TR/07/82

July 1982

Rational quadratic spline interpolation to monotonic data.

R. Delbourgo and J.A. Gregory

paper submitted for publication in the IMA Journal of Numerical Analysis

### Abstract

In an earlier paper by Gregory & Delbourgo (1982), a piecewise rational quadratic function is developed which produces a monotonic interpolant to monotonic data. This interpolant gives visually pleasing curves and is of continuity class  $C^1$ . In the present paper, the data is restricted to be strictly monotonic and it is shown that it is possible to obtain a monotonic rational quadratic spline interpolant which is of continuity class  $C^2$ . An  $\circ$  (h<sup>4</sup>) convergence analysis is included.

1. Introduction

A set of data points  $(x_i, f_i)$ , i=1,...,n, is given, with  $x_1 < x_2 < ... < x_n$  and such that the values  $f_i$  form a strictly monotonic sequence. In the subsequent work it will be assumed that

$$f_1 < f_2 < \ldots < f_n$$
,

since the case of a strictly decreasing sequence of function values can be treated in a similar manner.

In Gregory and Delbourgo (1982), a piecewise rational quadratic function  $s(x) \in c^{1}[x_{1}, x_{n}]$  is constructed which is monotonic on  $[x_{1}, x_{n}]$ and satisfies

$$s(x_{i}) = f_{i}, s^{(1)}(x_{i}) = d_{i}, i = 1, ..., n,$$

where the derivatives  $d_{i}$  are positive for strictly increasing  $f_{i}$ . The piecewise rational quadratic s(x) is defined as follows: Let

Then for  $x \in [x_{i}, x_{i+1}]$ ,

$$s(x) = \frac{f_{i+1} \theta^2 + \Delta_i^{-1}(f_{i+1} d_i + f_i d_{i+1}) \theta(1-\theta) + f_i(1-\theta)^2}{\theta^2 + \Delta_i^{-1} (d_i + d_{i+1}) \theta(1-\theta) + (1-\theta)^2}.$$
(1.2)

The denominator is strictly positive for all  $0 \le \theta \le 1$ . Also, a differentiation gives the result that for  $x \in [x_{i}, x_{i+1}]$ ,

$$s^{(1)}(x) = \frac{d_{i+1} \theta^2 + 2\Delta_i \theta (1-\theta) + d_i (1-\theta)^2}{\{\theta^2 + \Delta_i^{-1}(d_i + d_{i+1}) \theta (1-\theta) + (1-\theta)^2\}^2},$$
(1.3)

and hence  $s^{(1)}(x) > 0$  throughout any interval  $[x_i, x_{i+1}]$ .

In the earlier paper by Gregory and Delbourgo (1982), the derivative Values  $d_i$  are determined by local approximations which involve the values  $f_i$ . These approximations give a  $c^1[x_1, x_n]$  interpolant for which an  $o(h^3)$  convergence result can be obtained. In the present paper, positive values of the derivatives  $d_i$  are determined in an analogous way to cubic polynomial spline interpolation, which make  $s(x) \in C^2[x_1, x_n]$ . Furthermore, it is shown that an  $o(h^4)$  convergence result can be obtained when accurate derivatives  $d_1$  and  $d_n$  are available as end conditions.

It should be noted that if the data is monotonic but not strictly monotonic, then there will be intervals  $[x_i, x_{i+1}]$  where  $\Delta_i = 0$ . The requirement that s(x) be monotonic then implies that  $s(x) = f_i$ , a constant, on  $[x_i, x_{i+1}]$ . Elsewhere, the data can be divided into strictly monotonic parts and the proposed method of this paper can be applied.

# 2. The Monotonic Rational Quadratic Spline

If s(x) is a  $C^2$  function then, necessarily, there is no jump discontinuity in the second derivatives of s(x) at the interior knots  $x_{\pm}$ , i = 2, ..., n - 1, For cubic polynomial splines, such  $C^2$  consistency conditions lead to a set of linear equations each relating three consecutive derivatives  $d_{\pm}$ . For the piecewise rational quadratic function employed here, corresponding consistency equations arise which will be non-linear. These are derived below and will then be shown to have a unique solution with all  $d_{\pm} > 0$ .

The requirement for  $C^2$  continuity, namely that  $s^{(2)}(x_{\pm +}) - s^{(2)}(x_{\pm -}) = 0$  at all the interior knots, gives

$$\frac{2}{h_{i}} [\Delta_{i} + d_{i}(1 - \frac{d_{i} + d_{i+1}}{\Delta_{i}})] + \frac{2}{h_{i-1}} [\Delta_{i-1} + d_{i}(1 - \frac{d_{i-1} + d_{i}}{\Delta_{i-1}})] = 0.$$

This can be written as

$$d_{i}[-c_{i} + a_{i-1} d_{i-1} + (a_{i-1} + a_{i}) d_{i} + a_{i} d_{i+1}] = b_{i},$$
  
$$i=2, \dots n-1, \qquad (2.1)$$

where

$$a_{i} = 1 / (h_{i}\Delta_{i}),$$
  

$$b_{i} = \Delta_{i-1} / h_{i-1} + \Delta_{i} / h_{i},$$
  

$$c_{i} = 1 / h_{i-1} + 1 / h_{i}.$$
(2.2)

Given  $d_1$  and  $d_n$ , (2.1) gives a system of n-2 non-linear equations for the unknowns  $d_2, \ldots, d_{n-1}$ . It should be noted that  $c_{\perp} > 0$  and, for data which is strictly increasing,  $a_{\perp} > 0$ ,  $b_{\perp} > 0$  for all i in equations (2.1).

