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Abstract 

Explicit  formulae  are  developed  for  determining   the 

   derivative   parameters   of   a  monotonic   interpolation  method   of 

  Gregory  and  Delbourgo  (1982). 



1 .        Introduction

  In  Gregory  and  Delbourgo   (1982)   a  C1  monotonic   interpolation  method 

is  described  which   interpolates   given  monotonic  data.      The   purpose  of   this 

note   is   to  develop   explicit   formulae   for  determining   the  derivative  para- 

meters   of   the   scheme   from  the  given   function  valued  data.     Let   (xi,fi), 

i   =   1,...,n,   denote  the  data,   where  x1   <   x2  <   ...  <  x n  ,   and  assume   that 

f1  ≤  f2  ≤  . . . ≤  fn     (monotonic   increasing   data).   Then  derivative   parameters 

di,   i  =   1,...,n,   are   to  be   determined  at   the  knots  xi   ,   i  =   1,...,n,  which 

satisfy  the  necessary  monotonicity  conditions   di   ≥  0,   i  =   1,...,n.    The 

interpolation  method   then  constructs  a  monotonic   piecewise   rational   quadratic 

function   s(x)   such   that 

s(xi)   =   fi     and     s ( l ) (x i)    =  di   ,     i  =  1 ..............n   . (1.1) 

This   function   is   defined,   for  x  є   [xi,xi+1  ],    i   =   1,...,n-1,   by      

                 ,2θ)-(1iΔθ)-1()id1i(d2θiΔ

2θ)(1ifiΔθ)-(1)id1if1idi(f2θ1ifiΔ
s(x)

+θ+++

−+θ+++++
=                  (1.2) 

                  

where 

hi  = xi+l=xi   ,     Δi  =   (f i + 1 - f i ) / h i    ,   θ  = ( x - x i ) / h i   . (1.3) 

In  the  case  A.   =  0  we  have   s(x)   =  f i,    a  constant   on   [xi,xi+1  ]. 

When  fi   =   f(xi),   i   =   1,...,n,   where   f   is   a   strictly  monotonic 

increasing   function,   the   interpolant  has   an  error  bound   of   the  form 

,)h(0)h(0|df|max)x(s)x(f| 4
i

)1(
ii

+−≤−                                                 (1.4) 

where  f ∈ C4 [x1,xn]   and  .    The  accuracy  of    the  interpolant }h{maxh ii
=

is  thus  dependent  on  the  accuracy  of   the  values  di  considered   as   approx- 

imations  to  the  true  derivations    .  Hence,   given  only   the )x(ff i
)1()1(

i =
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function  valued  data,   we   are   concerned  with  determining  explicit   derivative 

formulae  which  give  non—negative  approximations   of   appropriate  orders   of 

accuracy. 

The   approximations   developed  here   also  provide   end   conditions   for 

the   C2   rational   quadratic   spline  method   of   Delbourgo   and  Gregory   (1983). 

The   spline  method  determines   0(h3)  accurate  derivative  parameters  di, 

i   =   2,...,n-1,   as   the   solution  of   a   non-linear   system  of   equations,   where 

d 1    and  d n    are   given  at   the   ends   of   the  knot  partition.      If   these   end 

derivatives  are  not  known,   then  0(h3)   non-negative  approximations  to  them 

are   required  in  order  to  preserve   the  optimal   0(h4 )   accuracy  of   the 

 rational    spline. 

2.     The   Derivative  Formulae

Let  Ii   denote  an  index   set  of  m  values  j  є   {1,...,n},   j  ǂ i,   chosen 

in  a  neighbourhood   of   i   and   let  pi(x)   be   the   interpolation  polynomial 

of   degree  m  such   that  pi(xj)   =   f j ,    j   ∈   Ii   U   {i}.      Then  di   =      (x(1)
ip i) 

provides   a   classical   method   of   constructing   0(h)   derivative  approx- 

imations   to   f       .      This  method  will   give  equation   (2.1)   below,   which  can )1(
i

be  considered  as   a  generalized  arithmetic  mean  of   the  non-negative  secant 

slopes   Δi , j  ,   where   the  weights   α i , j    are  not,   in  general,   all   positive- 

Considerations   regarding  monotonicity   lead  us   to   study  also   geometric 

and  harmonic   forms   for   the   approximations.     We   then  have   the   following 

theorem. 

