 ‘ 23.4 ’ 23.5 ‘ 24 ‘
y‘523‘543 ‘550 ‘557 ‘565 ‘575 ‘590‘620 ‘860 ‘915 ‘944 ‘958 ‘986‘

Table 4. Monotonic Data Set 2 [pruess (1979)]

x‘o‘z 3‘5‘6‘8‘ 9 ‘11‘12‘14‘15
y‘10‘10‘10‘10‘10‘10‘10.5‘15‘50‘60‘85

Table 5. Monotonic Data Set 3 [Akima (1970); Fritsch & Carlson (1980)]

Both the Fritsch-Carlson radio-chemical data of Table 3 and the Akima data
of Table 5 are used in Gregory & Delbourgo (1982) in connection with the
piecewise rational quadratic C' scheme proposed there. These data sets
are also used by Fritsch & Carlson (1980), where the need for good monotonic
interpolants is clearly illustrated by the poor behaviour of other interpolation

methods.
2 . . . .
In general, to apply the C rational spline scheme of this paper, it

is necessary to set the end derivatives dj and dp to suitable non-negative

values. Two possible methods are explored below. It should be noted that
for the Akima data, s(x) is constant over the interval [0,8] and the rational

spline scheme is applied only over [8,15], The condition d;=0 is then
imposed at the left hand end point x=8 of this interval, where s (x) will
be Cl.
Method 1. This is based on the three point difference approximations

d] = A1 + (A1 — Ap)hy /(h1 + hyp) ,
if the expression on the right is positive, otherwise d, is set to zero;

dn = Ap—1 +Ap—1 = Ap—2) hpn—1/(pn-2 +hp_1),

if the expression on the right is positive, otherwise d, is set to zero.

Here each of f{l) - d; and fI(ll) — dp 1s O(h2).
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Method 2 Non-linear approximations for d; and d are given by

dp = A7 (A1 /{(F3 — 1)/ (x3 — x7) NP1/ P2,

dp =Apn—1 An_1 /n — f1-2)/ &n — xn-2) 1 n —1/h
n—-1/n-2.

Here, as in Method 1, each of f{l) — dp and fr(ll) — dp each O(h2), as can

be shown by a Taylor expansion argument. These approximations are an
improvement on the non-linear end conditions quoted in Gregory & Delbourgo
(1982) and are identical with these conditions in the case of equal intervals.
Figures 1, 2, and 3 show the results of applying the rational spline
scheme to the three given data sets. The scheme is implemented with the
end conditions described by Method 2. (End conditions- based on Method 1

gives graphs little different from those shown.) For the purposes of

comparison, the C'piecewise cubic interpolant using the &£, monotonicity

region recommended by Fritsch & Carlson is shown. Also; the cl piecewise
rational quadratic interpolant based on the second method of derivative
approximation recommended by Gregory & Delbourgo (1982) is shown. For

the Data Set 1, the extra degree of continuity of the rational spline scheme

is apparent at the knot x = 10 when compared with the c! schemes. The

Data Set 2 illustrates a behaviour which is to be expected of any spline

2

Scheme. Here, due to the nature of the data, the C® constraint has lead

to more variation in the curve than that given by the rational quadratic

cl scheme. However, in general it can be seen that the rational spline

scheme produces good curves.

6. Conclusion

A method of constructing a c? monotonic interpolant to given monotonic

data has been described. This method is based on a rational quadratic spline
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representation and involves the solution of a non-linear system of consistency

equations. The iterative solution of this system means that the method

involves more work than existing c! methods. However, the method seems

to produce visually pleasing curves which have the advantage of being twice

continuously differentiable and O(h4) convergent.
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(i) (ii) (iid)
Fig. 1.Results for monotonic data set 1. (i) Fritsch-Carlson; (ii) C' piecewise rational quadratic;

(iii) C* rational quadratic spline.

_9‘[_



(1) (ii) (1ii)
Fig. 2. Results for monotonic data set 2. (i) Fritsch-Carlson; (ii) C piecewise rational quadratic;

(ili) C? rational quadratic spline.

_L‘[_



(i) (ii) (iii)
Fig. 3. Results for monotonic data set 3. (i) Fritsch-Carlson; (i) C' piecewise rational quadratic;

(iii) C? rational quadratic spline.

_8‘[_



	These are derived below and will then be shown to have a unique solution 