The existence and uniqueness of a solution  $d_2, \ldots, d_{n-1}$  of the nonlinear equations (2.1) with all  $d_1 > 0$  will first be proved by analysing a Jacobi type of iteration. It will then be shown that a Gauss-Seidel type of iteration can be used in practice.

Each equation (2.1) is a quadratic in the variable  $d_i$ . Solving for the positive root gives

$$d_{i} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} - a_{i-1}d_{i-1} - a_{1}d_{i+1} + \{ (C_{i} - a_{i-1}d_{i-1} - a_{i}d_{i+1})^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}], i = 2, ..., n - 1, (2.3)$$

A Jacobi iteration may be defined by the equation

$$d_{i}^{(k+1)} = \frac{1}{2(a_{i-1}+a_{i})} [c_{i}-a_{i-1}d_{i-1}^{(k)} - a_{i}d_{i+1}^{(k)} + \{(c_{i}-a_{i-1}d_{i-1}^{(k)} - a_{i}d_{i+1}^{(k)})^{2} + 4(a_{i-1}+a_{i})b_{i}\}^{\frac{1}{2}}], i = 2, ..., n-1, (2.4)$$

where  $d_1^{(k=1)} = d_1^{(k)} = d_1$  and  $d_n^{(k+1)} = d_n^{(k)} = d_n$  are given end condition.

Theorem 2.1. (Existence) For strictly increasing data and given end

conditions  $d_1 \ge 0$ ,  $d_n \ge 0$ , there exits a strictly positive solution  $d_2, \ldots, d_{n-1}$  satisfying the non-linear consistency equations. <u>Proof.</u> A set of functions  $G_i, i=1, ..., n$ , is defined initially on the domain  $\mathbb{R}^n$  by

$$\begin{aligned} G_{1}(\underline{\xi}) &= d_{1} \\ G_{i}(\underline{\xi}) &= \frac{1}{2(a_{i-1} + a_{i})} [c_{i} - a_{i-1}\xi_{i-1} - a_{i}\xi_{i+1} + \{(c_{i} - a_{i-1}\xi_{i-1} - a_{i}\xi_{i+1})^{2} \\ &+ 4(a_{i-1} + a_{i})b_{i})^{\frac{1}{2}}], i = 2, \dots, n-1 \\ G_{n}(\underline{\xi}) &= d_{n}, \end{aligned}$$

$$(2.5)$$

where  $\underline{\xi} = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ . Let  $\underline{G} = (G_1, \dots, G_n)$  and  $\underline{d} = (d_1, \dots, d_n)$ . Then the Jacobi iteration (2.4) assumes the form  $d^{(k+1)} = G(d^{(k)})$ .

Restricting  $\xi$  to have positive components, we now show that there exist. constants  $\alpha_{i}$  and  $\beta_{i}$  such that

 $0 < \alpha_{i} \leq G_{1}(\underline{\xi}) \leq \beta < \infty, i = 2, \dots, n-1.$ Also, for  $G_{1}(\underline{\xi})$  and  $G_{n}(\underline{\xi})$ , we may define  $\alpha_{1} = \beta_{1} = d_{1}$  and  $\alpha_{n} = \beta_{n} = d_{n}$ . Now, for  $i=2, \dots, n-1$ , examination of  $G_{i}(\underline{\xi})$  in the two cases  $0 \leq a_{i-1}\xi_{i-1} + a_{i}\xi_{i+1} \leq c_{i}$  and  $a_{i-1}\xi_{i-1} + a_{i}\xi_{i+1} > c_{i}$  gives

$$\beta_{i} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} + (c_{i}^{2} + 4(a_{i-1} + a_{i})b_{i})^{\frac{1}{2}}].$$

Finding a strictly positive value for  $\alpha_{i}$  is slightly more complicated but it can be shown that

$$\alpha_{i} = \min\left\{\frac{-c_{i} + (c_{i}^{2} + 4(a_{i-1} + a_{i})b_{i})^{\frac{1}{2}}}{2(a_{i-1} + a_{i})}, \frac{2b_{i}}{\sum_{N_{i} + \{N_{i}^{2} + 4(a_{i-1} + a_{i})b_{i}\}}}\right\},$$

where  $N_{i} = \max \{0, -c_{i} + (a_{i-1} + a_{i}) \max_{2 \le i \le n-1} \beta_{i}\}$ . Thus if  $I_{i} = [\alpha_{i}, \beta_{i}]$ ,

i=1,...,n, then the map  $\underline{G}$  can be restricted to the n-dimensional interval  $I = I_1 \times \ldots \times I_n$ , where  $\underline{G} : I \rightarrow I$  and hence maps positive vectors into positive vectors.