Theorem  2.1.     Let   f є Cm+1 [x1,xn   ]   and   f (1)  (x)   >   0  on   [x1,xn   ].   Let   the 

index   set   Ii   of  m  values   j  ≠  i  be   such   that   |  xi  - xj |   ≤  Kh,    for  all   j  ∈   I i, 

where  h  =  max{hi}  and  K  is   independent  of  h.     Then        -  d(1)
if i   =  0(hm)   for 

each   of   the   following  generalized  arithmetic,   geometric and  harmonic  means: 

 

                                                                                                 (2.1),j,iΔ
iIj ji,αid ∑

∈
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where 

      Δi ,j   =   (fj  -  f i ) / ( x j   -xi) ,                                              (2.4) 
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A proof of this theorem is a consequence of the two lemmas given 

below, but we first make some remarks concerning the behaviour of the 

approximations    (2,1)   -  (2 .3 ) .  

The  arithmetic  mean   (2.1)   can  give  negative   results   for   all  but   the 

simplest   choices   of   the   index   sets   Ii.     The  geometric   form   (2.2)   is  always 

non-negative  and   it   can  be   shown   that   the  harmonic  mean   is   non—negative 

for  most   of   the   specific   index sets used   in   the  examples   of   the  next 

section.     In  practical   applications   any  negative  result   is  replaced  by 

the  value   zero. 

Another  problem  occurs   if   a  Δi,j    =0,   since  monotonicity   implies 

s(x)   =   constant  between  xi   and  xj   and  hence  di   =   0.      Thus   if   lim  di ǂ 0 

as   a   Δi,j   →  0   in   (2.1),    (2.2)   and   (2.3)    it   follows   that   the   formulae 

will  not  define  continuous   functionals   and   the  interpolants  will  not 

behave   in  a   continuous  manner  with   respect   to   changes   in   the  data   in 

this   limiting   case.     The  arithmetic  mean   (2.1)   exhibits   this  unsatisfactory 

behaviour  but   the   geometric   and  harmonic   forms   (2.2)   and   (2.3)   are   satis- 

factory   for  most   of   the   index   sets   considered   later. 

Lemma   2.1.        Let   I   denote   an   index   set  of  m  positive   integers   and   let 

∈ j,   j   ∈   I,   be  m  distinct  non-zero  values.       Then   the   linear   system  in   the 
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unknowns   α j,   defined   by 
 

                           ∑
∈

∑
∈

−===
Ij Ij

,1m....,1,........k,0jα
k
jε,1jα                      (2.6)

has    the   unique   solution 
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Proof It   suffices   to   prove   (2.7)   for   the   index   set   I   =   {1,2,...,m}, 

although   different   sets  will   be   considered   in   our  application  of   the 

lemma.    The   system  (2.6)   then  assumes   the   form 

 =
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                      (2.8) 

The  coefficient matrix has   the  non-zero   Vandermonde   determinant   defined 

by 

 )qεp(εm
qpπ

)mε,.........1V( ε −
>

=
 

and    (2.8)    has    the   unique    solution 
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Lemma   2.2 Let   λ  >0   and   λj  >0  be  given   such   that 

∑
−

=
∈++=

1m

1k
,Ij,)m(ε0k

jεkbλjλ                                   (2.9) 
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where  bk    are   constants   (independent   of   j), ε   =  max| εj |   and  the  ε j

satisfy   the  hypotheses   of  Lemma   2.1.     Then the   generalized arithmetic, 

geometric   and  harmonic  means   defined  by 

 

               ∑
∈ ∑

∈
=∑

∈
==

Ij Ij j/λjα1H,
Ij

jα
jλG,jλjαA                      (2.10)

are   all   0(ε m )   approximations   to   λ,   where   the   αj   are   defined  by   (2.7) 

of   Lemma   2.1. 