Next, <u>G</u> is shown to be a contraction mapping on I: Let  $\underline{\xi, \eta} \in I$ and let

 $X_{i} = c_{i} - a_{i-1}\xi_{i-1} - a_{i}\xi_{i+1}, Y_{i} = c_{i} - a_{i-1}n_{i-1} - a_{i}n_{i+1}.$ Then, for i=2,...,n-1,

$$G_{i}(\underline{\xi}) - G_{i}(\underline{n}) = \frac{1}{2(a_{i-1} + a_{i})} [X_{i} - Y_{i} + \{X_{i}^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}} - \{Y_{1}^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}\}$$

$$= \frac{X_{i} - Y_{i}}{2(a_{i-1} + a_{i})} \left[ 1 + \frac{X_{i} + Y_{i}}{\{x_{i}^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}} + \{Y_{i}^{2} + 4(a_{i} - 1 + a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}} \right],$$
  
and  $G_{1}(\underline{\xi}) - G_{1}(\underline{\eta}) = 0, G_{n}(\underline{\xi}) - G_{n}(\underline{\eta}) = 0.$  Now

$$\frac{|\mathbf{x}_{1} - \mathbf{y}_{1}| / (\mathbf{a}_{1-1} + \mathbf{a}_{1}) \leq \left\|\underline{\xi} - \underline{\eta}\right\|_{\infty}, \text{ and}}{|\mathbf{x}_{1} + \mathbf{y}_{1}|}$$

$$\frac{|\mathbf{x}_{1} + \mathbf{y}_{1}|}{\left\{\mathbf{x}_{1}^{2} + 4\left(\mathbf{a}_{1-1} + \mathbf{a}_{1}\right)\mathbf{b}_{1}\right\}^{\frac{1}{2}} + \left\{\mathbf{y}_{1}^{2} + 4\left(\mathbf{a}_{1-1} + \mathbf{a}_{1}\right)\mathbf{b}_{1}\right\}^{\frac{1}{2}}} \leq \frac{|\mathbf{x}_{1}| + |\mathbf{y}_{1}|}{\left\{\left\langle\mathbf{x}_{1}\right| + |\mathbf{y}_{1}\right\}^{2} + 8\left(\mathbf{a}_{1-1} + \mathbf{a}_{1}\right)\mathbf{b}_{1}\right\}^{\frac{1}{2}}}$$

$$= \frac{1}{\{1 + 8(a_{1-1} + a_{1}) b_{1} / (|X_{1}| + |Y_{1}|)^{2}\}^{\frac{1}{2}}}$$
  
$$\leq \frac{1}{\{1 + L\}^{\frac{1}{2}}},$$

where, since each of  $|X_{i}|$  and  $|Y_{i}|$  has an upper bound  $c_{i}$  +  $a_{i-1}\beta_{i-1}$  +  $a_{i}\beta_{i+1}$  ,

$$L = 2 \min_{2 \le i \le n-1} (a_{i-1} + a_i) b_i / \max_{2 \le i \le n-1} (c_i + a_{i-1}\beta_{i-1} + a_i\beta_{i+1})^2 > 0$$

Hence

$$\left\|\underline{\underline{G}}(\underline{\xi}) - \underline{\underline{G}}(\underline{\eta})\right\|_{\infty} \leq \frac{1}{2} \left[1 + 1 / \{1 + L\}^{\frac{1}{2}}\right] \quad \left\|\underline{\xi} - \underline{\eta}\right\|_{\infty},$$

from which it follows that  $\underline{G}$  is a contraction mapping on I. Thus the

Jacobi iteration converges to a unique fixed point  $\underline{d} \in I$ , i.e.  $\underline{d} = \underline{G}(\underline{d})$ ., and it follows that  $\underline{d}$  is a solution of (2.1), which thus completes the proof.

Equations (2.3) are derived from (2.1) by solving for the positive root. The alternative choice of negative root must lead to a  $d_i < 0$ , if such a solution exists. Thus uniqueness of a positive solution of (2.1) follows directly from the uniqueness of the solution of  $\underline{d} = \underline{G}(\underline{d})$ , where  $\underline{G}$  is a contraction map. Alternatively, uniqueness of a positive solution of (2.1) may be proved directly as follows:

<u>Theorem 2.2.</u> (Uniqueness) The solution of the non-linear consistency equations which satisfies the monotonicity conditions  $d_i > 0$  is unique. <u>Proof.</u> Assume that  $d_1, \ldots, d_n$  and  $e_1, \ldots, e_n$  are two sets of values each satisfying the consistency equations, where  $d_1 = e_1 \ge 0$  and  $d_n = e_n \ge 0$  are given and  $d_i > 0$ ,  $e_i > 0$ ,  $i = 2, \ldots, n - 1$ , Then

$$b_{i} / d_{i} + c_{i} - a_{i-1}d_{i-1} - (a_{i-1} + a_{i})d_{i} - a_{i}d_{i+1} = 0,$$
  
$$b_{i} / e_{i} + c_{i} - a_{i-1}e_{i-1} - (a_{i-1} + a_{i})e_{i} - a_{i}e_{i+1} = 0, i = 2, \dots, n-1.$$

Substraction gives

 $(e_i - d_i) [b_i / (d_ie_i) + a_{i-1} + a_i] = a_{i-1}(d_{i-1} - e_{i-1}) + a_i(d_{i+1} - e_{i+1})$ . Consider the j<sup>th</sup> equation, where j is chose so that

$$|\mathbf{e}_{j} - \mathbf{d}_{j}| = \max_{2 \le i \le n-1} |\mathbf{e}_{i} - \mathbf{d}_{i}|.$$

Then taking moduli gives

$$|e_j - d_j| \{b_j / (d_j e_j) + a_{j-1} + a_j\} \le (a_{j-1} + a_j) |e_j - d_j|,$$

and thus

$$|e_j - d_j|b_j / (d_je_j) \le 0.$$

Hence  $d_j = e_j$  and so  $d_i = e_i$ ,  $i = 2, \ldots, n = 1$ .

In practice a Gauss-Seidel type of iteration can be used to solve (2.3). This iteration is defined by

$$d_{i}^{(k+1)} = \frac{1}{2(a_{i-1} + a_{i})} [c_{i} - a_{i-1}d_{i=1}^{(k+1)} - a_{i}d_{i+1}^{(k)} + \{(c_{i} - a_{i-1}d_{i=1}^{(k+1)} - a_{i}d_{i+2}^{(k)})^{2} + 4(a_{i-1} + a_{i})b_{i}\}^{\frac{1}{2}}],$$
  
$$i = 2, \dots, n - 1, \qquad (2.6)$$

where  $d_1^{(k+1)} = d_1^{(k)} = d_1$  and  $d_n^{(k+1)} = d_n^{(k)} = d_n$  are given end conditions.

A convenient starting vector  $\underline{d}^{(0)}$  for this iteration is given by

$$d_{i}^{(0)} = \{b_{i} / (a_{i-1} + a_{i})\}^{\frac{1}{2}}, i = 2, ..., n - 1.$$

<u>Theorem 2.3.</u> The Gauss-Seidel iteration (2.6) converges to the unique positive solution of the non-linear consistency equations.

<u>Proof.</u> By Theorems 2.1 and 2.2 there exist unique  $d_{\perp} > 0$  satisfying

$$b_i / d_i + c_i - a_{i-1}d_{i-1} - (a_{i-1} + a_i)d_i - a_id_{i+1} = 0, i = 2, ..., n - 1.$$

Also, the Gauss-Seidel iterates satisfy

$$b_{i} / d_{i}^{(k+1)} + c_{i} - a_{i-1}d_{i-1}^{(k+1)} - (a_{i-1} + a_{i})d_{i}^{(k+1)} - a_{i}d_{i+1}^{(k)} = 0, i = 2, ..., n - 1.$$

Subtract and write  $d_{i}^{(k)} = d_{i} + \epsilon_{i}^{(k)}$  Then

$$[b_{1} / \{d_{1}(d_{1} + \varepsilon_{1}^{(k+1)})\} + a_{1-1} + a_{1}]\varepsilon_{1}^{(k+1)} = -a_{1-1}\varepsilon_{1-1}^{(k+1)} - a_{1}\varepsilon_{1+1}^{(k)}$$

Since  $d_i + \epsilon_i^{(k+1)} = d_i^{(k+1)} > 0$ , on taking moduli we obtain

$$\left[ \mathbf{b}_{\mathbf{i}} / \left\{ \mathbf{d}_{\mathbf{i}} (\mathbf{d}_{\mathbf{i}} + \left| \mathbf{\epsilon}_{\mathbf{i}}^{(k+1)} \right| \right) \right\} + \mathbf{a}_{\mathbf{i}-1} + \mathbf{a}_{\mathbf{i}} \right] \mathbf{\epsilon}_{\mathbf{i}}^{(k+1)} \le \mathbf{a}_{\mathbf{i}-1} \left| \mathbf{\epsilon}_{\mathbf{i}-1}^{(k+1)} \right| + \mathbf{a}_{\mathbf{i}} \left| \mathbf{\epsilon}_{\mathbf{i}+1}^{(k)} \right|.$$

Consider the  $j^{th}$  inequality , where j is chosen so that

$$\begin{vmatrix} \varepsilon_{j}^{(k+1)} \\ \end{vmatrix} = \max_{2 \le i \le n-1} \begin{vmatrix} \varepsilon_{i}^{(k+1)} \\ \varepsilon_{i}^{(k+1)} \end{vmatrix} = \left\| \underline{\varepsilon}^{(k+1)} \right\|_{\infty}$$

Then

$$\begin{bmatrix} b_{j} / \{d_{j}(d_{j} + \left\| \underline{\varepsilon^{(k+1)}} \right\|_{\infty}) \} + a_{j-1} + a_{j} \right\| \underline{\varepsilon}^{(k+1)} \right\|_{\infty}$$
$$\leq a_{j-1} \left\| \underline{\varepsilon^{(k+1)}} \right\|_{\infty} + a_{j} \left\| \underline{\varepsilon^{(k)}} \right\|_{\infty},$$

which reduces to

$$\left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty} \leq \frac{a_{j}\left\|\underline{\varepsilon}^{(k)}\right\|_{\infty}}{a_{j} + b_{j} / \{d_{j}(d_{j} + \left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty})\}}$$