Proof        ( i )     Substituting   (2.9)   in  the   definition  of   the  arithmetic 

mean    gives 

   ∑
∈

∑
−

=
+∑

∈
+

Ij
k
jεjα

1m

1k kb]
Ij

)m0( ε[λjαA . 

Thus    A  =   λ   +   0( εm)   for  α j   satisfying    (2.6). 

(ii)     Noting   that   λj   >   0   and  λ   >   0,   we   take  the   logarithm  of   the  geometric 

 mean    and    substitute    (2.9)    to    give 
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wherethe ck are constants, obtained by collecting terms of a power series 

expansion of the second logarithmic term. Thus log G - log  λ + 0(εm), for 

et.   satisfying   (2.6)  and  hence  G  =  λ   +  0(εm) . 

(iii)   Noting   that   λ  ǂ 0,   we   take   the   reciprocal   of   the  harmonic  mean  and 

substitute   (2.9)    to   give 
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where  the  yk    are  constants,   obtained  by  collecting   terms  of  a  power   series 

expansion  of   the   reciprocal   term.     Thus  H-1    =   λ -1       [1  +0(εm   )],   for  α j. 

satisfying   (2.6)   and  hence  H  =  λ + 0 ( εm). 

In  our  application  of  Lemma  2.2  the  weights   a.  will  not  necessarily 

be  all  positive.     However,   for  positive  weights  we  have   the   standard 

inequality 

 0 <  H  < G < A 

Lemma  2.2  also  holds   for   the  case  λ < 0,   λ j.<0,   j  є1,  with  the  geometric 

mean  now  being   defined  by 

                                                      jα)jλ(
Ij

πG −
∈

−=

However,    this   result   is   not  needed  here   in  our   treatment  of  monotonic 

i nc r ea s ing   da t a .  

Theorem  2.1   is   an   immediate  consequence  of  Lemmas   2.1   and   2.2   since 

Taylor  expansions   about  xi   of   the  positive   secant   slopes  Δ i ,  j    give 

                                       (2.11) ,iIj,
1m

1k
)m

ji,0( εk
ji,εi,kb(1)

ifji,Δ ∈∑
−

=
++=

  where    and  ε!1)/(k1)(k
ifi,kb ++= i  j   = x j  –  x i   .   Thus   (2.11)  can  be used  as 

the  hypothesis   (2.9)   of  Lemma   2.2. 

In   the  next   section  we  give   specific   examples   of   the   application  of 

Theorem  2.1   appropriate   to   the  piecewise  rational  quadratic  interpolation 

m e t h o d .  



3.      Examples  and  Numerical  Results 

3.1    Test  problems

We  have  applied  the  rational  quadratic  scheme  to  three  monotonic 

increasing  data  sets  using  derivative  approximations  defined  in  the  next 

two  subsections.    The  first  set  of  data  is  that  given  in  Table  1   and  is 

an  example  used  by  Fritsch  and  Carlson  (1980) .    The  second  is  that  used 

by  Pruess  (1979)  and  is  given  in  Table  2.    The  third  set  of  data  consists 

of  points  spaced  at  15°  arguments  over  a  quarter  circle  and  is  dis- 

tinguished  by  the  difficulty  of  an  infinite  gradient  at  an  end  point.  

X 7.99 8.09 8.19 8.7 9.2 10 12 15 20 

y 0 2.7629×10-5 4.37498x10-2 0.169183 0.469428 0.943740 0.998636 0.999919 0.999994

Table  1,      Fritsch-Carlson  data.  

X 22 22.5 22.6 22.7 22.8 22.9 23 23.1 23.2 23.3 23.4 23.5 24 

y 523 543 550 557 565 575 590 620 860 915 944 958 986 

Table  2.       Pruess  data. 

3.2    Q(h3)   interpolation  methods

Let  m  =  2.    Then  equations  (2.1)  - (2 .3)    give  0(h2)   derivative  approx- 

imations  with  the  following  choices  of  index  sets: 

  I1 =  {2,3} for    d1   , 

  Ii   =   {i-1,i+1}    for    di  ,  i = 2,...,n-1 , (3.1) 

  In    =    {n-2,n-1}       for    d n    . 

The  0(h2  )  approximations  will  give  an  0(h3)  error  bound  for  the  rational 

quadratic  method.    The  weights  associated  with  the  formulae  are  given  in 
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terms  of   the   interval   lengths   as 

α 1, 2          =   1   +  h1 / h2  ,     α l , 3       =   - h1   /h2
for  d1   , 

 

α i , i - 1    =   hi /(h i - 1 +hi)   ,   α.i , i + 1    =  hi - 1      / (hi - 1      +hi )   for  di   ,   i=2,……,.,n-1   ,(3.2) 

α n, n-1     =    1   +  h n-1 /h n-2 ,   α n, n – 2 =   -h n- I  /h n-2                      for  dn            

The  arithmetic  means  for  d1   and  d n    can  be  negative,   such  values  being 

replaced  by   zero   in  the  rational   quadratic   scheme.     The  geometric   and 

harmonic  means  are   all  non-negative,   the  harmonic  means  having  the   simplified 

forms 

dl    =  Δ1,2   Δ1,3 /Δ2 , 3     , 

di     =  Δ i , i - 1 Δ i , i + 1 /Δ i - 1, i + 1  ,    i =   2,...,n-1 ,                     (3.3) 

d n    =  Δn , n -1 Δn , n -2 /Δn - 1, n - 2  

This   form  for  d.   is  one  used   in  Gregory  and  Delbourgo   (1982)   although 

there   its  harmonic  mean  formulation  was  not  recognized.     If   d1   or  dn

become   infinite   in    the  harmonic   case   they   are   replaced  by  a   large  finite 

value.  

The   results   of  using   the  derivative   parameters   defined   above,  in 

the  rational  quadratic   scheme,   are   shown   in  Figures   1,   2  and  3.      It   can 

be  seen  that   the  geometric   and  harmonic   settings  give  better  results  than 

those  which  use   the  arithmetic   form.     The  geometric   setting  probably 

gives   the  best   result   for  the  Fritsch-Carlson  data  whilst   the  harmonic 

setting   is  better   for  the  other  examples. 
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3 .3     0(h4)   interpolation  methods

Let  m = 4 .      Then  0(h4)   derivative   approximations  are  given  by   the 

choice 

I.   =   {i-2,i-1,i+1,i+2}     for     di    ,      i   =   3,.….,n-2   . (3.4) 

These  will   result   in  0(h4   )   error  bounds   for   the   rational   quadratic  method 

provided   d1,   d2,   d n - 1     and  d n     are   given  with  at   least   0 ( h 3 )    accuracy.    We 

prefer   the   use   of   the   0(h4)   approximations,   which   are   symmetric   about  xi , 

rather   than   the  use   of   the   unsymmetric   0(h3)   forms  based  on 

Ii   -   {i-1,i+1,i+2},   i  =   2,...,n-2  or  I i   =  {i-2,i-1 , i+1},   i  =  3,...,n-1. 

This   is   confirmed   in  practice,   for   each   of   the  three  data   sets,   by  results 

which  are  not   shown  here.      In  particular,   near   the   end  where   there   is  a 

change  between   the   two   types   of   0(h3)   settings,   the  behaviour  of   the 

interpolants  was   found   to  be  poor. 

 Expressions   for   the   weights   can  easily  be  obtained  from   (2.5)   in  terms 

of   the   interval   spacings   hi.     For  brevity  we   do   not  quote   these  here,   but 

note   that   α 1,1 - 2      and   α1,1+2    are  negative   and  hence   the   arithmetic  mean 

can  give  negative  values.     The   geometric  mean,   as   always,  is   positive  and 

it  can  be  proved   that   the  harmonic  mean   is   also   positive. 

It   is   sufficient   to  use   0(h3 )   conditions   near   the   ends,   where   (3.4) 

cannot  be  applied,  and   these  are  given  by 

I     =   {2,3,4}      for  d1    , I2   =   (1,3,4}      for     d2    , 

 In   =   {n-3,n-2,n-l}      for     dn   ,        In - 1 =   { n-3, n-2, n}      for     d n - 1      . 
 (3.5) 

Here   the  arithmetic   and  harmonic   settings   for  d1   and  d n    could  give  negative 

values.     The  arithmetic   setting   for  d 2    and  dn – 1 could   also  be  negative 

but   the   geometric   and  harmonic   forms   are   positive. 