It follows that

$$\left\|\underline{\varepsilon}^{(k+1)}\right\|_{\infty} \leq \beta \left\|\underline{\varepsilon}^{(k)}\right\|_{\infty},$$

where

$$\beta = \frac{a_{j}}{a_{j} + b_{j} / \{d_{j}(d_{j} + \left\|\underline{\varepsilon}^{(0)}\right\|_{\infty})\}}$$

And 0 <  $\beta$ < 1. Thus  $\left\|\underline{\varepsilon}^{(k)}\right\|_{\infty} \rightarrow 0 \text{ as } k \rightarrow \infty \text{ and hence } d_{i}^{(k+1)} \rightarrow d_{i}$ , i=2,...,n-1.

# 3. Convergence Analysis of Rational Quadratic Spline

We begin by quoting a theorem which was given with proof in the earlier paper Gregory and Delbourgo (1982) and which will be required in the subsequent work.

<u>Theorem3.1</u> Let  $f(x) \in C^{4}[x_{1}, x_{n}]$  and  $f^{(1)}(x) > 0$  on  $[x_{1}, x_{n}]$ . Let s(x) be the piecewise rational quadratic interpolant such that  $s(x_{1}) = f(x_{1})$ and  $s^{(1)}(x_{1}) = d_{1} \ge 0$ , then for  $x \in [x_{1}, x_{1+1}]$ , i = 1, ..., n - 1  $|f(x) - s(x)| \le \frac{h_{1}}{4c} ||f^{(1)}|| \max \{|f_{1}^{(1)} - d_{1}||, ||f_{1+1}^{(1)} - d_{1+1}|\}$  $+ \frac{h_{1}^{4}}{384c} [||f^{(4)}|| |||f^{(1)}|| + \frac{2}{3}h_{1} ||f^{(3)}||^{2} + 2 |||f^{(2)}|| ||f^{(3)}||]$ , (3.1)

Where  $h_{i} = x_{i+1} - x_{i}$ , c is a constant independent of i whose value is at least

 $\frac{1}{2} \frac{\min}{x_1, x_n} f^{(1)}(x) \text{ and } \|\cdot\| \text{ denotes the uniform norm on } [x_1, x_n].$ 

The next theorem establishes an upper bound for  $\max_{2 \le i \le n-1} \left| f_i^{(1)} - d_i \right|$ when the  $d_i$  are the solutions of the non-linear consistency conditions (2.1).

<u>Theorem 3.2</u> Let  $d_1 = f_n^{(1)}$  and  $d_n = f_n^{(1)}$  in the rational quadratic spline interpolant. Then, with the assumptions of Theorem 3.1 and for h sufficiently small,

$$\max_{2 \le i \le n-1} \left| f_{i}^{(1)} - d_{i} \right| \le \frac{h^{3} K(h) \left\| f^{(1)} \right\|}{2m^{3} \left| \left| f^{(1)} \right| - h^{3} K(h) \right|},$$
(3.2)

where

$$k(h) - \frac{1}{12} \{7 \| f^{(1)} \| \| f^{(4)} \| + \| f^{(2)} \| \| \| f^{(3)} \| \} + o(h), \quad (3.3)$$

and  $h=\max h_{i}, m = \min_{[x_1, x_n]} f^{(1)}(x) > 0$ 

Thus  $\max_{2 \le i \le n-1} |f_i^{(1)} - d_i| = o(h^3)$ .

Proof. Consider the consistency equations

$$b_i / d_i + c_i - a_{i-1}d_{i-1} - (a_{i-1} + a_i)d_i - a_id_{i+1} = 0$$

and let

$$b_{i} / f_{i}^{(1)} + c_{i} - a_{i-1} f_{i-1}^{(1)} - (a_{i-1} + a_{i}) f_{i}^{(1)} - a_{i} f_{i+1}^{(1)} = E_{i},$$
$$i = 2, \dots, n - 1.(3.5)$$

where, from (3.4),  $0 < 1 / f_{i}^{(1)} < 1 / m.Subtracting and writing$ 

$$d_{i} - f_{i}^{(1)} = \lambda_{i}$$
 (3.6)

(3.4)

gives

$$b_{i}\lambda_{i} / \{f_{i}^{(1)}(f_{i}^{(1)} + \lambda_{i})\} + a_{i-1}\lambda_{i-1} + (a_{i-1} + a_{i})\lambda_{i} + a_{i}\lambda_{i+1} = E_{i},$$
  
$$i = 2, ..., n-1, \qquad (3.7)$$

where we require a bound on  $\max_{2 \le i \le n-1} |\lambda_i|$ . Now, from (3.5) and the definitions (2.2), it follows that

$$\begin{split} E_{i} \quad h_{i-1} \quad h_{i} \quad \Delta_{i-1} \quad \Delta_{i} &= \{h_{i} \quad \Delta_{i-1}^{2} \quad \Delta_{i} + h_{i-1} \quad \Delta_{i-1} \quad \Delta_{i}^{2}\} \neq f_{i}^{(1)} \quad + (h_{i} + h_{i-1}) \quad \Delta_{i-1} \quad \Delta_{i} \\ &- h_{i} \quad \Delta_{i} \quad (f_{i-1}^{(1)} + f_{i}^{(1)}) \quad - h_{i-1} \quad \Delta_{i-1} \quad (f_{i}^{(1)} + f_{i+1}^{(1)}) \; . \end{split}$$