Figures   4,   5   and   6   show  the   results   of  using   the   derivative   parameters 

of   this   section   in  the   rational   quadratic   scheme.      Here,   the  harmonic 
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settings   seem  to   give   the  best  results,   with   the  arithmetic  values   again 

providing   the   poorest   curves.      In   fact   some   of   the   graphs   compare  unfavour- 

ably  with   those  given  by  the  derivative  parameters   of  the  previous   sub- 

section,   although   this   is   not  unexpected   since  the   data   sets   do   not   exhibit 

the   smoothness   conditions  needed  for  0(h4)  convergence.     In  the  next   sub- 

section  we   check   the   theoretical  behaviour   of   the   errors on   the   smooth 

test   function   f (x)   =  exp(x). 

3.4     Test  problem  f(x)  =exp(x)

Tables  3  and  4   show  the  results  of   applying   the  0(h3)   and  0(h4)   inter- 

polation  methods   to   f(x)    =    exp(x)    on   [0 ,1]   .       The   derivative   settings   are 

those  described   above   except   that   the   exact   end  conditions  d1 =  1  and 

d    =exp(1)   are  used.      The  knots   are   taken   to  be  equally   spaced   with   four 

choices  of   interval   length,   h = 0.2,   0.1,   0.05,   and  0.025   respectively. 

The   tables  give   the  uniform  norm  errors   ||  f - s  || ∞     on   [0,1]   and   the  ratios 

of  the   errors   confirm  the  expected  0(h3)   and  0(h4)   error  bounds.     Both  the 

geometric  and  harmonic   settings  have  given  consistently  smaller error  norms 

than   those   given   by   the   arithmetic   settings   for   this   example.  

 Error  E1 

(h=0.2) 

Error  E2 

(h=0.1) 
Error  E3 

(h=0.05) 
Error  E4 

(h=0.025) E1/E2 E2/E3 E3/E4

Arithmetic 0.4620×10-3 0.6226×10-4 0.8081×10-5 0.1029×10-5 7.42 7.70 7.85 

Geometric 0.1217×10-3 0.1597×10 - 4 0.2046×10- 5 0.2589×10-6 7.62 7.81 7.90 

Harmonic 0.2180×10-3 0.3030×10 - 4 0.3988×10-5 0.5113×10-6 7.19 7.60 7.80 

   Table  3.     E   -   ||  f  - s  || ∞     ,   0(h3)   interpolation  methods,   f (x)   =  exp (x) 
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Error  E1 

(h=0.2) 

Error  E2 

(h=0.1) 

Error  E3 

(h=0.05) 

Error  E4 

(h=0.025) E1/E2 E2/E3 E3/E4

Arithmetic 0.5058×10-4 0.3528×l0-5 0.2331×10-6 0.1498×10-7 14.34 15.14 15.56

Geometric 0.1036×10-4 0.6774×10-6 0.4329×10-7 0.2736×10-8 15.29 15.65 15.82

Harmonic 0.9724×10-5 0.6557×10-6 0.4258×10-7 0.2713×10-8 14.83 15.40 15.69

   Table  4.        E   =   || f - s  ||∞   ,   0(h4)   interpolation methods,   f(x)   -   exp(x) 

4.       Conclusion

Given  a  monotonic  data   set,   a  C1  monotonic   interpolant  can  be  con- 

structed  using   piecewise   rational   quadratic   interpolation.    The   theory 

and  results   indicate   that   if   the   derivative  parameters  of   the  scheme 

are   to  be  calculated   from  explicit   formulae,   then  the  geometric  or  harmonic 

approximations   of   this  paper  should  be  used.   In  particular,   for  most 

practical   purposes,   the  formulae  giving   the  0(h3)   interpolation  methods 

described   in   sub-section  4.2   should  be  adequate. 
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