On the right the following Taylor expansions are made:

$$\begin{split} \Delta_{i-1} &= f_{i}^{(1)} - \frac{1}{2} h_{i-1} f_{i}^{(2)} + \frac{1}{6} h_{i-1}^{2} f_{i}^{(3)} - \frac{1}{24} h_{i-1}^{3} f_{i-\alpha}^{(4)}, \\ \Delta_{i} &= f_{i}^{(1)} + \frac{1}{2} h_{i} f_{i}^{(2)} + \frac{1}{6} h_{i}^{2} f_{i}^{(3)} + \frac{1}{24} h_{i}^{3} f_{i+\beta}^{(4)}, \\ f_{i-1}^{(1)} &= f_{i}^{(1)} - h_{i-1} f_{i}^{(2)} + \frac{1}{2} h_{i-1}^{2} f_{i}^{(3)} - \frac{1}{6} h_{i-1}^{3} f_{i-\gamma}^{(4)}, \\ f_{i+1}^{(1)} &= f_{i}^{(1)} - h_{i} f_{i}^{(2)} + \frac{1}{2} h_{i}^{2} f_{i}^{(3)} + \frac{1}{6} h_{i}^{3} f_{i+\delta}^{(4)}, \end{split}$$

where  $f_{i-\alpha}^{(4)}$  means  $f^{(4)}(x_i - \alpha h_{i-1}), 0 < \alpha < 1$ , etc. After some algebra, the result of these substitutions gives

$$\begin{split} \mathbf{E}_{\underline{i}} \Delta_{\underline{i}-1} \Delta_{\underline{i}} &= \mathbf{f}_{\underline{i}}^{(1)} \left\{ \frac{1}{8} \left( \mathbf{h}_{\underline{i}}^{2} \mathbf{f}_{\underline{i}+\beta}^{(4)} - \mathbf{h}_{\underline{i}-1}^{2} \mathbf{f}_{\underline{i}-\alpha}^{(4)} \right) - \frac{1}{6} \left( \mathbf{h}_{\underline{i}}^{2} \mathbf{f}_{\underline{i}+\delta}^{(4)} - \mathbf{h}_{\underline{i}-1}^{2} \mathbf{f}_{\underline{i}-\gamma}^{(4)} \right) \\ &+ \frac{1}{12} \left( \mathbf{h}_{\underline{i}}^{2} - \mathbf{h}_{\underline{i}-1}^{2} \right) \mathbf{f}_{\underline{i}}^{(2)} \mathbf{f}_{\underline{i}}^{(3)} + \mathbf{o}(\mathbf{h}^{3}) \quad . \end{split}$$

Now  $\Delta_{i-1} \Delta_i \geq m^2$ , where m is defined by (3.4). Thus it follows that

$$m^{2} |E_{1}| \leq \frac{1}{12} h^{2} \{7 ||f^{(1)}|| ||f^{(4)}|| + ||f^{(2)}|| ||f^{(3)}|| \} + o(h^{3})$$

Hence

$$|E_{i}| \leq m^{-2} h^{2} K (h) ,$$
 (3.8)

where K(h) is defined by (3.3). We now consider equation (3.7) with index i = j taken so that  $|\lambda_j| = \max_{\substack{2 \le i \le n-1}} |\lambda_j|$ . Then

$$[b_j / {f_j^{(1)} (f_j^{(1)} + \lambda_j)} + a_{j-1} + a_j] \lambda_j = E_j - a_{j-1} \lambda_{j-1} - a_j \lambda_{j+1},$$

where  $|\lambda_j| = \|\underline{\lambda}\|_{\infty}$ , since  $\lambda_1 = 0 = \lambda_n$ . Taking moduli and noting that

$$\begin{split} 0 < f_j^{(1)} + \lambda_j &\leq f_j^{(1)} + \|\underline{\lambda}\|_{\infty} \text{ gives} \\ [b_j / \{f_j^{(1)} (f_j^{(1)} + \|\underline{\lambda}\|_{\infty})\} + a_{j-1} + a_j] \|\underline{\lambda}\|_{\infty} \leq |\underline{E}_j| + (a_{j-1} + a_j) \|\underline{\lambda}\|_{\infty} . \end{split}$$

This inequality reduces to

$$\left\|\underline{\lambda}\right\|_{\infty} \leq f_{j}^{(1)} \left|E_{j}\right| / \left\{b_{j} / f_{j}^{(1)} - \left|E_{j}\right|\right\}, \qquad (3.9)$$

under the assumption that the denominator is positive. Now

$$\begin{split} b_{j} / f_{j}^{(1)} &= (\Delta_{j-1} / h_{j-1} + \Delta_{j} / h_{j}) / f_{j}^{(1)}, \\ &= (f_{j-\Theta}^{(1)} / h_{j-1} + f_{j+\varphi}^{(1)} / h_{j}) / f_{j}^{(1)} \text{ for some } 0 < \Theta, \phi < 1, \\ &\geq 2m / \{h \| f^{(1)} \| \} . \end{split}$$

Thus, from (3.8)

$$b_j / f_j^{(1)} - |E_j| \ge 2m / \{h \| f^{(1)} \| \} - m^{-2}h^2 K (h)$$
 (3.10)

which is positive for h sufficiently small. Finally, substituting (3.10) and (3.8) in (3.9) gives the desired result.

<u>Remark.</u> When the results of Theorems 3.1 and 3.2 are taken together, it can be seen that  $f(x) - s(x) = 0(h^4)$  on the assumption that  $d_1 = f_1^{(1)}$ and  $d_n = f_n^{(1)}$  are given end conditions.

#### 4. <u>Numerical Results and Discussion</u>

Our first set of results is concerned with the order of convergence of the interpolation scheme. Tables 1 and 2 show the interpolation errors arising from the application of the rational quadratic spline scheme to f(x) = exp(x) over [0,1] when the exact choice of end conditions

 $d_1 = f^{(1)}(0) = 1$  and  $d_1 = f^{(1)}(1) = 1$  a = exp(1) is made. The knots are taken to be equally spaced with four choices of interval lengths, namely h = 0.2, 0.1, 0.05, 0.025. In one experiment, the errors  $e_1, e_2, e_3$ ,  $e_4$  corresponding to these four choices of h are evaluated at  $\theta = 1/3$ , where, for each h, the interval of interpolation is that containing the point x = 0.86. In a second experiment the four intervals containing the point x = 0.86 are selected with  $\theta = 2/3$ .

| error e <sub>1</sub>   | error e <sub>1</sub>   | error e <sub>3</sub>   | error e <sub>4</sub>  |             |           |             |
|------------------------|------------------------|------------------------|-----------------------|-------------|-----------|-------------|
| (h = 0.2)              | (h = 0.1)              | (h = 0.05)             | (h = 0.25)            | $e_1 / e_2$ | $e_2/e_3$ | $e_3 / e_4$ |
| 45217×10 <sup>-5</sup> | $26477 \times 10^{-6}$ | $16973 \times 10^{-7}$ | 1046×10 <sup>-8</sup> | 17.08       | 15.60     | 16.22       |

Table 1.Rational quadratic spline interpolation errors at  $\theta = 1/3$  ininterval containing x = 0.26, f(x) = exp(x).

| error e <sub>1</sub>   | error e <sub>2</sub>   | error e <sub>3</sub>   | error e <sub>4</sub>  |                               |           |             |
|------------------------|------------------------|------------------------|-----------------------|-------------------------------|-----------|-------------|
| (h = 0.2)              | (h = 0.1)              | (h = 0.05)             | (h = 0.25)            | $\mathbf{e}_1 / \mathbf{e}_2$ | $e_2/e_3$ | $e_3 / e_4$ |
| $84774 \times 10^{-5}$ | $47378 \times 10^{-6}$ | $30788 \times 10^{-7}$ | $1902 \times 10^{-8}$ | 17.89                         | 15.39     | 16.19       |

<u>Table 2.</u> Rational quadratic spline interpolation errors at  $\theta = 2/3$  in interval containing x = 0.86, f(x) = exp(x).

The theory of Section 3 shows that a convergence rate of  $0(h^4)$  is expected and this is confirmed by both tests which clearly show the tendency of the ratios  $e_k / e_{k+1}$  to approach the value  $2^4$ .

Our second set of results is concerned with the application of the rational spline scheme to the monotonic data sets of Tables 3, 4, and 5.

| x | 7.99 | 8.09                     | 8.19                     | 8.7      | 9.2      | 10       | 12       | 15       | 20        |
|---|------|--------------------------|--------------------------|----------|----------|----------|----------|----------|-----------|
| Y | 0    | $2.76429 \times 10^{-5}$ | 4.37498×10 <sup>-2</sup> | 0.169183 | 0.469428 | 0.943740 | 0.998636 | 0.999919 | 0.9999994 |

Table 3. Monotonic Data Set 1 [Fritsch & Carlson (1980)]

| x | 22  | 22.5 | 22.6 | 22.7 | 22.8 | 22.9 | 23  | 23.1 | 23.2 | 23.3 | 23.4 | 23.5 | 24  |
|---|-----|------|------|------|------|------|-----|------|------|------|------|------|-----|
| у | 523 | 543  | 550  | 557  | 565  | 575  | 590 | 620  | 860  | 915  | 944  | 958  | 986 |

Table 4. Monotonic Data Set 2 [pruess (1979)]

| x | 0  | 2  | 3  | 5  | 6  | 8  | 9    | 11 | 12 | 14 | 15 |
|---|----|----|----|----|----|----|------|----|----|----|----|
| у | 10 | 10 | 10 | 10 | 10 | 10 | 10.5 | 15 | 50 | 60 | 85 |

Table 5. Monotonic Data Set 3 [Akima (1970); Fritsch & Carlson (1980)]

Both the Fritsch-Carlson radio-chemical data of Table 3 and the Akima data of Table 5 are used in Gregory & Delbourgo (1982) in connection with the piecewise rational quadratic  $C^1$  scheme proposed there. These data sets are also used by Fritsch & Carlson (1980), where the need for good monotonic interpolants is clearly illustrated by the poor behaviour of other interpolation methods.

In general, to apply the  $C^2$  rational spline scheme of this paper, it is necessary to set the end derivatives  $d_1$  and  $d_n$  to suitable non-negative values. Two possible methods are explored below. It should be noted that for the Akima data, s(x) is constant over the interval [0,8] and the rational spline scheme is applied only over [8,15], The condition  $d_1=0$  is then imposed at the left hand end point x=8 of this interval, where s (x) will be  $C^1$ .

Method 1. This is based on the three point difference approximations

$$d_1 = \Delta_1 + (\Delta_1 - \Delta_2) h_1 / (h_1 + h_2)$$
 ,

if the expression on the right is positive, otherwise  $d_1$  is set to zero;

$$d_n = \Delta_{n-1} + (\Delta_{n-1} - \Delta_{n-2}) h_{n-1} / (h_{n-2} + h_{n-1})$$
,

if the expression on the right is positive, otherwise  $d_1$  is set to zero.

Here each of  $f_1^{(1)} - d_1$  and  $f_n^{(1)} - d_n$  is  $0(h^2)$ .

<u>Method 2</u> Non-linear approximations for  $d_1$  and  $d_n$  are given by

$$\begin{split} d_{1} &= \Delta_{1} \left( \Delta_{1} / \left\{ \left( f_{3} - f_{1} \right) / \left( x_{3} - x_{1} \right) \right\} \right)^{h_{1}} / h_{2}, \\ d_{n} &= \Delta_{n-1} \left( \Delta_{n-1} / \left\{ f_{n} - f_{n-2} \right) / \left( x_{n} - x_{n-2} \right) \right\} \right)^{h} n - 1 / h \\ &= n - 1 / n - 2. \end{split}$$

Here, as in Method 1, each of  $f_1^{(1)} - d_1$  and  $f_n^{(1)} - d_n$  each  $0 (h^2)$ , as can be shown by a Taylor expansion argument. These approximations are an improvement on the non-linear end conditions quoted in Gregory & Delbourgo (1982) and are identical with these conditions in the case of equal intervals.

Figures 1, 2, and 3 show the results of applying the rational spline scheme to the three given data sets. The scheme is implemented with the end conditions described by Method 2. (End conditions- based on Method 1 gives graphs little different from those shown.) For the purposes of comparison, the C<sup>1</sup> piecewise cubic interpolant using the  $\mathcal{L}_2$  monotonicity region recommended by Fritsch & Carlson is shown. Also; the C<sup>1</sup> piecewise rational quadratic interpolant based on the second method of derivative approximation recommended by Gregory & Delbourgo (1982) is shown. For the Data Set 1, the extra degree of continuity of the rational spline scheme is apparent at the knot x = 10 when compared with the C<sup>1</sup> schemes. The Data Set 2 illustrates a behaviour which is to be expected of any spline Scheme. Here, due to the nature of the data, the C<sup>2</sup> constraint has lead to more variation in the curve than that given by the rational quadratic C<sup>1</sup> scheme. However, in general it can be seen that the rational spline scheme produces good curves.

# 6. Conclusion

A method of constructing a  $C^2$  monotonic interpolant to given monotonic data has been described. This method is based on a rational quadratic spline

representation and involves the solution of a non-linear system of consistency equations. The iterative solution of this system means that the method involves more work than existing  $C^1$  methods. However, the method seems to produce visually pleasing curves which have the advantage of being twice continuously differentiable and  $0 (h^4)$  convergent.

# References

- Akima, A. 1970 A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17, 589-602.
- Fritsch, F.N. & Carlson, R.E. 1980 Monotone piecewise cubic interpolation. SIAM J. Num. Analysis 17, 235-246.
- Gregory, J.A.& Delbourgo, R. 1982 Piecewise rational quadratic interpolation to monotonic data. *IMA Journal of Numerical Analysis* 2, (to appear).
- Pruess, S. 1979 Alternatives to the exponential spline in tension. *Math. Comp.* 33, 1273-1281.



Fig. 1.Results for monotonic data set 1. (i) Fritsch-Carlson; (ii) C<sup>1</sup> piecewise rational quadratic;
(iii) C<sup>2</sup> rational quadratic spline.



Fig. 2. Results for monotonic data set 2. (i) Fritsch-Carlson; (ii) C piecewise rational quadratic;
(iii) C<sup>2</sup> rational quadratic spline.



Fig. 3. Results for monotonic data set 3. (i) Fritsch-Carlson; (ii) C<sup>1</sup> piecewise rational quadratic;
(iii) C<sup>2</sup> rational quadratic spline.